Skip to main content
Log in

A copula-based Markov chain model for serially dependent event times with a dependent terminal event

  • Original Paper
  • Recent Statistical Methods for Survival Analysis
  • Published:
Japanese Journal of Statistics and Data Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

A Publisher Correction to this article was published on 15 January 2021

This article has been updated

Abstract

Copula modeling for serial dependence has been extensively discussed in a time series context. However, fitting copula-based Markov models for serially dependent survival data is challenging due to the complex censoring mechanisms. The purpose of this paper is to develop likelihood-based methods for fitting a copula-based Markov chain model to serially dependent event times that are dependently censored by a terminal event, such as death. We propose a novel copula-based Markov chain model for describing serial dependence in recurrent event times. We also apply another copula model for handling dependent censoring. Due to the complex likelihood function with the two copulas, we propose a two-stage estimation method under Weibull distributions for fitting the survival data. The asymptotic normality of the proposed estimator is established through the theory of estimating functions. We propose a jackknife method for interval estimates, which is shown to be asymptotically consistent. To select suitable copulas for a given dataset, we propose a model selection method according to the 2nd stage likelihood. We conduct simulation studies to assess the performance of the proposed methods. For illustration, we analyze survival data from colorectal cancer patients. We implement the proposed methods in our original R package “Copula.Markov.survival” that is made available in CRAN (https://cran.r-project.org/).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  • Balakrishnan, N., Chimitova, E., et al. (2013). Testing goodness of fit of parametric AFT and PH models with residuals. Communications in Statistics-Simulation and Computation, 42(6), 1352–1367.

    MATH  Google Scholar 

  • Bedair, K., Hong, Y., et al. (2016). Multivariate frailty models for multi-type recurrent event data and its application to cancer prevention trial. Computational Statistics & Data Analysis, 101, 161–173.

    MathSciNet  MATH  Google Scholar 

  • Cai, J., & Schaubel, D. E. (2004). Marginal means/rates models for multiple type recurrent event data. Lifetime Data Analysis, 10, 121–138.

    MathSciNet  MATH  Google Scholar 

  • Chen, X., & Fan, Y. (2006). Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification. Journal of Econometrics, 135(1–2), 125–154.

    MathSciNet  MATH  Google Scholar 

  • Cox, D. R., & Reid, N. (1987). Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society: Series B (Methodological), 49(1), 1–18.

    MathSciNet  MATH  Google Scholar 

  • Darsow, W. F., Nguyen, B., & Olsen, E. T. (1992). Copulas and Markov processes. Illinois Journal of Mathematics, 36(4), 600–642.

    MathSciNet  MATH  Google Scholar 

  • Domma, F., Giordano, S., & Perri, P. F. (2009). Statistical modeling of temporal dependence in financial data via a copula function. Communications in Statistics-Simulation and Computation, 38(4), 703–728.

    MathSciNet  MATH  Google Scholar 

  • Duchateau, L., & Janssen, P. (2007). The Frailty Model. New York: Springer.

    MATH  Google Scholar 

  • Durante, F., & Sempi, C. (2016). Principles of Copula theory. London: Chapman and Hall/CRC.

    MATH  Google Scholar 

  • Emura, T. (2020). joint.Cox: joint frailty-copula models for tumour progression and death in meta-analysis, CRAN, https://CRAN.R-project.org/package=joint.Cox.

  • Emura, T., & Chen, Y.-H. (2018). Analysis of survival data with dependent censoring, copula-based approaches, JSS research series in statistics. Singapore: Springer.

    MATH  Google Scholar 

  • Emura, T., & Hsu, J.-H. (2020). Estimation of the Mann-Whitney effect in the two-sample problem under dependent censoring. Comptational Statistics & Data Analysis, 150, 106990.

    MathSciNet  MATH  Google Scholar 

  • Emura, T., Lin, C.-W., & Wang, W. (2010). A goodness-of-fit test for Archimedean copula models in the presence of right censoring. Computational Statistics & Data Analysis, 54, 3033–3043.

    MathSciNet  MATH  Google Scholar 

  • Emura, T., Long, T.-H., & Sun, L.-H. (2017a). R routines for performing estimation and statistical process control under copula-based time series models. Communications in Statistics-Simulation and Computation, 46(4), 3067–3087.

    MathSciNet  MATH  Google Scholar 

  • Emura, T., Nakatochi, M., Murotani, K., & Rondeau, V. (2017b). A joint frailty-copula model between tumour progression and death for meta-analysis. Statistical Methods in Medical Research, 26(6), 2649–2666.

    MathSciNet  Google Scholar 

  • Emura, T., Matsui, S., & Rondeau, V. (2019). Survival analysis with correlated endpoints, joint frailty-copula models, JSS research series in statistics. Singapore: Springer.

    MATH  Google Scholar 

  • Erkal Sonmez, O., & Baray, A. (2019). On copula based serial dependence in statistical process control. In F. Calisir, E. Cevikcan, & H. Camgoz Akdag (Eds.), Industrial engineering in the big data Era. Lecture notes in management and industrial engineering. Cham: Springer. https://doi.org/10.1007/978-3-030-03317-0_11.

    Chapter  Google Scholar 

  • Gijbels, I., Veraverbeke, N., & Omelka, M. (2011). Conditional copulas, association measures and their applications. Computational Statistics & Data Analysis, 55(5), 1919–1932.

    MathSciNet  MATH  Google Scholar 

  • González, J. R., Fernandez, E., Moreno, V., et al. (2005). Sex differences in hospital readmission among colorectal cancer patients. Journal of Epidemiology and Community Health, 59(6), 506–511.

    Google Scholar 

  • Ha, I. D., Jeong, J. H., & Lee, Y. (2017). Statistical modelling of survival data with random effects. Singapore: Springer.

    MATH  Google Scholar 

  • Huang, X.-W., & Emura, T. (2019). Model diagnostic procedures for copula-based Markov chain models for statistical process control. Communications in Statistics-Simulation and Computation. https://doi.org/10.1080/03610918.2019.1602647.

    Article  Google Scholar 

  • Hung, W.-L. (2001). Weighted least-squares estimation of the shape parameter of the Weibull distribution. Quality and Reliability Engineering International, 17, 467–469. https://doi.org/10.1002/qre.423.

    Article  Google Scholar 

  • Joe, H. (1997). Multivariate models and multivariate dependence concepts. London: Chapman and Hall/CRC.

    MATH  Google Scholar 

  • Joe, H. (2005). Asymptotic efficiency of the two-stage estimation method for copula-based models. Journal of Multivariate Analysis, 94(2), 401–419.

    MathSciNet  MATH  Google Scholar 

  • Kim, J.-M., & Baik, J. (2018). Anomaly detection in sensor data. Journal of Applied Reliability, 18(1), 20–32.

    Google Scholar 

  • Kim, J.-M., Baik, J., & Reller, M. (2018). Detecting the change of variance by using conditional distribution with diverse copula functions. In: Paper presented at the Proceedings of the Pacific Rim Statistical Conference for Production Engineering.

  • Kim, J.-M., Baik, J., & Reller, M. (2019). Control charts of mean and variance using copula Markov SPC and conditional distribution by copula. Communications in Statistics-Simulation and Computation. https://doi.org/10.1080/03610918.2018.1547404.

    Article  Google Scholar 

  • Lawless, J. F. (2003). Statistical models and methods for lifetime data (2nd ed.). Hoboken: Wiley.

    MATH  Google Scholar 

  • Lawless, J. F., & Yilmaz, Y. E. (2011). Semiparametric estimation in copula models for bivariate sequential survival times. Biometrical Journal, 53(5), 779–796.

    MathSciNet  MATH  Google Scholar 

  • Li, Z., Chinchilli, V. M., & Wang, M. (2019a). A Bayesian joint model of recurrent events and a terminal event. Biometrical Journal, 61(1), 187–202.

    MathSciNet  MATH  Google Scholar 

  • Li, F., Tang, Y., & Wang, H. J. (2019b). Copula-based semiparametric analysis for time series data with detection limits. Canadian Journal of Statistics, 47(3), 438–454.

    MathSciNet  MATH  Google Scholar 

  • Li, Z., Chinchilli, V. M., & Wang, M. (2020). A time-varying Bayesian joint hierarchical copula model for analysing recurrent events and a terminal event: an application to the Cardiovascular Health Study. Journal of the Royal Statistical Society: Series C, 69(1), 151–166.

    MathSciNet  Google Scholar 

  • Lin, W.-C., Emura, T., & Sun, L.-H. (2019). Estimation under copula-based Markov mixture normal models for serially correlated data. Communications in Statistics-Simulation and Computation. https://doi.org/10.1080/03610918.2019.1652318.

    Article  Google Scholar 

  • Liu, X. (2012). Planning of accelerated life tests with dependent failure modes based on a gamma frailty model. Technometrics, 54(4), 398–409.

    MathSciNet  Google Scholar 

  • Lo, S. M., Mammen, E., & Wilke, R. A. (2020). A nested copula duration model for competing risks with multiple spells. Computational Statistics & Data Analysis, 150, 106986.

    MathSciNet  MATH  Google Scholar 

  • MacDonald, I. L. (2014). Does Newton-Raphson really fail? Statistical Methods in Medical Research, 23(3), 308–311.

    MathSciNet  Google Scholar 

  • Meyer, R., & Romeo, J. S. (2015). Bayesian semiparametric analysis of recurrent failure time data using copulas. Biometrical Journal, 57(6), 982–1001.

    MathSciNet  MATH  Google Scholar 

  • Nelsen, R. B. (1986). Properties of a one-parameter family of bivariate distributions with specified marginals. Communications in Statistics-Theory and Methods, 15(11), 3277–3285.

    MathSciNet  MATH  Google Scholar 

  • Nelsen, R. B. (2006). An introduction to copulas (2nd ed.). New York: Springer.

    MATH  Google Scholar 

  • Ning, J., Rahbar, M. H., et al. (2017). Estimating the ratio of multivariate recurrent event rates with application to a blood transfusion study. Statistical Methods in Medical Research, 26(4), 1969–1981.

    MathSciNet  Google Scholar 

  • Rotolo, F., Paoletti, X., & Michiels, S. (2018). surrosurv: An R package for the evaluation of failure time surrogate endpoints in individual patient data meta-analyses of randomized clinical trials. Computer Methods and Programs in Biomedicine, 155, 189–198.

    Google Scholar 

  • Schneider, S., Demarqui, F. N., Colosimo, E. A., & Mayrink, V. D. (2020). An approach to model clustered survival data with dependent censoring. Biometrical Journal, 62(1), 157–174.

    MathSciNet  MATH  Google Scholar 

  • Shih, J. H. (2014). Copula models. In J. P. Klein, H. C. Van Houwelingen, J. G. Ibrahim, & T. H. Scheike (Eds.), Handbook of survival analysis. Boca Raton: CRC Press.

    Google Scholar 

  • Shinohara, S., Lin, Y. H., Michimae, H., & Emura. T. (2020) Dynamic lifetime prediction using a Weibull-based bivariate failure time model: a meta-analysis of individual-patient data, in reivew.

  • Su, C.-L., Lin, F.-C. (2020). Analysis of cyclic recurrent event data with multiple event types, Japanese Journal of Statistics and Data Sciencehttps://doi.org/10.1007/s42081-020-00088-7.

  • Sun, L.-H., Huang, X.-W., Alqawba, M.-S., Kim, J. M., & Emura, T. (2020). Copula-based Markov models for time series - parametric inference and process control, JSS research series in statistics. Singapore: Springer.

    MATH  Google Scholar 

  • Sun, L.-H., Lee, C.-S., & Emura, T. (2018). A Bayesian inference for time series via copula-based Markov chain models. Communications in Statistics-Simulation and Computation. https://doi.org/10.1080/03610918.2018.1529241.

    Article  Google Scholar 

  • Valle, L. D., Leisen, F., & Rossini, L. (2018). Bayesian non-parametric conditional copula estimation of twin data. Journal of the Royal Statistical Society: Series C, 67(3), 523–548.

    MathSciNet  Google Scholar 

  • Wang, W., & Emura, T. (2011). Comments on inference in multivariate Archimedean copula models by Genest et al. TEST, 20, 276–280.

    MathSciNet  MATH  Google Scholar 

  • Wang, K., Yau, K. K., Lee, A. H., et al. (2007). Multilevel survival modelling of recurrent urinary tract infections. Computer Methods and Programs in Biomedicine, 87(3), 225–229.

    Google Scholar 

  • Wang, Y. C., Emura, T., Fan, T. H., Lo, S. M., & Wilke, R. A. (2020). Likelihood-based inference for a frailty-copula model based on competing risks failure time data. Qual. Reliab. Eng. Int., 36(5), 1622–1638.

    Google Scholar 

  • Weibull, W. (1951). Wide applicability. Journal of Applied Mechanics, 103(730), 293–297.

    MATH  Google Scholar 

  • Wu, B. H., Michimae, H., & Emura, T. (2020). Meta-analysis of individual patient data with semi-competing risks under the Weibull joint frailty–copula model. Computational Statistics. https://doi.org/10.1007/s00180-020-00977-1.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, S., Zhou, Q. M., & Lin, H. (2020). Goodness-of-fit test of copula functions for semi-parametric univariate time series models. Statistical Papers. https://doi.org/10.1007/s00362-019-01153-4.

    Article  Google Scholar 

Download references

Acknowledgements

The authors kindly thank the Editor-in-Chief (Prof. Aoshima), the coordinating editor (Prof. Ha), and two anonymous reviewers for their helpful comments that improved the manuscript. The authors also thank Prof. Chyong-Mei Chen who gave us suggestions in the initial stage of this work. The research of Emura T is funded by the grant from the Ministry of Science and Technology of Taiwan (MOST 107-2118-M-008-003-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Emura.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: “There are several errors in the supplementary material that were caused during production process”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

R codes (four files): simulation_estimation, simulation_onestage, simulation_selection, data_analysis (ZIP 8 kb)

42081_2020_87_MOESM2_ESM.pdf

A PDF file including the following: S1: Model checking based on the Weibull plot. S2: Model selection consistency. S3: Comparison between the one-stage and two-stage methods. S4: Computer codes for the adequacy checking of the colorectal cancer data (PDF 200 kb)

Appendices

Appendix 1: partial derivatives

The 1st-stage transformed log-likelihood is

$$\tilde{\ell }_{i}^{(1)} (\,\tilde{\lambda },\;\tilde{\nu }_{2} \,) = \delta_{i}^{*} (\,\tilde{\lambda } + \tilde{\nu }_{2} \,) + \delta_{i}^{*} \log (\,T_{i}^{*} \,)\{ \,\exp (\,\tilde{\nu }_{2} \,) - 1\,\} - \exp (\,\tilde{\lambda }\,)T_{i}^{{*\exp (\,\tilde{\nu }_{2} \,)}} .$$

Its partial derivatives are

$$\begin{aligned} \partial \tilde{\ell }_{i}^{(1)} (\,\tilde{\lambda },\;\tilde{\nu }_{2} \,)/\partial \tilde{\lambda }& = \delta_{i}^{*} - \exp (\,\tilde{\lambda }\,)T_{i}^{{*\exp (\,\tilde{\nu }_{2} \,)}} \hfill \\ \partial \tilde{\ell }_{i}^{(1)} (\,\tilde{\lambda },\;\tilde{\nu }_{2} \,)/\partial \tilde{\nu }_{2} &= \delta_{i}^{*} + \delta_{i}^{*} \exp (\,\tilde{\nu }_{2} \,)\log (\,T_{i}^{*} \,) - T_{i}^{{*\exp (\,\tilde{\nu }_{2} \,)}} \exp (\,\tilde{\lambda }\,)\log (\,T_{i}^{*} \,). \hfill \\ \end{aligned}$$

Define notations \(w_{i} = \exp (\tilde{\lambda })T_{i}^{{*\exp (\,\tilde{\nu }_{2} \,)}}\), \(u_{ij} = \exp (\tilde{r})T_{ij}^{{\exp (\tilde{\nu }_{1} )}}\),

$$\tilde{D}^{[\,2,\square ]} (s,t) = - \frac{\partial }{\partial s}\tilde{D}^{[\,1,\cdot ]} (s,t)\;{\text{and}}\,\tilde{D}^{[\,\cdot ,2]} (s,t) = - \frac{\partial }{\partial t}\tilde{D}^{[\,\cdot ,1]} (s,t)$$

The 2nd stage transformed log-likelihood is

$$\begin{aligned} \tilde{\ell }_{i} (\,\tilde{r},\;\tilde{\nu }_{1} ,\;\tilde{\theta },\;\tilde{\alpha },\;\tilde{\lambda },\;\tilde{\nu }_{2} \,) & = \delta_{i}^{*} \{ {\tilde{\lambda } + \tilde{\nu }_{2} + (\exp (\tilde{\nu }_{2} ) - 1)\log (\,T_{i}^{*} \,)} \} + \delta_{i1} \{ {\tilde{r} + \tilde{\nu }_{1} + (\exp (\tilde{\nu }_{1} ) - 1)\log (\,T_{i1} \,)\,} \} \\ & \quad + \delta_{i}^{*} \delta_{i1} \log \tilde{D}_{{\tilde{\alpha }}}^{[\,1,\;1\,]} (\,u_{i1} ,\;w_{i} \,) + \delta_{i}^{*} (\,1 - \delta_{i1} \,)\log \tilde{D}_{{\tilde{\alpha }}}^{[\,0,\;1\,]} (\,u_{i1} ,\;w_{i} \,) \\ & \quad + (\,1 - \delta_{i}^{*} \,)\delta_{i1} \log \tilde{D}_{{\tilde{\alpha }}}^{[\,1,\;0\,]} (\,u_{i1} ,\;w_{i} \,) + (\,1 - \delta_{i}^{*} \,)(\,1 - \delta_{i1} \,)\log \tilde{D}_{{\tilde{\alpha }}} (\,u_{i1} ,\;w_{i} \,) \\ & \quad + \sum\limits_{j = 2}^{{n_{i} }} {\left[ {\,u_{i(j - 1)} + \delta_{ij} \left\{ {\tilde{r} + \tilde{\nu }_{1} + (\exp (\tilde{\nu }_{1} ) - 1)\log (\,T_{ij} \,)} \right\}} \right.} \\ & \quad + \left. {\delta_{ij} \log D_{{\tilde{\theta }}}^{[\,1,\;1\,]} (\,u_{ij} ,\;u_{i(j - 1)} \,) + (\,1 - \delta_{ij} \,)\log D_{{\tilde{\theta }}}^{[\,0,\;1\,]} (\,u_{ij} ,\;u_{i(j - 1)} \,)} \right]. \\ \end{aligned}$$

Its partial derivatives are

$$\begin{aligned} \frac{{\partial \tilde{\ell }_{i} }}{{\partial \tilde{r}}} & = \delta_{i1} - \left\{ {\delta_{i}^{*} \delta_{i1} \frac{{\tilde{D}_{{\tilde{\alpha }}}^{[\,2,\;1\,]} (\,u_{i1} ,\;w_{i} \,)}}{{\tilde{D}_{{\tilde{\alpha }}}^{[\,1,\;1\,]} (\,u_{i1} ,\;w_{i} \,)}} + \delta_{i}^{*} (\,1 - \delta_{i1} \,)\frac{{\tilde{D}_{{\tilde{\alpha }}}^{[\,1,\;1\,]} (\,u_{i1} ,\;w_{i} \,)}}{{\tilde{D}_{{\tilde{\alpha }}}^{[\,0,\;1\,]} (\,u_{i1} ,\;w_{i} \,)}}} \right. \\ & \quad + \left. {(\,1 - \delta_{i}^{*} \,)\delta_{i1} \frac{{\tilde{D}_{{\tilde{\alpha }}}^{[\,2,\;0\,]} (\,u_{i1} ,\;w_{i} \,)}}{{\tilde{D}_{{\tilde{\alpha }}}^{[\,1,\;0\,]} (\,u_{i1} ,\;w_{i} \,)}} + (\,1 - \delta_{i}^{*} \,)(\,1 - \delta_{i1} \,)\frac{{\tilde{D}_{{\tilde{\alpha }}}^{[\,1,\;0\,]} (\,u_{i1} ,\;w_{i} \,)}}{{\tilde{D}_{{\tilde{\alpha }}} (\,u_{i1} ,\;w_{i} \,)}}} \right\}u_{i1} \\ & \quad + \sum\limits_{j = 2}^{{n_{i} }} {\left[ {\,u_{i(j - 1)} + \delta_{ij} - \left\{ {\delta_{ij} \frac{{D_{{\tilde{\theta }}}^{[\,2,\;1\,]} (\,u_{ij} ,\;u_{i(j - 1)} \,)}}{{D_{{\tilde{\theta }}}^{[\,1,\;1\,]} (\,u_{ij} ,\;u_{i(j - 1)} \,)}} + (\,1 - \delta_{ij} \,)\frac{{D_{{\tilde{\theta }}}^{[\,1,\;1\,]} (\,u_{ij} ,\;u_{i(j - 1)} \,)}}{{D_{{\tilde{\theta }}}^{[\,0,\;1\,]} (\,u_{ij} ,\;u_{i(j - 1)} \,)}}} \right\}u_{ij} } \right.} \\ & \quad - \left. {\left\{ {\delta_{ij} \frac{{D_{{\tilde{\theta }}}^{[\,1,\;2\,]} (\,u_{ij} ,\;u_{i(j - 1)} \,)}}{{D_{{\tilde{\theta }}}^{[\,1,\;1\,]} (\,u_{ij} ,\;u_{i(j - 1)} \,)}} + (\,1 - \delta_{ij} \,)\frac{{D_{{\tilde{\theta }}}^{[\,0,\;2\,]} (\,u_{ij} ,\;u_{i(j - 1)} \,)}}{{D_{{\tilde{\theta }}}^{[\,0,\;1\,]} (\,u_{ij} ,\;u_{i(j - 1)} \,)}}} \right\}u_{i(j - 1)} \,} \right] \\ \end{aligned}$$
$$\begin{aligned} \frac{{\partial \tilde{\ell }_{i} }}{{\partial \tilde{\lambda }}} = \delta_{i}^{*} - \left\{ {\delta_{i}^{*} \delta_{i1} \frac{{\tilde{D}_{{\tilde{\alpha }}}^{[\,1,\;2\,]} (\,u_{i1} ,\;w_{i} \,)}}{{\tilde{D}_{{\tilde{\alpha }}}^{[\,1,\;1\,]} (\,u_{i1} ,\;w_{i} \,)}} + \delta_{i}^{*} (\,1 - \delta_{i1} \,)\frac{{\tilde{D}_{{\tilde{\alpha }}}^{[\,0,\;2\,]} (\,u_{i1} ,\;w_{i} \,)}}{{\tilde{D}_{{\tilde{\alpha }}}^{[\,0,\;1\,]} (\,u_{i1} ,\;w_{i} \,)}}} \right. \hfill \\ & \quad \left. { + (\,1 - \delta_{i}^{*} \,)\delta_{i1} \frac{{\tilde{D}_{{\tilde{\alpha }}}^{[\,1,\;1\,]} (\,u_{i1} ,\;w_{i} \,)}}{{\tilde{D}_{{\tilde{\alpha }}}^{[\,1,\;0\,]} (\,u_{i1} ,\;w_{i} \,)}} + (\,1 - \delta_{i}^{*} \,)(\,1 - \delta_{i1} \,)\frac{{\tilde{D}_{{\tilde{\alpha }}}^{[\,0,\;1\,]} (\,u_{i1} ,\;w_{i} \,)}}{{\tilde{D}_{{\tilde{\alpha }}} (\,u_{i1} ,\;w_{i} \,)}}} \right\}w_{i} \hfill \\ \end{aligned}$$
$$\begin{aligned} \frac{{\partial \tilde{\ell }_{i} }}{{\partial \tilde{\nu }_{1} }} & = \delta_{i1} \{ \,1 + \exp (\tilde{\nu }_{1} )\log (\,T_{i1} \,)\,\} \\ & \quad - \left\{ {\delta_{i}^{*} \delta_{i1} \frac{{\tilde{D}_{{\tilde{\alpha }}}^{[\,2,\;1\,]} (\,u_{i1} ,\;w_{i} \,)}}{{\tilde{D}_{{\tilde{\alpha }}}^{[\,1,\;1\,]} (\,u_{i1} ,\;w_{i} \,)}} + \delta_{i}^{*} (\,1 - \delta_{i1} \,)\frac{{\tilde{D}_{{\tilde{\alpha }}}^{[\,1,\;1\,]} (\,u_{i1} ,\;w_{i} \,)}}{{\tilde{D}_{{\tilde{\alpha }}}^{[\,0,\;1\,]} (\,u_{i1} ,\;w_{i} \,)}}} \right. \\ & \quad + \left. {(\,1 - \delta_{i}^{*} \,)\delta_{i1} \frac{{\tilde{D}_{{\tilde{\alpha }}}^{[\,2,\;0\,]} (\,u_{i1} ,\;w_{i} \,)}}{{\tilde{D}_{{\tilde{\alpha }}}^{[\,1,\;0\,]} (\,u_{i1} ,\;w_{i} \,)}} + (\,1 - \delta_{i}^{*} \,)(\,1 - \delta_{i1} \,)\frac{{\tilde{D}_{{\tilde{\alpha }}}^{[\,0,\;1\,]} (\,u_{i1} ,\;w_{i} \,)}}{{\tilde{D}_{{\tilde{\alpha }}} (\,u_{i1} ,\;w_{i} \,)}}} \right\}u_{i1} \exp (\tilde{\nu }_{1} )\log T_{i1} \\ & \quad + \sum\nolimits_{j = 2}^{{n_{i} }} {\left[ {\,u_{i(j - 1)} \exp (\tilde{\nu }_{1} )\log T_{i(\,j - 1\,)} + \delta_{ij} \{ 1 + \exp (\tilde{\nu }_{1} )\log (\,T_{ij} \,)\,\} } \right.} \\ & \quad - \left\{ {\delta_{ij} \frac{{D_{{\tilde{\theta }}}^{[\,2,\;1\,]} (\,u_{ij} ,\;u_{i(j - 1)} \,)}}{{D_{{\tilde{\theta }}}^{[\,1,\;1\,]} (\,u_{ij} ,\;u_{i(j - 1)} \,)}} - (\,1 - \delta_{ij} \,)\frac{{D_{{\tilde{\theta }}}^{[\,1,\;1\,]} (\,u_{ij} ,\;u_{i(j - 1)} \,)}}{{D_{{\tilde{\theta }}}^{[\,0,\;1\,]} (\,u_{ij} ,\;u_{i(j - 1)} \,)}}} \right\}u_{ij} \exp (\tilde{\nu }_{1} )\log T_{ij} \\ & \quad - \left. {\left\{ {\delta_{ij} \frac{{D_{{\tilde{\theta }}}^{[\,1,\;2\,]} (\,u_{ij} ,\;u_{i(j - 1)} \,)}}{{D_{{\tilde{\theta }}}^{[\,1,\;1\,]} (\,u_{ij} ,\;u_{i(j - 1)} \,)}} + (\,1 - \delta_{ij} \,)\frac{{D_{{\tilde{\theta }}}^{[\,0,\;2\,]} (\,u_{ij} ,\;u_{i(j - 1)} \,)}}{{D_{{\tilde{\theta }}}^{[\,0,\;1\,]} (\,u_{ij} ,\;u_{i(j - 1)} \,)}}} \right\}u_{i(j - 1)} \exp (\tilde{\nu }_{1} )\log T_{i(\,j - 1\,)} \,} \right] \\ \end{aligned}$$
$$\frac{{\partial \tilde{\ell }_{i} }}{{\partial \tilde{\theta }}} = \sum\limits_{j = 2}^{{n_{i} }} {\left[ {\delta_{ij} \frac{{\frac{\partial }{{\partial \tilde{\theta }}}D_{{\tilde{\theta }}}^{[\,1,\;1\,]} (\,u_{ij} ,\;u_{i(j - 1)} \,)}}{{D_{{\tilde{\theta }}}^{[\,1,\;1\,]} (\,u_{ij} ,\;u_{i(j - 1)} \,)}} + (\,1 - \delta_{ij} \,)\frac{{\frac{\partial }{{\partial \tilde{\theta }}}D_{{\tilde{\theta }}}^{[\,0,\;1\,]} (\,u_{ij} ,\;u_{i(j - 1)} \,)}}{{D_{{\tilde{\theta }}}^{[\,0,\;1\,]} (\,u_{ij} ,\;u_{i(j - 1)} \,)}}} \right]}$$
$$\begin{aligned} \frac{{\partial \tilde{\ell }_{i} }}{{\partial \tilde{\alpha }}} & = \delta_{i}^{*} \delta_{i1} \frac{{\frac{\partial }{{\partial \tilde{\alpha }}}\tilde{D}_{{\tilde{\alpha }}}^{[\,1,\;1\,]} (\,u_{i1} ,\;w_{i} \,)}}{{\tilde{D}_{{\tilde{\alpha }}}^{[\,1,\;1\,]} (\,u_{i1} ,\;w_{i} \,)}} + \delta_{i}^{*} (\,1 - \delta_{i1} \,)\frac{{\frac{\partial }{{\partial \tilde{\alpha }}}\tilde{D}_{{\tilde{\alpha }}}^{[\,0,\;1\,]} (\,u_{i1} ,\;w_{i} \,)}}{{\tilde{D}_{{\tilde{\alpha }}}^{[\,0,\;1\,]} (\,u_{i1} ,\;w_{i} \,)}} \\ & \quad + (\,1 - \delta_{i}^{*} \,)\delta_{i1} \frac{{\frac{\partial }{{\partial \tilde{\alpha }}}\tilde{D}_{{\tilde{\alpha }}}^{[\,1,\;0\,]} (\,u_{i1} ,\;w_{i} \,)}}{{\tilde{D}_{{\tilde{\alpha }}}^{[\,1,\;0\,]} (\,u_{i1} ,\;w_{i} \,)}} + (\,1 - \delta_{i}^{*} \,)(\,1 - \delta_{i1} \,)\frac{{\frac{\partial }{{\partial \tilde{\alpha }}}\tilde{D}_{{\tilde{\alpha }}} (\,u_{i1} ,\;w_{i} \,)}}{{\tilde{D}_{{\tilde{\alpha }}} (\,u_{i1} ,\;w_{i} \,)}} \\ \end{aligned}$$
$$\begin{aligned} \frac{{\partial \tilde{\ell }_{i} }}{{\partial \tilde{\nu }_{2} }} & = \delta_{i}^{*} \left\{ {1 + \exp (\tilde{\nu }_{2} )\log (\,T_{i}^{*} \,)} \right. \\ & \quad + \left\{ {\delta_{i}^{*} \delta_{i1} \frac{{\tilde{D}_{{\tilde{\alpha }}}^{[\,1,\;2\,]} (\,u_{i1} ,\;w_{i} \,)}}{{\tilde{D}_{{\tilde{\alpha }}}^{[\,1,\;1\,]} (\,u_{i1} ,\;w_{i} \,)}}} \right. + \delta_{i}^{*} (\,1 - \delta_{i1} \,)\frac{{\tilde{D}_{{\tilde{\alpha }}}^{[\,0,\;2\,]} (\,u_{i1} ,\;w_{i} \,)}}{{\tilde{D}_{{\tilde{\alpha }}}^{[\,0,\;1\,]} (\,u_{i1} ,\;w_{i} \,)}} \\ & \quad - \left. {(\,1 - \delta_{i}^{*} \,)\delta_{i1} \frac{{\tilde{D}_{{\tilde{\alpha }}}^{[\,1,\;1\,]} (\,u_{i1} ,\;w_{i} \,)}}{{\tilde{D}_{{\tilde{\alpha }}}^{[\,1,\;0\,]} (\,u_{i1} ,\;w_{i} \,)}} - (\,1 - \delta_{i}^{*} \,)(\,1 - \delta_{i1} \,)\frac{{\tilde{D}_{{\tilde{\alpha }}}^{[\,0,\;1\,]} (\,u_{i1} ,\;w_{i} \,)}}{{\tilde{D}_{{\tilde{\alpha }}} (\,u_{i1} ,\;w_{i} \,)}}} \right\}w_{i} \exp (\tilde{\nu }_{2} )\log T_{i}^{*} . \\ \end{aligned}$$

Appendix 2: sketch of the proof of Theorem 1

We first define

$${\mathbf{g}}_{i} (\,\tilde{\varTheta }\,) = \left[ {\begin{array}{*{20}c} {\frac{{\partial \tilde{\ell }_{i} }}{{\partial \tilde{r}}}} & {\frac{{\partial \tilde{\ell }_{i} }}{{\partial \tilde{\nu }_{1} }}} & {\frac{{\partial \tilde{\ell }_{i} }}{{\partial \tilde{\theta }}}} & {\frac{{\partial \tilde{\ell }_{i} }}{{\partial \tilde{\alpha }}}} & {\frac{{\partial \tilde{\ell }_{i}^{(1)} }}{{\partial \tilde{\lambda }}}} & {\frac{{\partial \tilde{\ell }_{i}^{(1)} }}{{\partial \tilde{\nu }_{2} }}} \\ \end{array} } \right]^{\text{T}} .$$

By a Taylor series expansion, the estimating function \({\mathbf{g}}(\,\tilde{\varTheta }\,) = \sum\nolimits_{i = 1}^{N} {{\mathbf{g}}_{i} (\,\tilde{\varTheta }\,)}\) can be expanded around the true parameter value \(\tilde{\varTheta }_{0} = (\,\tilde{r}_{0} ,\;\tilde{\nu }_{1\;0} ,\;\tilde{\theta }_{0} ,\;\tilde{\alpha }_{0} ,\;\tilde{\lambda }_{0} ,\;\tilde{\nu }_{2\;0} \,)\), such that

$${\mathbf{g}}(\,\tilde{\varTheta }\,) = {\mathbf{g}}(\,\tilde{\varTheta }_{0} \,) + \left. {\frac{{\partial {\mathbf{g}}(\,\tilde{\varTheta }\,)}}{{\partial \tilde{\varTheta }}}} \right|_{{\tilde{\varTheta } = \tilde{\varTheta }_{0} }} \left( {\tilde{\varTheta } - \tilde{\varTheta }_{0} } \right)^{\text{T}} + \overbrace {{O\left( {\left\| {\tilde{\varTheta } - \tilde{\varTheta }_{0} } \right\|^{2} } \right)}}^{\text{The 2nd - order and remainder terms}}.$$

We plug-in the MLE in the above equation so that the left-side becomes zero. It follows that

$$N^{1/2} (\,\hat{\tilde{\varTheta }} - \tilde{\varTheta }_{0} \,)^{T} = \,\left\{ { - \frac{1}{N}\left. {\frac{{\partial {\mathbf{g}}(\,\tilde{\varTheta }\,)}}{{\partial \tilde{\varTheta }}}} \right|_{{\tilde{\varTheta } = \tilde{\varTheta }_{0} }} } \right\}^{ - 1} \,\frac{1}{{N^{1/2} }}{\mathbf{g}}(\,\tilde{\varTheta }_{0} \,) + O_{P} (N^{1/2} ||\,\hat{\tilde{\varTheta }} - \tilde{\varTheta }_{0} \,||^{2} )$$
(3)

Since \(||\,\hat{\tilde{\varTheta }} - \tilde{\varTheta }_{0} \,|| = o_{P} (1)\), the term \(O_{P} (N^{1/2} ||\,\tilde{\varTheta } - \tilde{\varTheta }_{0} \,||^{2} )\) is negligible relative to the left-side. The weak law of large number implies

$$\frac{1}{N}\left. {\frac{{\partial {\mathbf{g}}(\,\tilde{\varTheta }\,)}}{{\partial \tilde{\varTheta }}}} \right|_{{\tilde{\varTheta } = \tilde{\varTheta }_{0} }} \mathop \to \limits^{p} H(\,\tilde{\varTheta }_{0} \,).$$

Under some regularity conditions,

$$\begin{aligned} {\text{E}}\{ \,{\mathbf{g}}_{i} (\,\tilde{\varTheta }_{0} \,)\,\} & = \left. {\int {f(\,{\mathbf{x}}_{i} |\tilde{\varTheta }\,)} {\mathbf{g}}_{i} (\,\tilde{\varTheta }\,){\text{d}}{\mathbf{x}}_{i} } \right|_{{\tilde{\varTheta } = \tilde{\varTheta }_{0} }} \\ & = \left. {\int {f(\,{\mathbf{x}}_{i} |\tilde{\varTheta }\,)\frac{{\partial \log f(\,{\mathbf{x}}_{i} |\tilde{\varTheta }\,)}}{{\partial \tilde{\varTheta }}}{\text{d}}{\mathbf{x}}_{i} } } \right|_{{\tilde{\varTheta } = \tilde{\varTheta }_{0} }} \\ & = \left. {\int {f(\,{\mathbf{x}}_{i} |\tilde{\varTheta }\,)\frac{1}{{f(\,{\mathbf{x}}_{i} |\tilde{\varTheta }\,)}}\frac{{\partial f(\,{\mathbf{x}}_{i} |\tilde{\varTheta }\,)}}{{\partial \tilde{\varTheta }}}{\text{d}}{\mathbf{x}}_{i} } } \right|_{{\tilde{\varTheta } = \tilde{\varTheta }_{0} }} \\ & = \left. {\frac{{\partial \int {f(\,{\mathbf{x}}_{i} |\tilde{\varTheta }\,){\text{d}}{\mathbf{x}}_{i} } }}{{\partial \tilde{\varTheta }}}} \right|_{{\tilde{\varTheta } = \tilde{\varTheta }_{0} }} = {\mathbf{0}}{ ,} \\ \end{aligned}$$

where \(f(\,{\mathbf{x}}_{i} |\tilde{\varTheta }\,) = f(\,t_{i1} ,\; \ldots ,\;t_{{in_{i} }} ,\;\delta_{i1} ,\; \ldots ,\;\delta_{{in_{i} }} ,\;t_{i}^{*} ,\,\delta_{i}^{*} |\tilde{\varTheta }\,) = L_{i}\) is the density function for subject \(i\).

Also, by the central limit theorem,

$$\frac{1}{{N^{1/2} }}{\mathbf{g}}(\,\tilde{\varTheta }_{0} \,)\mathop \to \limits^{d} N\left[ {{\text{E}}\{ \,{\mathbf{g}}_{i} (\,\tilde{\varTheta }_{0} \,)\,\} ,\;{\text{Var}}\{ \,{\mathbf{g}}_{i} (\,\tilde{\varTheta }_{0} \,)\,\} } \right] = N\left[ {{\mathbf{0}} ,\;{\text{E}}\{ \,{\mathbf{g}}_{i} (\,\tilde{\varTheta }_{0} \,){\mathbf{g}}_{i} (\,\tilde{\varTheta }_{0} \,)^{\text{T}} \,\} } \right] = N [\,{\mathbf{0}} ,\;M(\,\tilde{\varTheta }_{0} \,)\,],$$

Finally, by Slutsky’s theorem,

$$N^{1/2} ( {\hat{\tilde{\varTheta }} - \tilde{\varTheta }_{0} } )^{\text{T}} \mathop \to \limits^{d} N\left[ {{\mathbf{0}} ,\;\{ \,H(\,\tilde{\varTheta }_{0} \,)^{ - 1} \,\} M(\,\tilde{\varTheta }_{0} \,)\{ \,H(\,\tilde{\varTheta }_{0} \,)^{ - 1} \,\}^{\text{T}} } \right] = N\left[ {{\mathbf{0}} ,\;\tilde{V}(\,\tilde{\varTheta }_{0} \,)} \right].\;\square$$

Appendix 3: sketch of the proof of Theorem 2

Below, we give the outline for the proof of the consistency by showing the approximation

$$N^{ - 1} \tilde{V}(\,\tilde{\varTheta }_{0} \,) \approx \sum\limits_{k = 1}^{N} {( {\hat{\tilde{\varTheta }}^{(\, - k\,)} - \hat{\tilde{\varTheta }}} )^{\text{T}} ( {\hat{\tilde{\varTheta }}^{(\, - k\,)} - \hat{\tilde{\varTheta }}} )} .$$

We substitute \(\hat{\tilde{\varTheta }}\) by \(\hat{\tilde{\varTheta }}^{(\, - k\,)}\) in Eq. (3), such that

$$N^{1/2} ( {\hat{\tilde{\varTheta }}^{(\, - k\,)} - \tilde{\varTheta }_{0} } )^{T} \approx - H( {\tilde{\varTheta }_{0} } )^{ - 1} N^{ - 1/2} \sum\nolimits_{i \ne k} {{\mathbf{g}}_{i} ( {\tilde{\varTheta }_{0} } )}$$

It follows that

$$( {\hat{\tilde{\varTheta }}^{(\, - k\,)} - \tilde{\varTheta }_{0} })^{\text{T}} \approx - H(\,\tilde{\varTheta }_{0} \,)^{ - 1} \frac{1}{N}\sum\nolimits_{i \ne k} {{\mathbf{g}}_{i} (\,\tilde{\varTheta }_{0} \,)}$$
(4)

Also by Eq. (3), we have

$$N\{ \, - H(\,\tilde{\varTheta }_{0} \,)\,\} (\,\hat{\tilde{\varTheta }} - \tilde{\varTheta }_{0} \,)^{T} \approx {\mathbf{g}}(\,\tilde{\varTheta }_{0} \,)$$
(5)

After eliminating \(\tilde{\varTheta }_{0}\) from Eqs. (4) and (5),

$$( {\hat{\tilde{\varTheta }}^{(\, - k\,)} - \hat{\tilde{\varTheta }}} )^{\text{T}} \approx - \frac{1}{N}H(\,\tilde{\varTheta }_{0} \,)^{ - 1} \,{\mathbf{g}}_{k} (\,\tilde{\varTheta }_{0} \,).$$

Finally, we verify the desired results:

$$\begin{aligned} &\sum\nolimits_{{k = 1}}^{N} {( {\hat{\tilde{\Theta }}^{{(\, - k\,)}} - \hat{\tilde{\Theta }}} )^{{\text{T}}} ( {\hat{\tilde{\Theta }}^{{(\, - k\,)}} - \hat{\tilde{\Theta }}} )} \\&\quad \approx \frac{1}{{N^{2} }}H(\,\tilde{\Theta }_{0} \,)^{{ - 1}} \sum\nolimits_{{k = 1}}^{N} {{\mathbf{g}}_{k} (\,\tilde{\Theta }_{0} \,){\mathbf{g}}_{k} (\,\tilde{\Theta }_{0} \,)^{{\text{T}}} } \{ {H(\,\tilde{\Theta }_{0} \,)^{{ - 1}} } \}^{{\text{T}}} \\&\quad \approx \frac{1}{N}H(\,\tilde{\Theta }_{0} \,)^{{ - 1}} E\{ {{\mathbf{g}}_{i} (\,\tilde{\Theta }_{0} \,){\mathbf{g}}_{i} (\,\tilde{\Theta }_{0} \,)^{{\text{T}}} } \}\{ {H(\,\tilde{\Theta }_{0} \,)^{{ - 1}} } \}^{{\text{T}}} \\&\quad \approx \frac{1}{N}H(\,\tilde{\Theta }_{0} \,)^{{ - 1}} {M(\,\tilde{\Theta }_{0} \,) \{ \,H(\,\tilde{\Theta }_{0} \,)^{{ - 1}} } \}^{{\text{T}}} = \frac{1}{N}\tilde{V}(\,\tilde{\Theta }_{0} \,).\; \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, XW., Wang, W. & Emura, T. A copula-based Markov chain model for serially dependent event times with a dependent terminal event. Jpn J Stat Data Sci 4, 917–951 (2021). https://doi.org/10.1007/s42081-020-00087-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42081-020-00087-8

Keywords

Navigation