Skip to main content
Log in

Photocatalytic oxidation removal of fluoride ion in wastewater by g-C3N4/TiO2 under simulated visible light

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

As a highly active photocatalyst, g-C3N4/TiO2 heterojunction nanocomposites were in situ synthesized by hydro-thermal method and calcination using melamine as precursors. The morphology and chemical structure of the prepared photocatalysts were characterized by X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), SEM, UV-vis, and photoluminescence analysis (PLA). At last, the photocatalytic activities of g-C3N4/TiO2 nanocomposites to remove fluoride under simulated visible light were evaluated. Results showed that the fluoride removal rate of the prepared g-C3N4/TiO2 was about three times than pure g-C3N4 due to the rapid charge transfer and the efficient separation of photogenerated electron-hole pairs in heterojunctions between g-C3N4 and TiO2.

Graphical abstract

Heterojunction g-C3N4/TiO2 display the excellent fluoride removal rate due to the rapid charge transfer and efficient separation of electron-hole pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lachheb H, Ahmed O, Houas A, Nogier JP (2011) Photocatalytic activity of TiO2–SBA-15 under UV and visible light. J Photochem Photobiol A Chem 226(1):1–8. https://doi.org/10.1016/j.jphotochem.2011.09.017

    Article  CAS  Google Scholar 

  2. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96

    Article  CAS  Google Scholar 

  3. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758

    Article  CAS  Google Scholar 

  4. Thompson TL, Yates JT (2006) Surface science studies of the photoactivation of TiO2 new photochemical processes. Chem Rev 106(10):4428–4453. https://doi.org/10.1021/cr050172k

    Article  CAS  Google Scholar 

  5. Tian C, Zhang Q, Wu A, Jiang M, Liang Z, Jiang B, Fu H (2012) Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem Commun (Camb) 48(23):2858–2860. https://doi.org/10.1039/c2cc16434e

    Article  CAS  Google Scholar 

  6. Anandan S, Miyauchi M (2012) Improved photocatalytic efficiency of a WO3 system by an efficient visible-light induced hole transfer. Chem Commun (Camb) 48(36):4323–4325. https://doi.org/10.1039/c2cc31162c

    Article  CAS  Google Scholar 

  7. Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133(28):10878–10884. https://doi.org/10.1021/ja2025454

    Article  CAS  Google Scholar 

  8. Chen D, Zhao F, Qi H, Rutherford M, Peng X (2010) Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor. Chem Mater 22(4):1437–1444. https://doi.org/10.1021/cm902516f

    Article  CAS  Google Scholar 

  9. Zhang T, Ding Y, Tang H (2015) Generation of singlet oxygen over Bi(V)/Bi(III) composite and its use for oxidative degradation of organic pollutants. Chem Eng J 264:681–689. https://doi.org/10.1016/j.cej.2014.12.014

    Article  CAS  Google Scholar 

  10. Lee H, Choi W (2002) Photocatalytic oxidation of arsenite in TiO2 suspension: kinetics and mechanisms. Environ Sci Technol 36(17):3872–3878

    Article  CAS  Google Scholar 

  11. Zhang J, Zhang W, Wei L, Pu L, Liu J, Liu H, Li Y, Fan J, Ding T, Guo Z (2019) Alternating multilayer structural epoxy composite coating for corrosion protection of steel. Macromol Mater Eng 304(12): 1900374. https://doi.org/10.1002/mame.201900374

    Article  Google Scholar 

  12. Xiao P, Lou J, Zhang H, Song W, Wu XL, Lin H, Chen J, Liu S, Wang X (2018) Enhanced visible-light-driven photocatalysis from WS2 quantum dots coupled to BiOCl nanosheets: synergistic effect and mechanism insight. Catal Sci Technol 8(1):201–209. https://doi.org/10.1039/c7cy01784g

    Article  CAS  Google Scholar 

  13. Liu S, Li H, Mo R, Chen Q, Yang S, Zhong J (2016) ZnSe sensitized and Co-Pi catalyzed TiO2 nanowire array photoanode for solar-driven water splitting. J Electrochem Soc 163(9):H744–H749. https://doi.org/10.1149/2.0221609jes

    Article  CAS  Google Scholar 

  14. Chang S, Wang Q, Liu B, Sang Y, Liu H (2017) Hierarchical TiO2 nanonetwork-porous Ti 3D hybrid photocatalysts for continuous-flow photoelectrodegradation of organic pollutants. Catal Sci Technol 7(2):524–532. https://doi.org/10.1039/c6cy02150f

    Article  CAS  Google Scholar 

  15. Kolen’ko YV, Garshev AV, Churagulov BR, Boujday S, Portes P, Colbeau-Justin C (2005) Photocatalytic activity of sol–gel derived titania converted into nanocrystalline powders by supercritical drying. J Photochem Photobiol A Chem 172(1):19–26. https://doi.org/10.1016/j.jphotochem.2004.11.004

    Article  CAS  Google Scholar 

  16. Wu Y, Zhang J, Xiao L, Chen F (2009) Preparation and characterization of TiO2 photocatalysts by Fe3+ doping together with Au deposition for the degradation of organic pollutants. Appl Catal B Environ 88(3–4):525–532. https://doi.org/10.1016/j.apcatb.2008.10.008

    Article  CAS  Google Scholar 

  17. Cheng X, Liu H, Chen Q, Li J, Wang P (2013) Construction of N, S codoped TiO2 NCs decorated TiO2 nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism. Electrochim Acta 103:134–142. https://doi.org/10.1016/j.electacta.2013.04.072

    Article  CAS  Google Scholar 

  18. Periyat P, Divya AS, Warrier KGK (2012) Photocatalytic Cement by TiO2 Addition. Mater Sci Forum 712:65-72. https://doi.org/10.4028/www.scientific.net/MSF.712.65

  19. Ai G, Li H, Liu S, Mo R, Zhong J (2015) Solar water splitting by TiO2/CdS/Co-Pi nanowire array photoanode enhanced with Co-Pi as hole transfer relay and CdS as light absorber. Adv Funct Mater 25(35):5706–5713. https://doi.org/10.1002/adfm.201502461

    Article  CAS  Google Scholar 

  20. Liu Y, Ouyang Q, Li H, Chen M, Zhang Z, Chen Q (2018) Turn-on fluoresence sensor for Hg(2+) in food based on FRET between Aptamers-functionalized upconversion nanoparticles and gold nanoparticles. J Agric Food Chem 66(24):6188–6195. https://doi.org/10.1021/acs.jafc.8b00546

    Article  CAS  Google Scholar 

  21. Tang Y, Song H, Su Y, Lv Y (2013) Turn-on persistent luminescence probe based on graphitic carbon nitride for imaging detection of biothiols in biological fluids. Anal Chem 85(24):11876–11884. https://doi.org/10.1021/ac403517u

    Article  CAS  Google Scholar 

  22. She X, Xu H, Xu Y, Yan J, Xia J, Xu L, Song Y, Jiang Y, Zhang Q, Li H (2014) Exfoliated graphene-like carbon nitride in organic solvents: enhanced photocatalytic activity and highly selective and sensitive sensor for the detection of trace amounts of Cu2+. J Mater Chem A 2(8):2563–2570. https://doi.org/10.1039/c3ta13768f

    Article  CAS  Google Scholar 

  23. Yang G, Zhu C, Du D, Zhu J, Lin Y (2015) Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine. Nanoscale 7(34):14217–14231. https://doi.org/10.1039/c5nr03398e

    Article  CAS  Google Scholar 

  24. Zhang J, Gao Y, Jiao Y, Pu L, Li S, Tang J, Zhang Y (2020) The graphene/Fe3O4 nanocomposites as electrode materials of supercapacitors. J Nanosci Nanotechnol 20(5):3164–3173. https://doi.org/10.1166/jnn.2020.17391

    Article  CAS  Google Scholar 

  25. Duan J, Zhang Y, Yin Y, Li H, Wang J, Zhu L (2018) A novel “on-off-on” fluorescent sensor for 6-thioguanine and Hg2+ based on g-C3N4 nanosheets. Sensors Actuators B Chem 257:504–510. https://doi.org/10.1016/j.snb.2017.10.071

    Article  CAS  Google Scholar 

  26. Cao S, Low J, Yu J, Jaroniec M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 27(13):2150–2176. https://doi.org/10.1002/adma.201500033

    Article  CAS  Google Scholar 

  27. Rr H, Wang Gh, Tang H, Sun Ll XuC, Dy H (2016) Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl Catal B Environ 187:47–58. https://doi.org/10.1016/j.apcatb.2016.01.026

    Article  CAS  Google Scholar 

  28. Guo YT, Jin S, Wang LB, He PG, Hu QK, Fan LZ, Zhou AG (2020) Synthesis of two-dimensional carbide Mo2CTx MXene by hydrothermal etching with fluorides and its thermal stability. Ceram Int 46(11):19550–19556. https://doi.org/10.1016/j.ceramint.2020.05.008

    Article  CAS  Google Scholar 

  29. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116(12):7159–7329. https://doi.org/10.1021/acs.chemrev.6b00075

    Article  CAS  Google Scholar 

  30. Liu G, Pan J, Yin L, Irvine JTS, Li F, Tan J, Wormald P, Cheng HM (2012) Heteroatom-modulated switching of photocatalytic hydrogen and oxygen evolution preferences of anatase TiO2 microspheres. Adv Funct Mater 22(15):3233–3238. https://doi.org/10.1002/adfm.201200414

    Article  CAS  Google Scholar 

  31. Huang D, Niu C, Wang X, Lv X, Zeng G (2013) “Turn-on” fluorescent sensor for Hg2+ based on single-stranded DNA functionalized Mn:CdS/ZnS quantum dots and gold nanoparticles by time-gated mode. Anal Chem 85(2):1164–1170. https://doi.org/10.1021/ac303084d

    Article  CAS  Google Scholar 

  32. Ding H, Wu Y, Zou B, Lou Q, Zhang W, Zhong J, Lu L, Dai G (2016) Simultaneous removal and degradation characteristics of sulfonamide, tetracycline, and quinolone antibiotics by laccase-mediated oxidation coupled with soil adsorption. J Hazard Mater 307:350–358. https://doi.org/10.1016/j.jhazmat.2015.12.062

    Article  CAS  Google Scholar 

  33. Nam SW, Choi DJ, Kim SK, Her N, Zoh KD (2014) Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon. J Hazard Mater 270:144–152. https://doi.org/10.1016/j.jhazmat.2014.01.037

    Article  CAS  Google Scholar 

  34. Zheng Y, Lin L, Wang B, Wang X (2015) Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew Chem Int Ed Engl 54(44):12868–12884. https://doi.org/10.1002/anie.201501788

    Article  CAS  Google Scholar 

  35. Wang XJ, Yang WY, Li FT, Xue YB, Liu RH, Hao YJ (2013) In situ microwave-assisted synthesis of porous N-TiO2/g-C3N4 heterojunctions with enhanced visible-light photocatalytic properties. Ind Eng Chem Res 52(48):17140–17150. https://doi.org/10.1021/ie402820v

    Article  CAS  Google Scholar 

  36. Jiao Y, Zhang J, Liu S, Liang Y, Li S, Zhou H, Zhang J (2018) The graphene oxide ionic solvent-free nanofluids and their battery performances. Sci Adv Mater 10(12):1706–1713. https://doi.org/10.1166/sam.2018.3338

    Article  CAS  Google Scholar 

  37. Zhang J, Zhang Z, Jiao Y, Yang H, Li Y, Zhang J, Gao P (2019) The graphene/lanthanum oxide nanocomposites as electrode materials of supercapacitors. J Power Sources 419:99–105. https://doi.org/10.1016/j.jpowsour.2019.02.059

    Article  CAS  Google Scholar 

  38. Zhang Z, Zhang J, Li S, Liu J, Dong M, Li Y, Lu N, Lei S, Tang J, Fan J, Guo Z (2019) Effect of graphene liquid crystal on dielectric properties of polydimethylsiloxane nanocomposites. Compos Part B Eng 176:107338. https://doi.org/10.1016/j.compositesb.2019.107338

    Article  CAS  Google Scholar 

  39. Shiravand G, Badiei A, Ziarani GM (2017) Carboxyl-rich g-C3N4 nanoparticles: synthesis, characterization and their application for selective fluorescence sensing of Hg2+ and Fe3+ in aqueous media. Sensors Actuators B Chem 242:244–252. https://doi.org/10.1016/j.snb.2016.11.038

    Article  CAS  Google Scholar 

  40. Li J, Wang H, Guo Z, Wang Y, Ma H, Ren X, Du B, Wei Q (2017) A “turn-off” fluorescent biosensor for the detection of mercury (II) based on graphite carbon nitride. Talanta 162:46–51. https://doi.org/10.1016/j.talanta.2016.09.066

    Article  CAS  Google Scholar 

  41. El-Shabaan MM (2018) Impedance spectroscopy and AC conductivity studies of bulk 3-amino-7-(dimethylamino)-2-methyl-hydrochloride. J Electron Mater 47(5):2609–2616. https://doi.org/10.1007/s11664-018-6098-8

    Article  CAS  Google Scholar 

  42. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev. https://doi.org/10.1021/acs.chemrev.6b00075

    Article  Google Scholar 

  43. Wen Y, Rufford TE, Chen X, Li N, Lyu M, Dai L, Wang L (2017) Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 38:368–376. https://doi.org/10.1016/j.nanoen.2017.06.009

    Article  CAS  Google Scholar 

  44. Fujishima A, Zhang X, Tryk D (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63(12):515–582. https://doi.org/10.1016/j.surfrep.2008.10.001

    Article  CAS  Google Scholar 

  45. Gao P, Gao Y, Zhang J, Zhang Z, Li Z, Xiong Q, Deng L, Zhou Q, Meng L, Du Y, Zuo T (2021) Plasmon enhanced perovskite solar cells with efficiency beyond 21%: the asynchronous synergistic effect of water and gold nanorods. ChemPlusChem 86(2): 291–297. https://doi.org/10.1002/cplu.202000792

Download references

Funding

We received the supports from the Special fund of Shaanxi Provincial Education Department (16JK1612), the Open Project of Zhenjiang Key Laboratory of Marine Functional Thin Film Materials High Technology Research (ZHZ2019008), Key Research and Development Project of Shaanxi Province (2017GY-180), and Provincial College Students Innovation and Entrepreneurship Program (201819018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaoxia Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Liu, B., Pu, L. et al. Photocatalytic oxidation removal of fluoride ion in wastewater by g-C3N4/TiO2 under simulated visible light. Adv Compos Hybrid Mater 4, 339–349 (2021). https://doi.org/10.1007/s42114-021-00228-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00228-x

Keywords

Navigation