Skip to main content
Log in

Guanidinium-based ionic covalent organic frameworks for capture of uranyl tricarbonate

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Uranium, which was abundant in the ocean but existed in the form of uranyl tricarbonate ([UO2(CO3)3]4−) with an extremely low concentration of 3.3 ppb, was a significant element of nuclear energy. It is of immediate significance to the research into uranium extraction by the exploration of adsorbents for environment and resource sustainability. Herein, the new ionic covalent organic frameworks (iCOFs) named COF-DG containing the guanidine groups was designed and synthesized via Schiff base reaction between diaminoguanidine hydrochloride and 1,3,5-triformylphloroglucinol. The adsorption performance indicated that the COF-DG possessed an uptake capacity of 65.6 mg g−1 toward the [UO2(CO3)3]4−, attributed to the chemical interaction and anion exchange between [UO2(CO3)3]4− and the cationic COF-DG with Cl, as well as the electrostatic attraction. Besides, the COF-DG exhibited a higher affinity and selectivity toward [UO2(CO3)3]4− in the presence of the competing anions. Furthermore, the COF-DG displayed an antibacterial rate of 82% against Gram-negative bacteria Escherichia coli owing to the guanidine groups. This work contributes new insights into the further development of iCOFs, for applying as a potential candidate in uranium extraction from seawater in practical engineering.

Graphical abstract

The new ionic covalent organic frameworks named COF-DG was designed and exploited via Schiff base reaction, which exhibited a higher affinity and selectivity toward the [UO2(CO3)3]4−.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yan B, Ma C, Gao J, Yuan Y, Wang N (2020) An ion-crosslinked supramolecular hydrogel for ultrahigh and fast uranium recovery from seawater. Adv Mater 32:1906615

    Article  CAS  Google Scholar 

  2. Yuan Y, Yu Q, Cao M, Feng L, Feng S, Liu T, Feng T, Yan B, Guo Z, Wang N (2021) Selective extraction of uranium from seawater with biofouling-resistant polymeric peptide. Nat Sustain. https://doi.org/10.1038/s41893-021-00709-3

  3. Saito T, Brown S, Chatterjee S, Kim J, Tsouris C, Mayes RT, Kuo L-J, Gill G, Oyola Y, Janke CJ, Dai S (2014) Uranium recovery from seawater: development of fiber adsorbents prepared via atom-transfer radical polymerization. J Mater Chem A 2:14674–14681

    Article  CAS  Google Scholar 

  4. Yuan Y, Niu B, Yu Q, Guo X, Guo Z, Wen J, Liu T, Zhang H, Wang N (2020) Photoinduced multiple effects to enhance uranium extraction from natural seawater by black phosphorus nanosheets. Angew Chem Int Ed 59:1220

    Article  CAS  Google Scholar 

  5. Xu M, Han X, Wang T, Li S, Hua D (2018) Conjugated microporous polymers bearing phosphonate ligands as an efficient sorbent for potential uranium extraction from high-level liquid wastes. J Mater Chem A 6:13894–13900

    Article  CAS  Google Scholar 

  6. Dong A, Zhu Y, Ren M, Sun X, Murugadoss V, Yuan Y, Wen J, Wang X, Chen Q, Guo Z, Wang N (2019) Remarkably enhanced CO2 uptake and uranium extraction by functionalization of cyano-bearing conjugated porous polycarbazoles. Eng Sci 6:44–52

    Google Scholar 

  7. Han X, Xu M, Yang S, Qian J, Hua D (2017) Acetylcysteine-functionalized microporous conjugated polymers for potential separation of uranium from radioactive effluents. J Mater Chem A 5:5123–5128

    Article  CAS  Google Scholar 

  8. Li R, Che R, Liu Q, Su S, Li Z, Zhang H, Liu J, Liu L, Wang J (2017) Hierarchically structured layered-double-hydroxides derived by ZIF-67 for uranium recovery from simulated seawater. J Hazard Mater 338:167–176

    Article  CAS  Google Scholar 

  9. Yin L, Hu Y, Ma R, Wen T, Wang X, Hu B, Yu Z, Hayat T, Alsaedi A, Wang X (2019) Smart construction of mesoporous carbon templated hierarchical Mg-Al and Ni-Al layered double hydroxides for remarkably enhanced U(VI) management. Chem Eng J 359:1550–1562

    Article  CAS  Google Scholar 

  10. Guo X, Chen R, Liu Q, Liu J, Zhang H, Yu J, Li R, Zhang M, Wang J (2019) Graphene oxide and silver ions coassisted zeolitic imidazolate framework for antifouling and uranium enrichment from seawater. ACS Sustainable Chem Eng 7:6185–6195

    Article  CAS  Google Scholar 

  11. Liu L, Fang Y, Meng Y, Wang X, Ma F, Zhang C, Dong H (2020) Efficient adsorbent for recovering uranium from seawater prepared by grafting amidoxime groups on chloromethylated MIL-101(Cr) via diaminomaleonitrile intermediate. Desalination 478:114300

  12. Xie S, Liu X, Zhang B, Ma H, Ling C, Yu M, Li L, Li J (2015) Electrospun nanofibrous adsorbent for uranium extraction from seawater. J Mater Chem A 3:2552–2558

    Article  CAS  Google Scholar 

  13. Sun Y, Wu Z, Wang X, Ding C, Cheng W, Yu S, Wang X (2019) Correction to macroscopic and microscopic investigation of U(VI) and Eu(III) adsorption on carbonaceous nanofibers. Environ Sci Technol 53:4459–4467

    Article  Google Scholar 

  14. Sun Q, Aguila B, Earl LD, Abney CW, Wojtas L, Thallapally PK, Ma S (2018) Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. Adv Mater 30:1705479

    Article  Google Scholar 

  15. Zhang S, Zhao X, Li B, Bai C, Li Y, Wang L, Wen R, Zhang M, Ma L, Li S (2016) “Stereoscopic” 2D super-microporous phosphazene-based covalent organic framework: design, synthesis and selective sorption towards uranium at high acidic condition. J Hazard Mater 314:95–104

    Article  CAS  Google Scholar 

  16. Liu H, Mao Y (2021) Graphene oxide-based nanomaterials for uranium adsorptive uptake. ES Mater Manuf 13:3–22

    CAS  Google Scholar 

  17. Zhu J, Zhang H, Chen R, Liu Q, Liu J, Yu J, Li R, Zhang M, Wang J (2019) An anti-algae adsorbent for uranium extraction: l-arginine functionalized graphene hydrogel loaded with Ag nanoparticles. J Colloid Interf Sci 543:192–200

    Article  CAS  Google Scholar 

  18. Dang Z, Jia M, Liao J, Zhang Y, Zhu W (2021) Fabrication of the Al2O3 aerogels by in situ water formation method for the highly efficient removal of uranium(VI). Micropor Mesopor Mat 316:110952

  19. Dong A, Dai T, Ren M, Zhao X, Zhao S, Yuan Y, Chen Q, Wang N (2019) Functionalization and fabrication of soluble polymers of intrinsic microporosity for CO2 transformation and uranium extraction. Eng Sci 5:56–65

    Google Scholar 

  20. Wang S, Yuan N, Dai T, Chang Z, Liang Y, Liu X, Chen Q, Hu B, Wang N (2021) Surface post-functionalization of COFs by economical strategy via multiple-component one-pot tandem reactions and their application in adsorption of pesticides. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00241-0

  21. Zeng Y, Zou R, Zhao Y (2016) Covalent organic frameworks for CO2 capture. Adv Mater 28:2855–2873

    Article  CAS  Google Scholar 

  22. Zhao Y, Sui Z, Chang Z, Wang S, Liang Y, Liu X, Feng L, Chen Q, Wang N (2020) A trifluoromethyl-grafted ultra-stable fluorescent covalent organic framework for adsorption and detection of pesticides. J Mater Chem A 8:25156–25164

    Article  CAS  Google Scholar 

  23. Liu X, Wang S, Liang Y, Zhao Y, Yuan N, Sui Z, Chen Q (2021) Adenine-bearing covalent organic frameworks via one-pot tandem reaction for selective adsorption of Ag+. Micropor Mesopor Mat 315:110923

  24. Lin C, Zhang D, Zhao Z, Xia Z (2018) Covalent organic framework electrocatalysts for clean energy conversion. Adv Mater 30:1703646

    Article  Google Scholar 

  25. Wang S, Liang Y, Dai T, Liu Y, Sui Z, Tian X, Chen Q (2021) Cationic covalent-organic framework for sulfur storage with high-performance in lithium-sulfur batteries. J Colloid Interf Sci 591:264–272

    Article  CAS  Google Scholar 

  26. Li L, Lu F, Guo H, Yang W (2021) A new two-dimensional covalent organic framework with intralayer hydrogen bonding as supercapacitor electrode material. Micropor Mesopor Mat 312:110766

  27. Chang Z, Liang Y, Wang S, Qiu L, Lu Y, Feng L, Sui Z, Chen Q (2020) A novel fluorescent covalent organic framework containing boric acid groups for selective capture and sensing of cis-diol molecules. Nanoscale 12:23748–23755

    Article  CAS  Google Scholar 

  28. Xiu J, Zhang N, Li C, Salah A, Wang G (2021) Tetraphenylethylene-based covalent organic frameworks as fluorescent chemosensor for rapid sensitive recognition and selective “turn-on” fluorescence detection of trace-level Al3+ ion. Micropor Mesopor Mat 316:110979

  29. Lu Y, Liang Y, Zhao Y, Xia M, Liu X, Shen T, Feng L, Yuan N, Chen Q (2021) Fluorescent test paper via the in situ growth of COFs for rapid and convenient detection of Pd(II) ions. ACS Appl Mater Inter 13:1644–1650

    Article  CAS  Google Scholar 

  30. Li LH, Feng XL, Cui XH, Ma YX, Ding SY, Wang W (2017) Salen-based covalent organic framework. J Am Chem Soc 139:6042–6045

    Article  CAS  Google Scholar 

  31. Dogru M, Handloser M, Auras F, Kunz T, Medina D, Hartschuh A, Knochel P, Bein T (2013) A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene. Angew Chem Int Ed 52:2920–2924

    Article  CAS  Google Scholar 

  32. Li Y, Guo X, Li X, Zhang M, Jia Z, Deng Y, Tian Y, Li S, Ma L (2020) Redox-active two-dimensional covalent organic frameworks (COFs) for selective reductive separation of valence-variable, redox-sensitive and long-lived radionuclides. Angew Chem Int Ed 59:4168–4175

    Article  CAS  Google Scholar 

  33. Cui WR, Zhang CR, Jiang W, Li FF, Liang RP, Liu J, Qiu JD (2020) Regenerable and stable sp(2) carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium. Nat Commun 11:436–445

    Article  CAS  Google Scholar 

  34. Xiong XH, Yu ZW, Gong LL, Tao Y, Gao Z, Wang L, Yin WH, Yang LX, Luo F (2019) Ammoniating covalent organic framework (COF) for high-performance and selective extraction of toxic and radioactive uranium ions. Adv Sci 6:1900547

    Article  Google Scholar 

  35. Cao Q, Huang F, Zhuang Z, Lin Z (2012) A study of the potential application of nano-Mg(OH)2 in adsorbing low concentrations of uranyl tricarbonate from water. Nanoscale 4:2423–2430

    Article  CAS  Google Scholar 

  36. Zhang L, Yang S, Qian J, Hua D (2017) Surface ion-imprinted polypropylene nonwoven fabric for potential uranium seawater extraction with high selectivity over vanadium. Ind Eng Chem Res 56:1860–1867

    Article  CAS  Google Scholar 

  37. Deng X, Zhao P, Zhou X, Bai L (2021) Excellent sustained-release efficacy of herbicide quinclorac with cationic covalent organic frameworks. Chem Eng J 405:126979

  38. Ma H, Liu B, Li B, Zhang L, Li YG, Tan HQ, Zang HY, Zhu G (2016) Cationic covalent organic frameworks: a simple platform of anionic exchange for porosity tuning and proton conduction. J Am Chem Soc 138:5897–5903

    Article  CAS  Google Scholar 

  39. Mitra S, Kandambeth S, Biswal BP, Khayum MA, Choudhury CK, Mehta M, Kaur G, Banerjee S, Prabhune A, Verma S, Roy S, Kharul UK, Banerjee R (2016) Self-exfoliated guanidinium-based ionic covalent organic nanosheets (iCONs). J Am Chem Soc 138:2823–2828

    Article  CAS  Google Scholar 

  40. Da H, Yang C, Yan X (2019) Cationic covalent organic nanosheets for rapid and selective capture of perrhenate: an analogue of radioactive pertechnetate from aqueous solution. Environ Sci Technol 53:5212–5220

    Article  CAS  Google Scholar 

  41. Hou C, Hou J, Zhang H, Ma Y, He X, Geng W, Zhang Q (2020) Facile synthesis of LiMn0.75Fe0.25PO4/C nanocomposite cathode materials of lithium-ion batteries through microwave sintering. Eng Sci 11:36–43

    CAS  Google Scholar 

  42. Deng Z, Sun S, Li H, Pan D, Patil RR, Guo Z, Seok I (2021) Modification of coconut shell-based activated carbon and purification of wastewater. Adv Compos Hybrid Mater 4:65–73

    Article  CAS  Google Scholar 

  43. Yin C, Wang C, Hu Q (2021) Selective removal of As(V) from wastewater with high efficiency by glycine-modified Fe/Zn-layered double hydroxides. Adv Compos Hybrid Mater 4:360–370

    Article  CAS  Google Scholar 

  44. Danish M, Qamar M, Suliman MH, Muneer M (2020) Photoelectrochemical and photocatalytic properties of Fe@ZnSQDs/TiO2 nanocomposites for degradation of different chromophoric organic pollutants in aqueous suspension. Adv Compos Hybrid Mater 3:570–582

    Article  CAS  Google Scholar 

  45. Yu H, Xu C, Li Y, Jin F, Ye F, Li X (2020) Performance enhancement of CuO/ZnO by deposition on the metal-organic framework of Cu-BTC for methanol steam reforming reaction. ES Energy Environ 8:65–77

    CAS  Google Scholar 

  46. Lin C, Qiao Z, Zhang J, Tang J, Zhang Z, Guo Z (2019) Highly efficient fluoride adsorption in domestic water with RGO/Ag nanomaterials. ES Energy Environ 4:27–33

    Google Scholar 

  47. Xu C, Su J, Xu X, Li J (2013) Theoretical studies on the complexation of uranyl with typical carboxylate and amidoximate ligands. Sci China: Chem 56:1525–1532

    Article  CAS  Google Scholar 

  48. Wang D, Song J, Lin S, Wen J, Ma C, Yuan Y, Lei M, Wang X, Wang N, Wu H (2019) A marine-inspired hybrid sponge for highly efficient uranium extraction from seawater. Adv Funct Mater 29:1901009

    Article  Google Scholar 

  49. Wang J, Lu C, Shi Y, Feng X, Wu B, Zhou G, Quan G, Pan X, Cai J, Wu C (2020) Structural superiority of guanidinium-rich, four-armed copolypeptides: role of multiple peptide-membrane interactions in enhancing bacterial membrane perturbation and permeability. ACS Appl Mater Inter 12:18363–18374

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Hainan Science and Technology Major Project (ZDKJ2019013), the National Natural Science Foundation of China (52063014, 51873053, 21975058, 51775152, 61761016, and U1967213), the National Key R&D program of China (2018YFE0103500), and the Open Foundation from State Key Laboratory of Marine Resource Utilization in South China Sea (MRUKF2021010). Zhuyin Sui is supported by the Taishan Scholars Program (Grant No. tsqn201909087).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-Ming Hu, Qi Chen or Ning Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 870 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Xia, M., Yu, Q. et al. Guanidinium-based ionic covalent organic frameworks for capture of uranyl tricarbonate. Adv Compos Hybrid Mater 5, 184–194 (2022). https://doi.org/10.1007/s42114-021-00311-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00311-3

Keywords

Navigation