Skip to main content

Advertisement

Log in

Hierarchical PVDF-HFP/ZnO composite nanofiber–based highly sensitive piezoelectric sensor for wireless workout monitoring

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

High sensitivity of sensors is extremely significant for precisely monitoring imperceptible changes of motion in real-time, which cannot be achieved by traditional piezoelectric devices. Herein, a hierarchical polyvinylidene fluoride hexafluoropropylene (PVDF-HFP)/ZnO composite nanaofiber piezoelectric sensor with highly sensitivity has been prepared through epitaxial growing ZnO nanosheets on the surface of electrospun PVDF-HFP nanofibers. Systematic investigations have shown that their optimum pressure sensing performance with a sensitivity of 1.9 V kPa−1 and a short response time of 20 ms are achieved for forces from 0.02 to 0.5 N with excellent durability and stability up to 5000 cycles. Moreover, this sensor can precisely detect the imperceptible changes in player’s motions to avoid injury from overtraining. Additionally, a Bluetooth-low-energy that tracks player’s workout and transmits the output signals wirelessly to a smartphone app is utilized. The study provides a feasible approach for high-precision detecting and safety monitoring in the fields of medical, rehabilitation medicine, and workout security.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hu Y, Wang ZL (2014) Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors. Nano Energy 14:3–14. https://doi.org/10.1016/j.nanoen.2014.11.038

    Article  CAS  Google Scholar 

  2. Jung S, Kim JH, Kim J, Choi S, Lee J, Park I, Hyeon T, Kim DH (2014) Reverse-Micelle-induced porous pressure-sensitive rubber for wearable human–machine interfaces. Adv Mater 2:4825–4830. https://doi.org/10.1002/adma.201401364

    Article  CAS  Google Scholar 

  3. Lai YC, Deng J, Zhang SL, Niu S, Guo H, Wang ZL (2016) Single-thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing. Adv Funct Mater 27:1604462. https://doi.org/10.1002/adfm.201604462

    Article  CAS  Google Scholar 

  4. Lin Z, Chen J, Li X, Zhou Z, Meng K, Wei W, Yang J, Wang ZL (2017) Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring. ACS Nano 11:8830–8837. https://doi.org/10.1021/acsnano.7b02975

    Article  CAS  Google Scholar 

  5. Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM (2014) Fiber-based wearable electronics: a review of materials fabrication devices and applications. Adv Mater 26:5310–5345. https://doi.org/10.1002/adma.201400633

    Article  CAS  Google Scholar 

  6. Hou XJ, Zhang SN, Yu JB, Yang CJ, Chou XJ (2020) Monolithic homogeneous integrated miniaturized triboelectric nanogenerator with an inner air cavity for energy harvesting. Sci China Technol Sci 64:662–672. https://doi.org/10.1007/s11431-020-1743-4

    Article  Google Scholar 

  7. Huang T, Wang C, Yu H, Wang H, Zhang Q, Zhu M (2015) Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy 14:226–235. https://doi.org/10.1016/j.nanoen.2015.01.038

    Article  CAS  Google Scholar 

  8. Ko YJ, Kim DY, Won SS, Ahn CW, Jung JH (2016) Flexible Pb(Zr0.52Ti0.48)O3 films for a hybrid piezoelectric-pyroelectric nanogenerator under harsh environments. ACS Appl Mater Interfaces 8:6504–6511. https://doi.org/10.1021/acsami.6b00054

    Article  CAS  Google Scholar 

  9. Pang Y, Zhang K, Yang Z, Jiang S, Ju ZY, Li Y, Wang X, Wang D, Jian M, Zhang Y, Liang R, Tian H, Yang Y, Ren TL (2018) Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 12:2346–2354. https://doi.org/10.1021/acsnano.7b07613

    Article  CAS  Google Scholar 

  10. Park DY, Joe DJ, Kim DH, Park H, Han JH, Jeong CK, Park H, Park JG, Joung B, Lee KJ (2017) Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv Mater 29:1702308. https://doi.org/10.1002/adma.201702308

    Article  CAS  Google Scholar 

  11. Schwartz G, Tee CK, Mei J, Appleton AL, Kim DH, Wang H, Bao Z (2013) Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun 4:1859. https://doi.org/10.1038/ncomms2832

    Article  CAS  Google Scholar 

  12. Zhang L, Zhang B, Chen J, Jin L, Deng W, Tang J, Zhang H, Pan H, Zhu M, Yang W, Wang ZL (2016) Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops. Adv Mater 28:1650–1656. https://doi.org/10.1002/adma.201504462

    Article  CAS  Google Scholar 

  13. Guo W, Tan C, Shi K, Li J, Wang XX, Sun B (2018) Wireless piezoelectric devices based on electrospun PVDF/BaTiO3 NW nanocomposite fibers for human motion monitoring. Nanoscale 10:17751–17760. https://doi.org/10.1039/c8nr05292a

    Article  CAS  Google Scholar 

  14. Wang XX, Song WZ, You MH, Zhang J, Yu M, Fan Z, Ramakrishna S, Long YZ (2018) Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator. ACS Nano 12:8588–8596. https://doi.org/10.1021/acsnano.8b04244

    Article  CAS  Google Scholar 

  15. Yang Y, Zhu G, Zhang H, Chen J, Zhong X, Lin ZH, Su Y, Bai P, Wen X, Wang ZL (2013) Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano 7:9461–9468. https://doi.org/10.1021/nn4043157

    Article  CAS  Google Scholar 

  16. Deng W, Jin L, Zhang B, Chen Y, Mao L, Zhang H, Yang W (2016) A flexible field-limited ordered ZnO nanorod-based self-powered tactile sensor array for electronic skin. Nanoscale 8:16302–16306. https://doi.org/10.1039/C6NR04057H

    Article  CAS  Google Scholar 

  17. Jin L, Deng W, Su Y, Xu Z, Meng H, Wang B, Zhang H, Zhang B, Zhang L, Xiao X, Zhu M, Yang W (2017) Self-powered wireless smart sensor based on maglev porous nanogenerator for train monitoring system. Nano Energy 38:185–192. https://doi.org/10.1016/j.nanoen.2017.05.018

    Article  CAS  Google Scholar 

  18. Yang W, Chen J, Wen X, Jing Q, Yang J, Su Y, Zhu G, Wu W, Wang ZL (2014) Triboelectrification based motion sensor for human-machine interfacing. ACS Appl Mater Interfaces 6:7479–7484. https://doi.org/10.1021/am500864t

    Article  CAS  Google Scholar 

  19. Seung W, Gupta MK, Lee KY, Shin K-S, Lee JH, Kim TY, Kim S, Lin J, Kim JH, Kim SW (2015) Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 9:3501–3509. https://doi.org/10.1021/nn507221f

    Article  CAS  Google Scholar 

  20. Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8:5154–5163. https://doi.org/10.1021/nn501204t

    Article  CAS  Google Scholar 

  21. Wu W, Bai S, Yuan M, Qin Y, Wang Z, Jing T (2012) Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS Nano 6:6231–6235. https://doi.org/10.1021/nn3016585

    Article  CAS  Google Scholar 

  22. Baek SH, Park IK (2017) Flexible piezoelectric nanogenerators based on a transferred ZnO nanorod/Si micro-pillar array. Nanotechnology 28:095401. https://doi.org/10.1088/1361-6528/aa58ee

    Article  CAS  Google Scholar 

  23. Zhu G, Yang WQ, Zhang T, Jing Q, Chen J, Zhou YS, Bai P, Wang ZL (2018) Self-powered ultrasensitive flexible tactile sensors based on contact electrification. Nano Lett 14:3208–3213. https://doi.org/10.1021/nl5005652

    Article  CAS  Google Scholar 

  24. Wang X, Zhang H, Dong L, Han X, Du W, Zhai J, Pan C, Wang ZL (2016) Self-Powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping. Adv Mater 28:2896–2903. https://doi.org/10.1002/adma.201503407

    Article  CAS  Google Scholar 

  25. Li Z, Shen J, Abdalla I, Yu J, Ding B (2017) Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 36:341–348. https://doi.org/10.1016/j.nanoen.2017.04.035

    Article  CAS  Google Scholar 

  26. Bai P, Zhu G, Jing Q, Yang J, Chen J, Su Y, Ma J, Zhang J, Wang ZL (2014) Membrane-based self-powered triboelectric sensors for pressure change detection and its uses in security surveillance and healthcare monitoring. Adv Funct Mater 24:5807–5813. https://doi.org/10.1002/adfm.201401267

    Article  CAS  Google Scholar 

  27. Yang J, Chen J, Su Y, Jing Q, Li Z, Yi F, Wen X, Wang ZL (2015) Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv Mater 27:1316–1326. https://doi.org/10.1002/adma.201404794

    Article  CAS  Google Scholar 

  28. Yi F, Lin L, Niu S, Yang PK, Wang Z, Chen J, Zhou Y, Zi Y, Wang J, Liao Q, Zhang Y, Wang ZL (2015) Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors. Adv Funct Mater 25:3688–3696. https://doi.org/10.1002/adfm.201500428

    Article  CAS  Google Scholar 

  29. Chen J, Ding P, Pan R, Xuan W, Guo D, Ye Z, Yin W, Jin H, Wang X, Dong S, Luo J (2017) Self-powered transparent glass-based single electrode triboelectric motion tracking sensor array. Nano Energy 34:442–448. https://doi.org/10.1016/j.nanoen.2017.03.002

    Article  CAS  Google Scholar 

  30. Tao LQ, Zhang KN, Tian H, Liu Y, Wang DY, Chen YQ, Yang Y, Ren TL (2017) Graphene-paper pressure sensor for detecting human motions. ACS Nano 11:8790–8795. https://doi.org/10.1021/acsnano.7b02826

    Article  CAS  Google Scholar 

  31. Yu J, Hou X, Cui M, Shi S, He J, Sun Y, Wang C, Chou X (2019) Flexible pdms-based triboelectric nanogenerator for instantaneous force sensing and human joint movement monitoring. Sci China Mater 62:1423–1432. https://doi.org/10.1007/s40843-019-9446-1

    Article  CAS  Google Scholar 

  32. Liu Q, Wang X, Song WZ, Qiu HJ, Zhang J, Fan Z, Yu M, Long YZ (2020) Wireless single-electrode self-powered piezoelectric sensor for monitoring. ACS Appl Mater Interfaces 12:8288–8295. https://doi.org/10.1021/acsami.9b21392

    Article  CAS  Google Scholar 

  33. Shin KY, Lee JS, Jang J (2016) Highly sensitive wearable and wireless pressure sensor using free-standing ZnO Nanoneedle/PVDF hybrid thin film for heart rate monitoring. Nano Energy 22:95–104. https://doi.org/10.1016/j.nanoen.2016.02.012

    Article  CAS  Google Scholar 

  34. Lee JH, Lee KY, Gupta MK, Kim TY, Lee DY, Oh J, Ryu C, Yoo WJ, Kang CY, Yoon SJ, Yoo JB, Kim SW (2014) Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator. Adv Mater 26:765–769. https://doi.org/10.1002/adma.201303570

    Article  CAS  Google Scholar 

  35. Liang Q, Yan X, Liao X, Zhang Y (2016) Integrated multi-unit transparent triboelectric nanogenerator harvesting rain power for driving electronics. Nano Energy 25:18–25. https://doi.org/10.1016/j.nanoen.2016.04.033

    Article  CAS  Google Scholar 

  36. Shi K, Sun B, Huang X, Jiang P (2018) Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators. Nano Energy 52:153–162. https://doi.org/10.1016/j.nanoen.2018.07.053

    Article  CAS  Google Scholar 

  37. Chen S, Lou Z, Chen D, Chen Z, Jiang K, Shen G (2016) Highly flexible strain sensor based on ZnO nanowires and P(VDF-TRFE) fibers for wearable electronic device. Sci China Mater 59:173–181. https://doi.org/10.1007/s40843-016-0128-8

    Article  CAS  Google Scholar 

  38. Chen J, Zhu Y, Guo Z, Nasibulin AG (2020) Recent progress on thermo-electrical properties of conductive polymer composites and their application in temperature sensors. Eng Sci 12:13–22. https://doi.org/10.30919/es8d1129

    Article  CAS  Google Scholar 

  39. Bu Y, Shen T, Yang W, Yang S, Zhao Y, Liu H, Zheng Y, Liu C, Shen C (2021) Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2Tx Mxene/paper for human-motion monitoring and E-skin. Sci Bull. https://doi.org/10.1016/j.scib.2021.04.041

    Article  Google Scholar 

  40. Zheng Y, Yin R, Zhao Y, Liu H, Shen C (2020) Conductive Mxene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem Eng J 22:127720. https://doi.org/10.1016/j.cej.2020.127720

    Article  CAS  Google Scholar 

  41. Lu Y, Yu G, Wei X, Zhan C, Wujcik EK (2019) Fabric/multi-walled carbon nanotube sensor for portable on-site copper detection in water. Adv Compos Hybrid Mater 2:711–719. https://doi.org/10.1007/s42114-019-00122-7

    Article  CAS  Google Scholar 

  42. Liu H, Chen X, Zheng Y, Zhang D, Shen C (2021) Lightweight superelastic and hydrophobic polyimide nanofiber/Mxene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv Funct Mater 31:2008006. https://doi.org/10.1002/adfm.202008006

    Article  CAS  Google Scholar 

  43. Wang X, Liu X, Schubert DW (2021) Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nanomicro Lett 13:64. https://doi.org/10.1007/s40820-021-00592-9

    Article  CAS  Google Scholar 

  44. Wei H, Li A, Kong D, Li Z, Guo Z (2021) Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances. Adv Compos Hybrid Mater 4:86–95. https://doi.org/10.1007/s42114-020-00201-0

    Article  CAS  Google Scholar 

  45. Tian G, Deng W, Gao Y, Xiong D, Yan C, He X, Yang T, Jin L, Chu X, Zhang H, Yang W (2019) Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy 59:574–581. https://doi.org/10.1016/j.nanoen.2019.03.013

    Article  CAS  Google Scholar 

  46. He HX, Fu YM, Zang WL, Wang Q, Xing LL, Zhang Y, Xue XY (2017) A flexible self-powered T-ZnO/PVDF/fabric electronic-skin with multifunctions of tactile-perception atmosphere-detection and self-clean. Nano Energy 31:37–48. https://doi.org/10.1016/j.nanoen.2016.11.020

    Article  CAS  Google Scholar 

  47. Fakhri P, Amini B, Bagherzadeh R, Kashi M, Latifi M, Yavari N, Kani SA, Kong L (2019) Flexible hybrid structure piezoelectric nanogenerator based on ZnO nanorod/PVDF nanofibers with improved output. RSC Adv 9:10117–10123. https://doi.org/10.1039/C8RA10315A

    Article  CAS  Google Scholar 

  48. Deng W, Yang T, Jin L, Yan C, Huang H, Chu X, Wang Z, Xiong D, Tian G, Gao Y, Zhang H, Yang W (2019) Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy 55:516–525. https://doi.org/10.1016/j.nanoen.2018.10.049

    Article  CAS  Google Scholar 

  49. Kucera KL, Marshall SW, Bell DR, Distefano MJ, Goerger CP, Oyama S (2011) Validity of soccer injury data from the National Collegiate Athletic Association’s injury surveillance system. J Athl Training 46:489–499. https://doi.org/10.4085/1062-6050-46.5.489

    Article  Google Scholar 

  50. Yang T, Pan H, Tian G, Zhang B, Xiong D, Gao Y, Yan C, Chu X, Chen N, Zhong S, Zhang L, Deng W, Yang W (2020) Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics. Nano Energy 72:104706. https://doi.org/10.1016/j.nanoen.2020.104706

    Article  Google Scholar 

  51. Tan C, Dong Z, Li Y, Zhao H, Huang X, Zhou Z, Jiang JW, Long YZ, Jiang P, Zhang TY, Sun B (2020) A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat Commun 11:1–10. https://doi.org/10.1038/s41467-020-17301-6

    Article  CAS  Google Scholar 

  52. Souri H, Banerjee H, Jusufi A, Radacsi N, Stokes AA, Park I, Sitti M, Amjadi M (2020) Wearable and stretchable strain sensors: materials sensing mechanisms and applications. Adv Intell Syst 2:2000039. https://doi.org/10.1002/aisy.202000039

    Article  Google Scholar 

  53. Parangusan H, Ponnamma D, Al-Maadeed M (2018) Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators. Sci Rep 8:153302–153304. https://doi.org/10.1038/s41598-017-19082-3

    Article  CAS  Google Scholar 

  54. Zhong W, Liu Q, Wu Y, Wang Y, Qing X, Li M, Liu K, Wang W, Wang DA (2016) Nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability. Nanoscale 8:12105–12112. https://doi.org/10.1039/c6nr02678h

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Shandong Provincial Natural Science Foundation, China (ZR2020MA066, ZR2020ME193) and the Shandong Natural Science Funds for Distinguished Young Scholar (ZR2020JQ20).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Sun, Yun-Ze Long or Hong-Di Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guo-Yi Li and Jian Li contributed equally to this work.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1988 KB)

Supplementary file2 (MP4 1424 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, GY., Li, J., Li, ZJ. et al. Hierarchical PVDF-HFP/ZnO composite nanofiber–based highly sensitive piezoelectric sensor for wireless workout monitoring. Adv Compos Hybrid Mater 5, 766–775 (2022). https://doi.org/10.1007/s42114-021-00331-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00331-z

Keywords

Navigation