Skip to main content
Log in

Ice template method assists in obtaining carbonized cellulose/boron nitride aerogel with 3D spatial network structure to enhance the thermal conductivity and flame retardancy of epoxy-based composites

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In the field of modern microelectronic packaging materials, there is a great need for polymer-based composites with both excellent thermal conduction and flame retardancy properties. However, the enhancement efficiency of polymer-based composites is actually lower than the theoretically predicted values due to the phonon scattering in polymer matrix and the interfacial thermal resistance (Ritr) caused by the lack of continuous thermal conductive paths between the polymer matrix and fillers. In this work, a novel epoxy-based composite is reported by constructing 3D carbonized cellulose/boric acid ball mill modified boron nitride aerogel (CCA/m-BN) network using ice-templated combined with a customized directional freezing mold approach, and then infiltrating it with epoxy (EP) matrix. The fabricated CCA/m-BN/EP exhibits a significantly enhanced thermal conductivity (TC) up to 2.11 W/(m K) at a low m-BN loading of 9.6 wt% compared to that of pure PE (0.19 W/(m K)) and traditionally blended m-BN/EP composite (0.40 W/(m K)) as well that of CCACT/m-BN/EP composite (1.54 W/(m K)) obtained with ordinary directional freezing mold. In addition, CCA/m-BN/EP also exhibited a desired flame retardancy performance with considerable reductions being seen in peak of total heat release (THR) and total smoke production (TSP) compared with other composites. The obtained CCA/m-BN/EP composite with high TC and good flame retardancy properties is a highly prospective candidate as next-generation thermal dissipating material for electronic devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sabu M, Bementa E, Jaya Vinse Ruban Y, Ginil Mon S (2020) A novel analysis of the dielectric properties of hybrid epoxy composites. Adv Compos Hybrid Mater 3(3):325–335

    Article  CAS  Google Scholar 

  2. Dhatarwal P, Sengwa RJ (2020) Structural and dielectric characterization of (PVP/PEO)/Al2O3 nanocomposites for biodegradable nanodielectric applications. Adv Compos Hybrid Mater 3(3):344–353

    Article  CAS  Google Scholar 

  3. Zhou Y, Liu F, Chen C-Y (2019) Use of BN-coated copper nanowires in nanocomposites with enhanced thermal conductivity and electrical insulation. Adv Compos Hybrid Mater 2(1):46–50

    Article  CAS  Google Scholar 

  4. Tu J, Li H, Zhang J, Hu D, Cai Z, Yin X, Dong L, Huang L, Xiong C, Jiang M (2019) Latent heat and thermal conductivity enhancements in polyethylene glycol/polyethylene glycol-grafted graphene oxide composites. Adv Compos Hybrid Mater 2(3):471–480

    Article  CAS  Google Scholar 

  5. Zhang L, Song T, Shi L, Wen N, Wu Z, Sun C, Jiang D, Guo Z (2021) Recent progress for silver nanowires conducting film for flexible electronics. J Nanostructure Chem 11:323–341

    Article  CAS  Google Scholar 

  6. Yao F, Xie W, Yang M, Zhang H, Gu H, Du A, Naik N, Young DP, Lin J, Guo Z (2021) Interfacial polymerized copolymers of aniline and phenylenediamine with tunable magnetoresistance and negative permittivity. Mater Today Phys 21:100502

  7. Madhusudhana AM, Mohana KNS, Hegde MB, Nayak SR, Rajitha K, Swamy NK (2020) Functionalized graphene oxide-epoxy phenolic novolac nanocomposite: an efficient anticorrosion coating on mild steel in saline medium. Adv Compos Hybrid Mater 3(2):141–155

    Article  CAS  Google Scholar 

  8. Gu J, She J, Yue Y (2020) Micro/nanoscale thermal characterization based on spectroscopy techniques. ES Energy Environ 9:15–27

    CAS  Google Scholar 

  9. Wang R-J, Cheng W-L (2019) A novel flexible room temperature positive temperature coefficient material for thermal management. Adv Compos Hybrid Mater 2(1):83–92

    Article  CAS  Google Scholar 

  10. Pan D, Li Q, Zhang W, Dong J, Su F, Murugadoss V, Liu Y, Liu C, Naik N, Guo Z (2021) Highly thermal conductive epoxy nanocomposites filled with 3D BN/C spatial network prepared by salt template assisted method. Compos Part B 209:108609

  11. He Z, Yang M, Wang L, Bao E, Zhang H (2021) Concentrated photovoltaic thermoelectric hybrid system: an experimental and machine learning study. Eng Sci 15:47–56

    Google Scholar 

  12. Yan H, Dai X, Ruan K, Zhang S, Shi X, Guo Y, Cai H, Gu J (2021) Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv Compos Hybrid Mater 2(1):162–175

    Google Scholar 

  13. Han D, Mei H, Xiao S, Cheng L (2019) Macroscopic carbon nanotube assembly/silicon carbide matrix composites produced by gas phase route. Adv Compos Hybrid Mater 2(1):142–150

    Article  CAS  Google Scholar 

  14. Li Y, Guo J, Li M, Tang Y, Murugadoss V, Seok I, Yu J, Sun L, Sun C, Luo Y (2021) Recent application of cellulose gel in flexible sensing-a review. ES Food Agrof 4:9–27

    CAS  Google Scholar 

  15. Mirabootalebi SO (2020) A new method for preparing buckypaper by pressing a mixture of multi-walled carbon nanotubes and amorphous carbon. Adv Compos Hybrid Mater 3(3):336–343

    Article  CAS  Google Scholar 

  16. Han G, Sun Y, Feng Y, Lin G, Lu N (2021) Machine learning regression guided thermoelectric materials discovery – a review. ES Mater Manuf 14:20–35

    Google Scholar 

  17. Pan D, Su F, Liu H, Ma Y, Das R, Hu Q, Liu C, Guo Z (2020) The properties and preparation methods of different boron nitride nanostructures and applications of related nanocomposites. Chem Rec 20(11):1314–1337

    Article  CAS  Google Scholar 

  18. Feng C-P, Bai L, Bao R-Y, Liu Z-Y, Yang M-B, Chen J, Yang W (2018) Electrically insulating POE/BN elastomeric composites with high through-plane thermal conductivity fabricated by two-roll milling and hot compression. Adv Compos Hybrid Mater 1(1):160–167

    Article  CAS  Google Scholar 

  19. Kashfipour MA, Mehra N, Dent RS, Zhu J (2019) Regulating intermolecular chain interaction of biopolymer with natural polyol for flexible, optically transparent and thermally conductive hybrids. Eng Sci 8:11–18

    Google Scholar 

  20. Zhou Y, Wu S, Long Y, Zhu P, Wu F, Liu F, Murugadoss V, Winchester W, Nautiyal A, Wang Z, Guo Z (2020) Recent advances in thermal interface materials. ES Mater Manuf 10:72–73

    Google Scholar 

  21. Yang X, Liang C, Ma T, Guo Y, Kong J, Gu J, Chen M, Zhu J (2018) A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Adv Compos Hybrid Mater 1(2):207–230

    Article  Google Scholar 

  22. Vijeata A, Chaudhary GR, Umar A, Chaudhary S (2021) Distinctive solvatochromic response of fluorescent carbon dots derived from different components of Aegle marmelos plant. Eng Sci 15:197–209

    Google Scholar 

  23. Ma Y, Zhuang Z, Ma M, Yang Y, Li W, Dong M, Wu S, Ding T, Guo Z (2019) Solid polyaniline dendrites consisting of high aspect ratio branches self-assembled using sodium lauryl sulfonate as soft templates: synthesis and electrochemical performance. Polymer 182:121808

  24. Zhao Y, Niu M, Yang F, Jia Y, Cheng Y (2019) Ultrafast electro-thermal responsive heating film fabricated from graphene modified conductive materials. Eng Sci 8:33–38

    Google Scholar 

  25. Li L, Zhang L, Zhang L, Zhong Y, Wang EN, Chen Z, Guo L (2021) Sub-picosecond optical response of metals due to non-thermalized electron dynamics. ES Energy Environ 11:19–27

    Google Scholar 

  26. Yan X, Zhang S, Tang W, Xia M (2021) Thermal conductivity of PBX compound calculated by phonons of explosive and binder molecular crystals. ES Energy Environ 11:74–83

    Google Scholar 

  27. Pan D, Luo S, Feng Y, Zhang X, Su F, Liu H, Liu C, Mai X, Naik N, Guo Z (2021) Highly thermally conductive 3D BN/MWCNTs/C spatial network composites with improved electrically insulating and flame retardancy prepared by biological template assisted method. Compos Part B 222:109039

  28. Zhang X (2021) Applications of kinetic methods in thermal analysis: a review. Eng Sci 14:1–13

    CAS  Google Scholar 

  29. Han G, Zhao X, Feng Y, Ma J, Zhou K, Shi Y, Liu C, Xie X (2020) Highly flame-retardant epoxy-based thermal conductive composites with functionalized boron nitride nanosheets exfoliated by one-step ball milling. Chem Eng J 407:127099

  30. Pan D, Zhang X, Yang G, Shang Y, Su F, Hu Q, Patil RR, Liu H, Liu C, Guo Z (2020) Thermally conductive anticorrosive epoxy nanocomposites with tannic acid-modified boron nitride nanosheets. Ind Eng Chem Res 59(46):20371–20381

    Article  CAS  Google Scholar 

  31. Li Q-Y, Hao Q, Zhu T, Zebarjadi M, Zebarjadi M (2021) Nanostructured and heterostructured 2D materials for thermoelectrics. Eng Sci 13:24–50

    Google Scholar 

  32. Kashfipour MA, Mehra N, Dent RS, Zhu J (2020) Regulating intermolecular chain interaction of biopolymer with natural polyol for flexible, optically transparent and thermally conductive hybrids. Eng Sci 8:11–18

    Google Scholar 

  33. Tang C, Yu X, Li G, Yang N, Lü J (2019) Phonon thermal transport properties of graphene periodically embedded with four- and eight-membered rings: a molecular dynamics study. ES Mater Manuf 3:16–21

    Google Scholar 

  34. Sun D, Yan J, Ma X, Lan M, Wang Z, Cui S, Yang J (2021) Tribological investigation of self-healing composites containing metal/polymer microcapsules. ES Mater Manuf 14:59–72

    Google Scholar 

  35. Zheng Z, Liang W, Zhong S, Yu W (2021) The progress and future of near-field radiative heat transfer. ES Energy Environ 12:1–3

    Google Scholar 

  36. Zhao B, Liang L, Bai Z, Guo X, Zhang R, Jiang Q, Guo Z (2021) Poly(vinylidene fluoride)/Cu@Ni anchored reduced-graphene oxide composite films with folding movement to boost microwave absorption properties. ES Energy Environ 13:77–84

    Google Scholar 

  37. Zhuang J, Sun J, Wu D, Liu Y, Patil RR, Pan D, Guo Z (2021) Multi-factor analysis on thermal conductive property of metal-polymer composite microstructure heat exchanger. Adv Compos Hybrid Mater 4(1):27–35

    Article  CAS  Google Scholar 

  38. Hong J, Kang L, Shi X, Wei R, Mai X, Pan D, Naik N, Guo Z (2022) Highly efficient removal of trace lead (II) from wastewater by 1, 4-dicarboxybenzene modified Fe/Co metal organic nanosheets. J Mater Sci Technol 98:212–218

    Article  Google Scholar 

  39. Hao Q, Garg J (2021) A review on phonon transport within polycrystalline materials. ES Mater Manuf 14:36–50

    Google Scholar 

  40. Wang B, Zhang Z, Pei Z, Qiu J, Wang S (2020) Current progress on the 3D printing of thermosets. Adv Compos Hybrid Mater 3(4):462–472

    Article  CAS  Google Scholar 

  41. Chen X, Lim JSK, Yan W, Guo F, Liang YN, Chen H, Lambourne A, Hu X (2020) Salt template assisted BN scaffold fabrication toward highly thermally conductive epoxy composites. ACS Appl Mater Interfaces 12(14):16987–16996

    Article  CAS  Google Scholar 

  42. Zeng X, Yao Y, Gong Z, Wang F, Sun R, Xu J, Wong CP (2015) Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement. Small 11(46):6205–6213

    Article  CAS  Google Scholar 

  43. Ashton TS, Moore AL (2015) Three-dimensional foam-like hexagonal boron nitride nanomaterials via atmospheric pressure chemical vapor deposition. J Mater Sci 50(18):6220–6226

    Article  CAS  Google Scholar 

  44. Bai T, Guo Y, Liu H, Song G, Zhang D, Wang Y, Mi L, Guo Z, Liu C, Shen C (2020) Achieving enhanced electromagnetic shielding and absorption capacity of cellulose-derived carbon aerogels via tuning the carbonization temperature. J Mater Chem C 8(15):5191–5201

    Article  CAS  Google Scholar 

  45. Li X-H, Liu P, Li X, An F, Min P, Liao K-N, Yu Z-Z (2018) Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites. Carbon 140:624–633

    Article  CAS  Google Scholar 

  46. Ashok RB, Srinivasa CV, Basavaraju B (2020) Study on morphology and mechanical behavior of areca leaf sheath reinforced epoxy composites. Adv Compos Hybrid Mater 3(3):365–374

    Article  CAS  Google Scholar 

  47. Sun J, Zhang X, Du Q, Murugadoss V, Wu D, Guo Z (2021) The contribution of conductive network conversion in thermal conductivity enhancement of polymer composite: a theoretical and experimental study. ES Mater Manuf 13:53–65

    CAS  Google Scholar 

  48. Dai L, Lu J, Kong F, Liu K, Wei H, Si C (2019) Reversible photo-controlled release of bovine serum albumin by azobenzene-containing cellulose nanofibrils-based hydrogel. Adv Compos Hybrid Mater 2(3):462–470

    Article  CAS  Google Scholar 

  49. Wang C, Zhang X, Sun R, Cao Y (2020) Neutralization of red mud using bio-acid generated by hydrothermal carbonization of waste biomass for potential soil application. J Clean Prod 271:122525

  50. Li H, Zhang L, Lu H, Ma J, Zhou X, Wang Z, Yi C (2020) Macro-/nanoporous Al-doped ZnO/cellulose composites based on tunable cellulose fi ber sizes for enhancing photocatalytic properties. Carbohyd Polym 250:116873

  51. Tulbez S, Esen Z, Dericioglu AF (2020) Effect of CNT impregnation on the mechanical and thermal properties of C/C-SiC composites. Adv Compos Hybrid Mater 3(2):177–186

    Article  CAS  Google Scholar 

  52. Bustero I, Gaztelumendi I, Obieta I, Asun Mendizabal M, Zurutuza A, Ortega A, Alonso B (2020) Free-standing graphene films embedded in epoxy resin with enhanced thermal properties. Adv Compos Hybrid Mater 3(1):31–40

    Article  CAS  Google Scholar 

  53. Sang G, Xu P, Yan T, Murugadoss V, Naik N, Ding Y, Guo Z (2021) Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nano-Micro Lett 13(1):1–16

    Article  Google Scholar 

  54. Lee S, Kim J (2021) Incorporating MXene into boron nitride/poly(vinyl alcohol) composite films to enhance thermal and mechanical properties. Polymers 13(3):379

    Article  CAS  Google Scholar 

  55. Xiong SW, Fu PG, Zou Q, Chen LY, Jiang MY, Zhang P, Wang ZG, Cui LS, Guo H, Gai JG (2021) Heat conduction and antibacterial hexagonal boron nitride/polypropylene nanocomposite fibrous membranes for face masks with long-time wearing performance. ACS Appl Mater Interfaces 13(1):196–206

    Article  CAS  Google Scholar 

  56. Ruan Y, Li N, Liu C, Chen L, Zhang S, Wang Z (2020) Increasing heat transfer performance of thermoplastic polyurethane by constructing thermal conduction channels of ultra-thin boron nitride nanosheets and carbon nanotubes. New J Chem 44(43):18823–18830

    Article  CAS  Google Scholar 

  57. Wang Y, Wu W, Drummer D, Liu C, Tomiak F, Schneider K, Huang Z (2020) Achieving a 3D thermally conductive while electrically insulating network in polybenzoxazine with a novel hybrid filler composed of boron nitride and carbon nanotubes. Polymers 12(10):2331

    Article  CAS  Google Scholar 

  58. Li M, Wang M, Hou X, Zhan Z, Wang H, Fu H, Lin C-T, Fu L, Jiang N, Yu J (2020) Highly thermal conductive and electrical insulating polymer composites with boron nitride. Compos Part B 184:107746

  59. Kim Y, Kim J (2020) Fabrication of Fe3O4 coated boron nitride nanoplatelets by liquid-phase exfoliation for thermally enhanced epoxy composites via magnetic alignment. Compos Sci Technol 188:107961

  60. Zhong B, Zou J, An L, Ji C, Huang X, Liu W, Yu Y, Wang H, Wen G, Zhao K, Lin X (2019) The effects of the hexagonal boron nitride nanoflake properties on the thermal conductivity of hexagonal boron nitride nanoflake/silicone rubber composites. Compos Part A 127:105629

  61. Yi W, Wu W, Drummer D, Shen W, Chao L, Ning W (2019) Synergistic construction of thermally conductive network in polybenzoxazine with boron nitride hybrid fillers. Mater Res Express 6(12):125369

  62. Wang R, Cheng H, Gong Y, Wang F, Ding X, Hu R, Zhang X, He J, Tian X (2019) Highly thermally conductive polymer composite originated from assembly of boron nitride at an oil-water interface. ACS Appl Mater Interfaces 11(45):42818–42826

    Article  CAS  Google Scholar 

  63. Jin X, Wang J, Dai L, Wang W, Wu H (2019) Largely enhanced thermal conductive, dielectric, mechanical and anti-dripping performance in polycarbonate/boron nitride composites with graphene nanoplatelet and carbon nanotube. Compos Sci Technol 184:107862

  64. Kong S, Seo H, Shin H, Baik J-H, Oh J, Kim Y-O, Lee J-C (2019) Improvement in mechanical and thermal properties of polypropylene nanocomposites using an extremely small amount of alkyl chain-grafted hexagonal boron nitride nanosheets. Polymer 180:121714

  65. Pan C, Kou K, Zhang Y, Li Z, Wu G (2018) Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles. Compos Part B 153:1–8

    Article  CAS  Google Scholar 

  66. Li X, Feng Y, Chen C, Ye Y, Zeng H, Qu H, Liu J, Zhou X, Long S, Xie X (2018) Highly thermally conductive flame retardant epoxy nanocomposites with multifunctional ionic liquid flame retardant-functionalized boron nitride nanosheets. J Mater Chem A 6(41):20500–20512

    Article  CAS  Google Scholar 

  67. Zhang Y, Choi JR, Park S-J (2018) Enhancing the heat and load transfer efficiency by optimizing the interface of hexagonal boron nitride/elastomer nanocomposites for thermal management applications. Polymer 143:1–9

    Article  Google Scholar 

  68. Yang J, Tang L-S, Bao R-Y, Bai L, Liu Z-Y, Yang W, Xie B-H, Yang M-B (2017) Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets. Chem Eng J 315:481–490

    Article  CAS  Google Scholar 

  69. Pan D, Su F, Liu C, Guo Z (2020) Research progress for plastic waste management and manufacture of value-added products. Adv Compos Hybrid Mater 3(4):443–461

    Article  CAS  Google Scholar 

  70. Song T, Jiang B, Li Y, Ji Z, Zhou H, Jiang D, Seok I, Murugadoss V, Wen N, Colorado H (2021) Self-healing Materials: a review of recent developments. ES Mater Manuf 14:1–19

    CAS  Google Scholar 

  71. Yang H, Li Q, Wang Z, Wu H, Wu Y, Hou P, Cheng X (2021) Effect of graphene on microstructure and mechanical properties of Si3N4/SiC ceramics. ES Mater Manuf 12:29–34

    CAS  Google Scholar 

  72. Zhang D, Williams BL, Santos VH, Lofink BJ, Becher EM, Partyka A, Peng X, Sun L (2020) Self-assembled intumescent flame retardant coatings: influence of pH on the flammability of cotton fabrics. Eng Sci 12:106–112

    CAS  Google Scholar 

  73. Suresh S, Sudhakara D, Vinod B (2020) Investigation on mechanical, wear, and machining characteristics of Al 7075/MWCNTs using the liquid state method. Adv Compos Hybrid Mater 3(2):243–254

    Article  Google Scholar 

  74. Huang J, Zou W, Luo Y, Wu Q-b, Lu X, Qu J (2021) Phase morphology, rheological behavior, and mechanical properties of poly (lactic acid)/poly (butylene succinate)/hexamethylene diisocyanate reactive blends. ES Energy Environ 12:86–94

    Google Scholar 

Download references

Funding

The study was financially supported by the National Natural Science Foundation of China (21704096, 51703217) and the China Postdoctoral Science Foundation (Grant no. 2019M662526).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengmei Su, Yong-Chuang Zhu or Zhanhu Guo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 571 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, D., Dong, J., Yang, G. et al. Ice template method assists in obtaining carbonized cellulose/boron nitride aerogel with 3D spatial network structure to enhance the thermal conductivity and flame retardancy of epoxy-based composites. Adv Compos Hybrid Mater 5, 58–70 (2022). https://doi.org/10.1007/s42114-021-00362-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00362-6

Keywords

Navigation