Skip to main content
Log in

Design, Characterization and Optimization of Multi-directional Bending Pneumatic Artificial Muscles

  • Research Paper
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Bending Pneumatic Artificial Muscles (PAMs) are particularly attractive and extensively applied to the soft grasper, snake-like robot, etc. To extend the application of PAMs, we fabricate a Multi-directional Bending Pneumatic Artificial Muscle (MBPAM) that can bend in eight directions by changing the pressurized chambers. The maximum bending angle and output force are 151° and 0.643 N under the pressure of 100 kPa, respectively. Additionally, the Finite Element Model (FEM) is established to further investigate the performance. The experimental and numerical results demonstrate the nonlinear relationship between the pressure and the bending angle and output force. Moreover, the effects of parameters on the performance are studied with the validated FEM. The results reveal that the amplitude of waves and the thickness of the base layer can be optimized. Thus, multi-objective optimization is performed to improve the bending performance of the MBPAM. The optimization results indicate that the output force can be increased by 7.8% with the identical bending angle of the initial design, while the bending angle can be improved by 8.6% with the same output force. Finally, the grasp tests demonstrate the grip capability of the soft four-finger gripper and display the application prospect of the MBPAM in soft robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Laschi, C., Cianchetti, M., Mazzolai, B., Margheri, L., Follador, M., & Dario, P. (2012). Soft robot arm inspired by the octopus. Advanced Robotics, 26, 709–727.

    Article  Google Scholar 

  2. She, Y., Li, C., Cleary, J., & Su, H. (2015). Design and fabrication of a soft robotic hand with embedded actuators and sensors. Journal of Mechanisms and Robotics, 7, 21007.

    Article  Google Scholar 

  3. Hajiesmaili, E., & Clarke, D. R. (2019). Reconfigurable shape-morphing dielectric elastomers using spatially varying electric fields. Nature Communications, 10, 1–7.

    Article  Google Scholar 

  4. Cianchetti, M., Mattoli, V., Mazzolai, B., Laschi, C., & Dario, P. (2009). A new design methodology of electrostrictive actuators for bio-inspired robotics. Sensors and Actuators B: Chemical, 142, 288–297.

    Article  Google Scholar 

  5. Xiao, Y. Y., Jiang, Z. C., Tong, X., & Zhao, Y. (2019). Biomimetic locomotion of electrically powered “janus” soft robots using a liquid crystal polymer. Advanced Materials, 31, 1903452.

    Article  Google Scholar 

  6. Shahsavan, H., Salili, S. M., Jákli, A., & Zhao, B. (2017). Thermally active liquid crystal network gripper mimicking the self-peeling of gecko toe pads. Advanced Materials, 29, 1604021.

    Article  Google Scholar 

  7. He, Q. G., Wang, Z. J., Song, Z. Q., & Cai, S. Q. (2019). Bioinspired design of vascular artificial muscle. Advanced Materials Technologies, 4, 1800244.

    Article  Google Scholar 

  8. Kim, W., Byun, J., Kim, J., Choi, W., Jakobsen, K., Jakobsen, J., Lee, D., & Cho, K. (2019). Bioinspired dual-morphing stretchable origami. Science Robotics, 4, y3493.

    Article  Google Scholar 

  9. Wang, Z., & Hirai, S. (2017). Soft gripper dynamics using a line-segment model with an optimization-based parameter identification method. Ieee Robotics and Automation Letters, 2, 624–631.

    Article  Google Scholar 

  10. Chen, Y. X., Hu, B. B., Zou, J. K., Zhang, W., Wang, D. S., & Jin, G. Q. (2020). Design and fabrication of a multi-motion mode soft crawling robot. Journal of Bionic Engineering, 17, 932–943.

    Article  Google Scholar 

  11. Hao, Y., Gong, Z. Y., Xie, Z. X., Guan, S. Y., Yang, X. B., Wang, T. M., & Wen, L. (2018). A soft bionic gripper with variable effective length. Journal of Bionic Engineering, 15, 220–235.

    Article  Google Scholar 

  12. Ainla, A., Verma, M. S., Yang, D., & Whitesides, G. M. (2017). Soft, rotating pneumatic actuator. Soft Robotics, 4, 297–304.

    Article  Google Scholar 

  13. Gu, G., Zou, J., Zhao, R., Zhao, X., & Zhu, X. (2018). Soft wall-climbing robots. Science. Robotics, 3, t2874.

    Article  Google Scholar 

  14. De Falco, I., Cianchetti, M., & Menciassi, A. (2017). A soft multi-module manipulator with variable stiffness for minimally invasive surgery. Bioinspiration & Biomimetics, 12, 56008.

    Article  Google Scholar 

  15. Yan, J., Zhang, X., Xu, B., & Zhao, J. (2018). A new spiral-type inflatable pure torsional soft actuator. Soft Robotics, 5, 527–540.

    Article  Google Scholar 

  16. Yeo, J. C., Yap, H. K., Xi, W., Wang, Z., Yeow, C. H., & Lim, C. T. (2016). Flexible and stretchable strain sensing actuator for wearable soft robotic applications. Advanced Materials Technologies, 1, 1600018.

    Article  Google Scholar 

  17. Koo, I. M., Jung, K., Koo, J. C., Nam, J., Lee, Y. K., & Choi, H. R. (2008). Development of soft-actuator-based wearable tactile display. Ieee Transactions on Robotics, 24, 549–558.

    Article  Google Scholar 

  18. Xiao, W., Hu, D., Chen, W. X., Yang, G., & Han, X. (2021). A new type of soft pneumatic torsional actuator with helical chambers for flexible machines. Journal of Mechanisms and Robotics, 13, 11003.

    Article  Google Scholar 

  19. Alici, G., Canty, T., Mutlu, R., Hu, W., & Sencadas, V. (2018). Modeling and experimental evaluation of bending behavior of soft pneumatic actuators made of discrete actuation chambers. Soft Robotics, 5, 24–35.

    Article  Google Scholar 

  20. Gong, Z. Y., Fang, X., Chen, X. Y., Cheng, J. H., Xie, Z. X., Liu, J. Q., Chen, B. H., Yang, H., Kong, S. H., Hao, Y. F., Wang, T. M., Yu, J. Z., & Wen, L. (2021). A soft manipulator for efficient delicate grasping in shallow water: modeling, control, and real-world experiments. The International Journal of Robotics Research, 40, 449–469.

    Article  Google Scholar 

  21. Chou, C., & Hannaford, B. (1996). Measurement and modeling of mckibben pneumatic artificial muscles. IEEE Transactions on robotics and automation, 12, 90–102.

    Article  Google Scholar 

  22. Schulte, H. (1961). The application of external power in prosthetics and orthotics. The Characteristics of the McKibben Artificial Muscle, National Research Council, 874, 14–19.

    Google Scholar 

  23. Yang, D., Mosadegh, B., Ainla, A., Lee, B., Khashai, F., Suo, Z., Bertoldi, K., & Whitesides, G. M. (2015). Buckling of elastomeric beams enables actuation of soft machines. Advanced Materials, 27, 6323–6327.

    Article  Google Scholar 

  24. Connolly, F., Polygerinos, P., Walsh, C. J., & Bertoldi, K. (2015). Mechanical programming of soft actuators by varying fiber angle. Soft Robotics, 2, 26–32.

    Article  Google Scholar 

  25. Xiao, W., Du, X., Chen, W., Yang, G., Hu, D., & Han, X. (2021). Cooperative collapse of helical structure enables the actuation of twisting pneumatic artificial muscle. International Journal of Mechanical Sciences, 201, 106483.

    Article  Google Scholar 

  26. Kim, S., Laschi, C., & Trimmer, B. (2013). Soft robotics: a new perspective in robot evolution. Trends in Biotechnology, 31, 287–294.

    Article  Google Scholar 

  27. Mirvakili, S. M., & Hunter, I. W. (2018). Artificial muscles: mechanisms, applications, and challenges. Advanced Materials, 30, 1704407.

    Article  Google Scholar 

  28. Hao, Y., Wang, T. M., Ren, Z. Y., Gong, Z. Y., Wang, H., Yang, X. B., Guan, S. Y., & Wen, L. (2017). Modeling and experiments of a soft robotic gripper in amphibious environments. International Journal of Advanced Robotic Systems, 14, 256010278.

    Article  Google Scholar 

  29. Polygerinos, P., Wang, Z., Overvelde, J. T. B., Galloway, K. C., Wood, R. J., Bertoldi, K., & Walsh, C. J. (2015). Modeling of soft fiber-reinforced bending actuators. Ieee Transactions on Robotics, 31, 778–789.

    Article  Google Scholar 

  30. Chen, W. B., Xiong, C. H., Liu, C. L., Li, P. M., & Chen, Y. H. (2019). Fabrication and dynamic modeling of bidirectional bending soft actuator integrated with optical waveguide curvature sensor. Soft Robotics, 6, 495–506.

    Article  Google Scholar 

  31. Peele, B. N., Wallin, T. J., Zhao, H., & Shepherd, R. F. (2015). 3d printing antagonistic systems of artificial muscle using projection stereolithography. Bioinspiration & Biomimetics, 10, 55003.

    Article  Google Scholar 

  32. Zhang, B. Y., Hu, C. Q., Yang, P. H., Liao, Z. X., & Liao, H. E. (2019). Design and modularization of multi-dof soft robotic actuators. Ieee Robotics and Automation Letters, 4, 2645–2652.

    Article  Google Scholar 

  33. Sun, Y., Song, S., Liang, X., & Ren, H. (2016). A miniature soft robotic manipulator based on novel fabrication methods. Ieee Robotics and Automation Letters, 1, 617–623.

    Article  Google Scholar 

  34. Elsayed, Y., Vincensi, A., Lekakou, C., Geng, T., Saaj, C. M., Ranzani, T., Cianchetti, M., & Menciassi, A. (2014). Finite element analysis and design optimization of a pneumatically actuating silicone module for robotic surgery applications. Soft Robotics, 1, 255–262.

    Article  Google Scholar 

  35. Mao, Z., Nagaoka, T., Yokota, S., & Kim, J. (2020). Soft fiber-reinforced bending finger with three chambers actuated by ecf (electro-conjugate fluid) pumps. Sensors and Actuators A: Physical, 310, 112034.

    Article  Google Scholar 

  36. Xiao, W., Hu, D., Chen, W. X., Yang, G., & Han, X. (2021). Modeling and analysis of bending pneumatic artificial muscle with multi-degree of freedom. Smart Materials and Structures, 30, 95018.

    Article  Google Scholar 

  37. Mooney, M. (1940). A theory of large elastic deformation. Journal of Applied Physics, 11, 582–592.

    Article  MATH  Google Scholar 

  38. Ogden, R. W. (1972). Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society of London. A Mathematical and Physical Sciences, 326, 565–584.

    Article  MATH  Google Scholar 

  39. Yeoh, O. H. (1993). Some forms of the strain energy function for rubber. Rubber Chemistry and Technology, 66, 754–771.

    Article  Google Scholar 

  40. Park, J. (1994). Optimal Latin-hypercube designs for computer experiments. Journal of Statistical Planning and Inference, 39, 95–111.

    Article  MathSciNet  MATH  Google Scholar 

  41. Gunst, R. F. (1996). Response surface methodology: process and product optimization using designed experiments. Taylor & Francis, 38, 284–286.

    Google Scholar 

  42. Hardy, R. L. (1971). Multiquadric equations of topography and other irregular surfaces. Journal of geophysical research, 76, 1905–1915.

    Article  Google Scholar 

  43. Woodard, R. (2000). Interpolation of spatial data: some theory for kriging. Technometrics, 42, 436.

    Article  Google Scholar 

  44. Yin, H. F., Wen, G. L., Liu, Z. B., & Qing, Q. X. (2014). Crashworthiness optimization design for foam-filled multi-cell thin-walled structures. Thin-Walled Structures, 75, 8–17.

    Article  Google Scholar 

  45. Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. Ieee Transactions on Evolutionary Computation, 8, 256–279.

    Article  Google Scholar 

  46. Shintake, J., Cacucciolo, V., Floreano, D., & Shea, H. (2018). Soft robotic grippers. Advanced Materials, 30, 1707035.

    Article  Google Scholar 

Download references

Acknowledgements

The supports from the National Natural Science Foundation of China (11872178, 51621004) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean Hu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, W., Hu, D., Chen, W. et al. Design, Characterization and Optimization of Multi-directional Bending Pneumatic Artificial Muscles. J Bionic Eng 18, 1358–1368 (2021). https://doi.org/10.1007/s42235-021-00077-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-021-00077-w

Keywords

Navigation