Skip to main content
Log in

Bubble dynamics and its applications

  • Review Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Bubbles have very important applications in many fields such as shipbuilding engineering, ocean engineering, mechanical engineering, environmental engineering, chemical engineering, medical science and so on. In this paper, the research status and the development of the bubble dynamics in terms of theory, numerical simulation and experimental technique are reviewed, which cover the underwater explosion bubble, airgun bubble, spark bubble, laser bubble, rising bubble, propeller cavitation bubble, water entry/exit cavitation bubble and bubble dynamics in other fields. Former researchers have done a lot of researches on bubble dynamics and gained fruitful achievements. However, due to the complexity of the bubble motion, many tough mechanical problems remain to be solved. Based on the research progress of bubble dynamics, this paper gives the future research direction of bubble dynamics, aiming to provide references for researches related to bubble dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu Y. L., Zhang A. M., Tian Z. L. et al. Numerical investigation on global responses of surface ship subjected to underwater explosion in waves [J]. Ocean Engineering, 2018, 161: 277–290.

    Google Scholar 

  2. Klaseboer E., Khoo B. C. Hung K. C. Dynamics of an oscillating bubble near a floating structure [J]. Journal of Fluids and Structures, 2005, 10(2): 1–10.

    Google Scholar 

  3. Hsiao C. T., Chahine G. L. Effect of a propeller and gas diffusion on bubble nuclei distribution in a liquid [J]. Journal of Hydrodynamics, 2012, 24(6): 809–822.

    Google Scholar 

  4. Vahaji S., Chen L., Cheung S. C. P. et al. Numerical investigation on bubble size distribution around an underwater vehicle [J]. Applied Ocean Research, 2018. 78: 254–266.

    Google Scholar 

  5. de Graaf K. L., Brandner P. A. Penesis I. Bubble dynamics of a seismic airgun [J]. Experimental Thermal and Fluid Science, 2014, 55: 228–238.

    Google Scholar 

  6. Deane G. B., Stokes M. D. Scale dependence of bubble creation mechanisms in breaking waves [J]. Nature, 2002, 418(6900): 839–844.

    Google Scholar 

  7. Zhang S., Wang S. P., Zhang A. M. et al. Numerical study on motion of the air-gun bubble based on boundary integral method [J]. Ocean Engineering, 2018, 154: 70–80.

    Google Scholar 

  8. Zhang Y. N., Zhang Y. N., Qian Z. D. et al. A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow [J]. Renewable and Sustainable Energy Reviews, 2016, 56: 303–318.

    Google Scholar 

  9. Sedlar M., Ji B., Kratky T. et al. Numerical and experimental investigation of three-dimensional cavitating flow around the straight NACA2412 hydrofoil [J]. Ocean Engineering, 2016, 123: 357–382.

    Google Scholar 

  10. Yang D. D., Yu A., Ji B. et al. Numerical analyses of ventilated cavitation over a 2-D NACA0015 hydrofoil using two turbulence modeling methods [J]. Journal of Hydrodynamics, 2018, 30(2): 345–356.

    Google Scholar 

  11. Wang Z. Y., Huang B., Zhang M. D. et al. Experimental and numerical investigation of ventilated cavitating flow structures with special emphasis on vortex shedding dynamics [J]. International Journal of Multiphase Flow, 2018, 98: 79–95.

    Google Scholar 

  12. Ji B., Luo X. W., Arndt R. E. A. et al. Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil [J]. International Journal of Multiphase Flow, 2015, 68: 121–134.

    MathSciNet  Google Scholar 

  13. Chen L. M., Yang X. G., Li G. et al. Prediction of bubble fluidisation during chemical looping combustion using CFD simulation [J]. Computers and Chemical Engineering, 2017, 99: 82–95.

    Google Scholar 

  14. Sarhan A. R., Naser J., Brooks G. CFD modeling of bubble column: Influence of physico-chemical properties of the gas/liquid phases properties on bubble formation [J]. Separation and Purification Technology, 2018, 201: 130–138.

    Google Scholar 

  15. Huang Z. B., McClure D. D., Barton G. W. et al. Assessment of the impact of bubble size modelling in CFD simulations of alternative bubble column configurations operating in the heterogeneous regime [J]. Chemical Engineering Science, 2018, 186: 88–101.

    Google Scholar 

  16. Chen H., Kreider W., Brayman A. A. et al. Blood vessel deformations on microsecond time scales by ultrasonic cavitation [J]. Physical Review Letters, 2011, 106: 034301.

    Google Scholar 

  17. Liu Y. Q., Sugiyama K., Takagi S. et al. Surface instability of an encapsulated bubble induced by an ultrasonic pressure wave [J]. Journal of Fluid Mechanics, 2012, 691: 315–340.

    MathSciNet  MATH  Google Scholar 

  18. Wang S. P., Wang Q. X., Leppinen D. M. et al. Acoustic bubble dynamics in a microvessel surrounded by elastic material [J]. Physics of Fluids, 2018, 30(1): 012104.

    Google Scholar 

  19. Zhang A. M., Zeng L. Y., Cheng X. D. et al. The evaluation method of total damage to ship in underwater explosion [J]. Applied Ocean Research, 2011, 33(4): 240–251.

    Google Scholar 

  20. Korkut E., Atlar M. An experimental investigation of the effect of foul release coating application on performance, noise and cavitation characteristics of marine propellers [J]. Ocean Engineering, 2012, 41: 1–12.

    Google Scholar 

  21. Lohse D. Bubble puzzles [J]. Physics Today, 2003, 56(2): 36–41.

    Google Scholar 

  22. Ziolkowski A. A method for calculating the output pressure waveform from an air gun [J]. Geophysical Journal Royal Astronomical Society, 1970, 21: 137–161.

    Google Scholar 

  23. Zhang S., Wang S. P., Zhang A. M. et al. Numerical study on attenuation of bubble pulse through tuning the air-gun array with the particle swarm optimization method [J]. Applied Ocean Research, 2017, 66: 13–22.

    Google Scholar 

  24. Alizadeh M., Seyyedi S. M., Taeibi Rahni M. et al. Threedimensional numerical simulation of rising bubbles in the presence of cylindrical obstacles, using lattice Boltzmann method [J]. Journal of Molecular Liquids, 2017, 236: 151–161.

    Google Scholar 

  25. Zhang A., Sun P., Ming F. An SPH modeling of bubble rising and coalescing in three dimensions [J]. Computer Methods in Applied Mechanics and Enginee-ring, 2015, 294: 189–209.

    MathSciNet  Google Scholar 

  26. Brennen C. E. Cavitation and bubble dynamics [M]. New York, USA: Oxford University Press, 1995.

    MATH  Google Scholar 

  27. Tripathi M. K., Sahu K. C. Govindarajan R. Dynamics of an initially spherical bubble rising in quiescent liquid [J]. Nature communications, 2015, 6: 6268.

    Google Scholar 

  28. Sun C., Can E., Dijkink R. et al. Growth and collapse of a vapour bubble in a microtube: The role of thermal effects [J]. Journal of Fluid Mechanics, 2009, 632: 5–16.

    MATH  Google Scholar 

  29. Kuijpers M. W. A., van Eck D., Kemmere M. F. et al. Cavitation-induced reactions in high-pressure carbon dioxide [J]. Science, 2002, 298(5600): 1969–1971.

    Google Scholar 

  30. Debrégeas G., de Gennes P. G., Brochard-Wyart F. The life and death of “bare” viscous bubbles [J]. Science, 1998, 279(5357): 1704–1707.

    Google Scholar 

  31. Klaseboer E., Manica R., Chan D. Y. C. et al. BEM simulations of potential flow with viscous effects as applied to a rising bubble [J]. Engineering Analysis With Boundary Elements, 2011, 35: 489–494.

    MATH  Google Scholar 

  32. Mougin G., Magnaudet J. Path instability of a rising bubble [J]. Physical Review Letters, 2001, 88(1): 014502.

    Google Scholar 

  33. Lind S. J., Phillips T. N. The effect of viscoelasticity on a rising gas bubble [J]. Journal of Non-Newtonian Fluid Mechanics, 2010, 165(15-16): 852–865.

    MATH  Google Scholar 

  34. Wang Q. X. Non-spherical bubble dynamics of underwater explosions in a compressible fluid [J]. Physics of Fluids, 2013, 25(7): 072104.

    MATH  Google Scholar 

  35. Wang Q. X., Yeo K. S., Khoo B. C. et al. Strong interaction between a buoyancy bubble and a free surface [J]. Theoretical and Computational Fluid Dynamics, 1996, 8: 73–88.

    MATH  Google Scholar 

  36. Zhang A. M., Wang S. P., Wu G. X. Simulation of bubble motion in a compressible liquid based on the three dimensional wave equation [J]. Engineering Analysis with Boundary Elements, 2013, 37(9): 1179–1188.

    MathSciNet  MATH  Google Scholar 

  37. Blake J. R., Gibson D. C. Cavitation bubbles near boundaries [J]. Annual Review of Fluid Mechanics, 1987, 19: 99–123.

    Google Scholar 

  38. Zhang Y. L., Yeo K. S., Khoo B. C. et al. 3D jet impact and toroidal bubbles [J]. Journal of Computational Physics, 2001, 16(6): 336–360.

    MATH  Google Scholar 

  39. Zhang A. M., Liu Y. L. Improved three-dimensional bubble dynamics model based on boundary element method [J]. Journal of Computational Physics, 2015. 294: 208–223.

    MathSciNet  MATH  Google Scholar 

  40. Liu Y. L., Zhang A. M., Tian Z. L. et al. Investigation of free-field underwater explosion with Eulerian finite element method [J]. Ocean Engineering, 2018, 166: 182–190.

    Google Scholar 

  41. Tian Z. L., Liu Y. L., Zhang A. M. et al. Analysis of breaking and re-closure of a bubble near a free surface based on the Eulerian finite element method [J]. Computers and Fluids, 2018, 170: 41–52.

    MathSciNet  MATH  Google Scholar 

  42. Li T., Wang S., Li S. et al. Numerical investigation of an underwater explosion bubble based on FVM and VOF [J]. Applied Ocean Research, 2018, 74: 49–58.

    Google Scholar 

  43. Koukouvinis P., Gavaises M., Supponen O. et al. Simulation of bubble expansion and collapse in the vicinity of a free surface [J]. Physics of Fluids, 2016, 28(5): 052103.

    Google Scholar 

  44. Amaya-Bower L., Lee T. Single bubble rising dynamics for moderate Reynolds number using lattice Boltzmann method [J]. Computers and Fluids, 2010, 39(7): 1191–1207.

    MATH  Google Scholar 

  45. Peng C., Tian S., Li G. et al. Single-component multiphase lattice Boltzmann simulation of free bubble and crevice heterogeneous cavitation nucleation [J]. Physical Review E, 2018, 98(2): 023305.

    MathSciNet  Google Scholar 

  46. Wang Z., Shi D., Zhang A. Three-dimensional lattice Boltzmann simulation of bubble behavior in a flapinduced shear flow [J]. Computers and Fluids, 2015, 123: 44–53.

    MathSciNet  MATH  Google Scholar 

  47. Sun P. N., Li Y. B. Ming F. R. Numerical simulation on the motion characteristics of freely rising bubbles using smoothed particle hydrodynamics method [J]. Acta Physica Sinica, 2015, 64(17): 174701.

    Google Scholar 

  48. Rahmat A., Tofighi N., Yildiz M. Numerical simulation of the electrohydrodynamic effects on bubble rising using the SPH method [J]. International Journal of Heat and Fluid Flow, 2016, 62: 313–323.

    Google Scholar 

  49. Fan H., Li S. A Peridynamics-SPH modeling and simulation of blast fragmentation of soil under buried explosive loads [J]. Computer Methods in Applied Mechanics and Engineering, 2017, 318: 349–381.

    MathSciNet  Google Scholar 

  50. Hung C. F. Hwangfu J. J. Experimental study of the behaviour of mini-charge underwater explosion bubbles near different boundaries [J]. Journal of Fluid Mechanics, 2010, 651: 55–80.

    MATH  Google Scholar 

  51. Graaf K. L. D., Brandner P. A., Penesis I. The pressure field generated by a seismic airgun [J]. Experimental Thermal and Fluid Science, 2014, 55: 239–249.

    Google Scholar 

  52. Peters A., Lantermann U., el Moctar O. Numerical prediction of cavitation erosion on a ship propeller in model-and full-scale [J]. Wear, 2018, 408-409: 1–12.

    Google Scholar 

  53. Cui P., Zhang A. M., Wang S. et al. Ice breaking by a collapsing bubble [J]. Journal of Fluid Mechanics, 2018, 841: 287–309.

    Google Scholar 

  54. Philipp A., Lauterborn W. Cavitation erosion by single laser-produced bubbles [J]. Journal of Fluid Mechanics, 1998, 361: 75–116.

    MATH  Google Scholar 

  55. Cole R. H. Underwater explosion [M]. Princeton USA: Princeton University Press, 1948.

    Google Scholar 

  56. Brett J. M. Yiannakopolous G. A study of explosive effects in close proximity to a submerged cylinder [J]. International Journal of Impact Engineering, 2008, 35(4): 206–225.

    Google Scholar 

  57. Geers T. L. Residual potential and approximation methods for three dimensional fluid-structure interaction problems [J]. Journal of the Acoustical Society of America, 1971, 49: 1505–1510.

    Google Scholar 

  58. Geers T. L. Doubly asympotic approximation for transient motions of submerged structures [J]. Journal of the Acoustical Society of America, 1978, 64: 1500–1508.

    MATH  Google Scholar 

  59. Huang H. Transient interaction of plane acoustic waves with a spherical elastic shell [J]. Journal of the Acoustical Society of America, 1969, 45(3): 85–98.

    Google Scholar 

  60. Wang P. P., Zhang A. M., Ming F. R. et al. A novel nonreflecting boundary condition for fluid dynamics solved by smoothed particle hydrodynamics [J]. Journal of Fluid Mechanics, 2018, 10.1017/jfm.2018.852.

    Google Scholar 

  61. Wang C., Khoo B. C. An indirect boundary element method for three-dimensional explosion bubbles [J]. Journal of Computational Physics, 2004, 19(4): 451–480.

    MATH  Google Scholar 

  62. Klaseboer E., Hung K. C., Wang C. W. et al. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure [J]. Journal of Fluid Mechanics, 2005, 53(7): 387–413.

    MATH  Google Scholar 

  63. Prosperetti A., Lezzi A. Bubble dynamics in a compressible liquid. Part 1. First-order theory [J]. Journal of Fluid Mechanics, 1986, 168: 457–478.

    MATH  Google Scholar 

  64. Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical cavity [J]. Philosophical Magazine, 1917, 34(200): 94–98.

    MATH  Google Scholar 

  65. Plesset M. S., Pasadena C. The dynamics of cavitation bubbles [J]. Journal of Applied Mechanics, 1949, 16: 277–282.

    Google Scholar 

  66. Noltingk B. E., Neppiras E. A. Caviation produced by ultrasonics [J]. Proceedings of the Physical Society. Section B, 1950, 63: 674–685.

    Google Scholar 

  67. Gilmore F. R. The growth and collapse of a spherical bubble in a viscous compressible liquid [R]. Pasadena, CA: California Institute of Technology, 1952.

    Google Scholar 

  68. Prosperetti A. Bubbles [J]. Physics of Fluids, 2004, 16(6): 1852–1865.

    MathSciNet  MATH  Google Scholar 

  69. Zhang Y. N., Min Q., Zhang Y. N. et al. Effects of liquid compressibility on bubble-bubble interactions between oscillating bubbles [J]. Journal of Hydrodynamics, 2016, 28(5): 832–839.

    Google Scholar 

  70. Smith W. R., Wang Q. Radiative decay of the nonlinear oscillations of an adiabatic spherical bubble at small Mach number [J]. Journal of Fluid Mechanics, 2018, 837: 1–18.

    MathSciNet  Google Scholar 

  71. Plesset M. S., Prosperetti A. Bubble dynamics and cavitation [J]. Annual Review Of Fluid Mechanics, 1977, 9: 145–185.

    MATH  Google Scholar 

  72. Lauterborn W. Numerical investigation of nonlinear oscillations of gas bubbles in liquids [J]. Journal of the Acoustical Society of America, 1976, 59: 283–293.

    Google Scholar 

  73. Geers T. L., Lagumbay R. S., Vasilyev O. V. Acousticwave effects in violent bubble collapse [J]. Journal of Applied Physics, 2012, 112: 054910.

    Google Scholar 

  74. Zamyshlyayev B. V. Dynamic loads in underwater explosion [R]. Washington DC, USA: Naval Intelligence Support Center, 1973.

    Google Scholar 

  75. Kedrinskiy V. K. Hydrodynamics of explosion experiments and models [M]. Novosibirsk, Russia: Springer, 2005.

    Google Scholar 

  76. White L. R., Carnie S. L. The drag on a flattened bubble moving across a plane substrate [J]. Journal of Fluid Mechanics, 2012, 696: 345–373.

    MathSciNet  MATH  Google Scholar 

  77. Cui P., Zhang A. M., Wang S. P. Small-charge underwater explosion bubble experiments under various boundary conditions [J]. Physics of Fluids, 2016, 28(11): 117103.

    Google Scholar 

  78. Zhang A. M., Li S., Cui J. Study on splitting of a toroidal bubble near a rigid boundary [J]. Physics of Fluids, 2015, 27: 062102.

    Google Scholar 

  79. Blake J. R., Taib B. B., Doherty G. Transient cavities near boundaries. Part 1. Rigid boundary [J]. Journal of Fluid Mechanics, 1986, 170: 479–497.

    MATH  Google Scholar 

  80. Blake J. R., Taib B. B., Doherty G. Transient cavities near boundaries. Part 2. Free surface [J]. Journal of Fluid Mechanics, 1987, 181: 197–212.

    MATH  Google Scholar 

  81. Wang Q. X., Yeo K. S., Khoo B. C. et al. Nonlinear interaction between gas bubble and free surface [J]. Computer and Fluids, 1996, 25(7): 607–628.

    MATH  Google Scholar 

  82. Ni B. Y., Zhang A. M., Wu G. X. Simulation of a fully submerged bubble bursting through a free surface [J]. European Journal of Mechanics /B Fluids, 2016, 55(4): 1–14.

    MathSciNet  MATH  Google Scholar 

  83. Benson D. J., Okazawa S. Contact in a multi-material Eulerian finite element formulation [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(39): 4277–4298.

    MATH  Google Scholar 

  84. Benson D. J. Computational methods in Lagrangian and Eulerian hydrocodes [J]. Computer Methods in Applied Mechanics and Engineering, 1992, 99(2): 235–394.

    MathSciNet  MATH  Google Scholar 

  85. Hirt C. W., Nichols B. D. Volume of fluid (VOF) method for the dynamics of free boundaries [J]. Journal of Computational Physics, 1981, 39(1): 201–225.

    MATH  Google Scholar 

  86. Miller S. T., Jasak H., Boger D. A. et al. A pressure-based, compressible, two-phase flow finite volume method for underwater explosions [J]. Computers and Fluids, 2013, 87: 132–143.

    MathSciNet  MATH  Google Scholar 

  87. Koch M., Lechner C., Reuter F. et al. Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM [J]. Computers and Fluids, 2016, 126: 71–90.

    MathSciNet  MATH  Google Scholar 

  88. Jasak H., Gosman A. D. Element residual error estimate for the finite volume method [J]. Computers and Fluids, 2003, 32(2): 223–248.

    MathSciNet  MATH  Google Scholar 

  89. Blake J. R., Gibson D. C. Growth and collapse of a vapour cavity near a free surface [J]. Journal of Fluid Mechanics, 1981, 111: 123–140.

    Google Scholar 

  90. Gibson D. C., Blake J. R. The growth and collapse of bubbles near deformable surfaces [J]. Applied Scientific Research, 1982, 38(1): 215–224.

    Google Scholar 

  91. Zhang Y. L., Yeo K. S., Khoo B. C. et al. Three dimensional computation of bubbles near a free surface [J]. Journal of Computational Physics, 1998, 146: 105–123.

    MathSciNet  MATH  Google Scholar 

  92. Tu Q., Li S. An updated Lagrangian particle hydrodynamics (ULPH) for Newtonian fluids [J]. Journal of Computational Physics, 2017, 348: 493–513.

    MathSciNet  MATH  Google Scholar 

  93. Zhang A. M., Wang S. P., Huang C. et al. Influences of initial and boundary conditions on underwater explosion bubble dynamics [J]. European Journal of Mechanics B-Fluids, 2013, 42: 69–91.

    MATH  Google Scholar 

  94. Wang B., Zhang Y. P., Wang Y. P. Experimental study on bubble oscillation formed during underwater explosions [J]. Explosion and Shock Waves, 2008, 28: 572–576.

    Google Scholar 

  95. Gauch E., Leblanc J., Shukla A. Near field underwater explosion response of polyurea coated composite cylinders [J]. Composite Structures, 2018, 202: 836–852.

    Google Scholar 

  96. Chahine G. L. Interaction between an oscillating bubble and a free surface [J]. Journal of Fluids Engineering, 1977, 99(4): 709–716.

    Google Scholar 

  97. Turangan C. K., Ong G. P., Klaseboer E. et al. Experimental and numerical study of transient bubble-elastic membrane interaction [J]. Journal of Applied Physics, 2006, 100: 054910.

    Google Scholar 

  98. Cui P., Wang Q. X., Wang S. P. et al. Experimental study on interaction and coalescence of synchronized multiple bubbles [J]. Physics of Fluids, 2016, 28(1): 012103.

    Google Scholar 

  99. Lauterborn W., Bolle H. Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary [J]. Journal of Fluid Mechanics, 1975, 72(2): 391–399.

    Google Scholar 

  100. Supponen O., Kobel P., Obreschkow D. et al. The inner world of a collapsing bubble [J]. Physics of Fluids, 2015, 27(9): 94–98.

    Google Scholar 

  101. Menon S. Lal M. On the dynamics and instability of bubbles formed during underwater explosions [J]. Experimental Thermal and Fluid Science, 1998, 16(4): 305–321.

    Google Scholar 

  102. Ren S., Song Y., Zhang A. M. et al. Experimental study on dynamic buckling of submerged grid-stiffened cylindrical shells under intermediate-velocity impact [J]. Applied Ocean Research, 2018, 74: 237–245.

    Google Scholar 

  103. Caldwell J., Dragoset W. A brief overview of seismic air-gun arrays [J]. Leading Edge, 2000, 19(8): 898–902.

    Google Scholar 

  104. Schulze-Gattermann R. Physical aspects of the “airpulser” as a seismic energy source [J]. Geophysical Prospecting, 1972, 20(1): 155–192.

    Google Scholar 

  105. Johnson D. T. Understanding air-gun bubble behavior [J]. Geophysics, 1994, 59: 1729–1734.

    Google Scholar 

  106. Johnston R. C. Performance of 2000 and 6000 psi air guns: Theory and experiment [J]. Geophysical Prospecting, 1980, 28(5): 700–715.

    Google Scholar 

  107. Fontana P. M., Haugland T. A. Compact sleeve-gun source arrays [J]. Geophysics, 1991, 56(3): 1359.

    Google Scholar 

  108. Allen T. J., Jeffery S. J., Mansfield G. C. Sleeve guns and wide tow [J]. Exploration Geophysics, 1987, 18(2): 1–3.

    Google Scholar 

  109. Langhammer J., Landrø M. Experimental study of viscosity effects on air-gun signatures [J]. Geophysics, 1993, 58(12): 1801–1808.

    Google Scholar 

  110. Vaage S., Ursin B. Computation of signatures of linear airgun arrays [J]. Geophysical Prospecting, 1987, 35: 281–287.

    Google Scholar 

  111. Landrø M. Modelling of GI gun signatures [J]. Geophysical Prospecting, 1992, 40(7): 721–747.

    Google Scholar 

  112. Ziolkowski A. Review of vibroseis data acquisition and processing for better amplitudes: adjusting the sweep and deconvolving for the time-derivative of the true groundforce [J]. Geophysical Prospecting, 2010, 58: 41–54.

    Google Scholar 

  113. Giles B. F., Johnston R. C. System approach to air-gun array design [J]. Geophysical Prospecting, 1973, 21(1): 77–101.

    Google Scholar 

  114. Ursin B. Attenuation of coherent noise in marine seismic exploration using very long arrays [J]. Geophysical Prospecting, 1978, 26(4): 722–749.

    Google Scholar 

  115. Ziolkowski A., Parkes G., Hatton L. et al. The signature of an air gun array: Computation from near-field measurements including interactions [J]. Geophysics, 1982, 47: 1413–1421.

    Google Scholar 

  116. Safar M. H. The radiation of acoustic waves from an airgun [J]. Geophysical Prospecting, 1976, 24(4): 756–772.

    Google Scholar 

  117. Landrø M. Source signature determination from ministreamer data [J]. Geophysics, 1994, 59(8): 1261–1269.

    Google Scholar 

  118. Landrø M., Sollie R. Source signature determination by inversion [J]. SEG Technical Program Expanded Abstracts, 1992, 57(11): 1633–1640.

    Google Scholar 

  119. Li G., Liu Z., Wang J. et al. Air-gun signature modelling considering the influence of mechanical structure factors [J]. Journal of Geophysics and Engineering, 2014, 11(2): 25005–25012.

    Google Scholar 

  120. Li G. F., Cao M. Q., Chen H. L. et al. Modeling air gun signatures in marine seismic exploration considering multiple physical factors [J]. Applied Geophysics, 2010, 7(2): 158–165.

    Google Scholar 

  121. Laws R. M., Hatton L., Haartsen M. Computer modelling of clustered airguns [J]. First Break, 1990, 8(9): 331–338.

    Google Scholar 

  122. Schrage R. W. A theoretical study of interface mass transfer [M]. New York, USA: Columbia University Press, 1953.

    Google Scholar 

  123. Graaf K. L. D., Penesis I., Brandner P. A. Modelling of seismic airgun bubble dynamics and pressure field using the Gilmore equation with additional damping factors [J]. Ocean Engineering, 2014, 76(1): 32–39.

    Google Scholar 

  124. Huang X., Zhang A. M., Liu Y. L. Investigation on the dynamics of air-gun array bubbles based on the dual fast multipole boundary element method [J]. Ocean Engineering, 2016, 124: 157–167.

    Google Scholar 

  125. Cox E., Pearson A., Blake J. R. et al. Comparison of methods for modelling the behaviour of bubbles produced by marine seismic airguns [J]. Geophysical Prospecting, 2004, 52: 451–477.

    Google Scholar 

  126. Langhammer J. Landrø M. Temperature effects on airgun signatures [J]. Geophysical Prospecting, 1993, 41(6): 737–750.

    Google Scholar 

  127. Laws R., Landrø M. Amundsen L. An experimental comparison of three direct methods of marine source signature estimation [J]. Geophysical Prospecting, 1998, 46(4): 353–389.

    Google Scholar 

  128. Langhammer J., Landrø M., Martin J. et al. Air-gun bubble damping by a screen [J]. Geophysics, 1995, 60(6): 1765–1772.

    Google Scholar 

  129. Langhammer J., Landrø M. High-speed photography of the bubble generated by an airgun [J]. Geophysical Prospecting, 1996, 44(1): 153–172.

    Google Scholar 

  130. Zhang S., Wang S. P., Zhang A. M. Experimental study on the interaction between bubble and free surface using a high-voltage spark generator [J]. Physics of Fluids, 2016, 28(3): 032109.

    Google Scholar 

  131. Thompson P. R. Shock testing of naval vessels using seismic airgun arrays [P]. USA, US6662624B1, 2003.

    Google Scholar 

  132. Zhang A. M., Cui P., Cui J. et al. Experimental study on bubble dynamics subject to buoyancy [J]. Journal of Fluid Mechanics, 2015, 776: 137–160.

    Google Scholar 

  133. Vogel A., Lauterborn W. Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries [J]. Journal of the Acoustical Society of America, 1988, 84(2): 719–713.

    Google Scholar 

  134. Zhang Y. N., Chen F. P., Zhang Y. N. et al. Experimental investigations of interactions between a laser-induced cavitation bubble and a spherical particle [J]. Experimental Thermal and Fluid Science, 2018, 98: 645–661.

    Google Scholar 

  135. Zhang S., Zhang A. M., Wang S. P. et al. Dynamic characteristics of large scale spark bubbles close to different boundaries [J]. Physics of Fluids, 2017, 29(9): 092107.

    Google Scholar 

  136. Buogo S. Vokurka K. Intensity of oscillation of sparkgenerated bubbles [J]. Journal of Sound and Vibration, 2010, 329(20): 4266–4278.

    Google Scholar 

  137. Xu W. L., Bai L. X., Zhang F. X. Interaction of a cavitation bubble and an air bubble with a rigid boundary [J]. Journal of Hydrodynamics, 2010, 22(4): 503–512.

    Google Scholar 

  138. Luo J., Xu W. L., Niu Z. P. et al. Experimental study of the interaction between the spark-induced cavitation bubble and the air bubble [J]. Journal of Hydrodynamics, 2013, 25(6): 895–902.

    Google Scholar 

  139. Hajizadeh Aghdam A., Khoo B. C., Farhangmehr V. et al. Experimental study on the dynamics of an oscillating bubble in a vertical rigid tube [J]. Experimental Thermal and Fluid Science, 2015. 60: 299–307.

    Google Scholar 

  140. Cui P., Zhang A. M., Wang S. P. et al. Experimental investigation of bubble dynamics near the bilge with a circular opening [J]. Applied Ocean Research, 2013, 41(6): 65–75.

    Google Scholar 

  141. Ma X. J., Huang B. A., Zhao X. et al. Comparisons of spark-charge bubble dynamics near the elastic and rigid boundaries [J]. Ultrasonics Sonochemistry, 2018, 43: 80–90.

    Google Scholar 

  142. Lauterborn W., Kurz T. Physics of bubble oscillations [J]. Reports on Progress in Physics, 2010, 73: 106501.

    Google Scholar 

  143. Lauterborn W., Vogel A. Shock wave emission by laser generated bubbles (Delale C. F. Bubble dynamics and shock waves) [M]. Berlin Heidelberg: Springer, 2013, 67–103.

  144. Lindau O., Lauterborn W. Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall [J]. Journal of Fluid Mechanics, 2003, 479: 327–348.

    MATH  Google Scholar 

  145. Bhaga D., Weber M. E. Bubbles in viscous liquids: Shapes, wakes and velocities [J]. Journal of Fluid Mechanics, 2006, 105: 61–85.

    Google Scholar 

  146. Fernandez Rivas D., Stricker L., Zijlstra A. G. et al. Ultrasound artificially nucleated bubbles and their sonochemical radical production [J]. Ultrasonics Sonochemistry, 2013, 20(1): 510–524.

    Google Scholar 

  147. Biesheuvel A., Heijst G. F. V. In fascination of fluid dynamics [M]. Rotterdam, The Netherlands: Springer, 1998.

  148. Walters J. K., Davidson J. F. The initial motion of a gas bubble formed in an inviscid liquid. Part 2. The three-dimensional bubble and the toroidal bubble [J]. Journal of Fluid Mechanics, 1963, 17(3): 321–336.

    MATH  Google Scholar 

  149. Deike L., Ghabache E., Ligerbelair G. et al. Dynamics of jets produced by bursting bubbles [J]. Physical Review Fluids, 2018, 3: 013603.

    Google Scholar 

  150. Shew W. L., Pinton J. F. Dynamical model of bubble path instability [J]. Physical Review Letters, 2006, 97(14): 144508.

    Google Scholar 

  151. Wu W. B., Liu Y. L., Zhang A. M. Numerical investigation of 3D bubble growth and detachment [J]. Ocean Engineering, 2017, 138: 86–104.

    Google Scholar 

  152. Zenit R., Magnaudet J. Path instability of rising spheroidal air bubbles: A shape-controlled process [J]. Physics of Fluids, 2008, 20(6): 061702.

    MATH  Google Scholar 

  153. Sanada T., Sato A., Shirota M. et al. Motion and coalescence of a pair of bubbles rising side by side [J]. Chemical Engineering Science, 2009, 64(11): 2659–2671.

    Google Scholar 

  154. Takemura F. Yabe A. Rising speed and dissolution rate of a carbon dioxide bubble in slightly contaminated water [J]. Journal of Fluid Mechanics, 1999, 378: 319–334.

    Google Scholar 

  155. Maxworthy T. Bubble rise under an inclined plate [J]. Journal of Fluid Mechanics, 2006, 229: 659–674.

    Google Scholar 

  156. de Vries A. W. G., Biesheuvel A., van Wijngaarden L. Notes on the path and wake of a gas bubble rising in pure water [J]. International Journal of Multiphase Flow, 2002, 28(11): 1823–1835.

    MATH  Google Scholar 

  157. Maxworthy T. A note on the existence of wakes behind large, rising bubbles [J]. Journal of Fluid Mechanics, 2006, 27(2): 367–368.

    Google Scholar 

  158. Miksis M. J., Vanden-Broeck J. M., Keller J. B. Rising bubbles [J]. Journal of Fluid Mechanics, 2006, 123: 31–41.

    MathSciNet  MATH  Google Scholar 

  159. Li S., Sun L. Q., Zhang A. M. Dynamic behavior of rising bubble [J]. Acta Physica Sinica, 2014, 63(18): 291–303.

    Google Scholar 

  160. Albert C., Kromer J., Robertson A. M. et al. Dynamic behaviour of buoyant high viscosity droplets rising in a quiescent liquid [J]. Journal of Fluid Mechanics, 2015, 778: 485–533.

    MathSciNet  MATH  Google Scholar 

  161. Hallez Y., Legendre D. Interaction between two spherical bubbles rising in a viscous liquid [J]. Journal of Fluid Mechanics, 2011, 673: 406–431.

    MathSciNet  MATH  Google Scholar 

  162. Aktas B., Atlar M., Turkmen S. et al. Systematic cavitation tunnel tests of a propeller in uniform and inclined flow conditions as part of a round robin test campaign [J]. Ocean Engineering, 2016, 120: 136–151.

    Google Scholar 

  163. Duttweiler M. E., Brennen C. E. Surge instability on a cavitating propeller [J]. Journal of Fluid Mechanics, 2002, 458: 133–152.

    MATH  Google Scholar 

  164. Zhang L. X., Zhang N., Peng X. X. et al. A review of studies of mechanism and prediction of tip vortex cavitation inception [J]. Journal of Hydrodynamics, 2015, 27(4): 488–495.

    Google Scholar 

  165. Chen L. Y., Zhang L. X., Shao X. M. The motion of small bubble in the ideal vortex flow [J]. Procedia Engineering, 2015, 126: 228–231.

    Google Scholar 

  166. Dular M., Stoffel B., Širok B. Development of a cavitation erosion model [J]. Wear, 2006, 261(5): 642–655.

    Google Scholar 

  167. Greeley D. S., Kerwin J. E. Numerical methods for propeller design and analysis in steady flow [J]. Transactions-Society of Naval Architects and Marine Engineers, 1982, 90: 415–453.

    Google Scholar 

  168. Zeng Z. B., Kuiper G. Blade section design of marine propellers with maximum cavitation inception speed [J]. Journal of Hydrodynamics, 2012, 24(1): 65–75.

    Google Scholar 

  169. Ye J. M., Xiong Y. Prediction of podded propeller cavitation using an unsteady surface panel method [J]. Journal of Hydrodynamics, 2008, 20(6): 790–796.

    Google Scholar 

  170. Baltazar J., Falcao de Campos J. A. C. An iteratively coupled solution of the cavitating flow on marine propellers using BEM [J]. Journal of Hydrodynamics, 2010, 22(5): 838–843.

    Google Scholar 

  171. Yari E., Ghassemi H. Numerical analysis of sheet cavitation on marine propellers, considering the effect of cross flow [J]. International Journal of Naval Architecture and Ocean Engineering, 2013, 5(4): 546–558.

    Google Scholar 

  172. Ji B., Long Y., Long X. P. et al. Large eddy simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavitation interactions [J]. Journal of Hydrodynamics, 2017, 29(1): 27–39.

    Google Scholar 

  173. Huang B., Wang G. Y., Zhao Y. Numerical simulation unsteady cloud cavitating flow with a filter-based density correction model [J]. Journal of Hydrodynamics, 2014, 26(1): 26–36.

    Google Scholar 

  174. Zhang Y. N., Qiu X., Chen F. P. et al. A selected review of vortex identification methods with applications [J]. Journal of Hydrodynamics, 2018, 30(5): 767–779.

    Google Scholar 

  175. Carnelli D., Karimi A., Franc J. P. Application of spherical nanoindentation to determine the pressure of cavitation impacts from pitting tests [J]. Journal of Materials Research, 2011, 27(1): 91–99.

    Google Scholar 

  176. Foeth E. J., Doorne C. W. H. V., Terwisga T. V. et al. Time resolved PIV and flow visualization of 3D sheet cavitation [J]. Experiments in Fluids, 2006, 40(4): 503–513.

    Google Scholar 

  177. Chow Y. C. Experimental investigation and numerical prediction of cavitation incurred on propeller surfaces [J]. Journal of Hydrodynamics, 2010, 22(5): 764–769.

    Google Scholar 

  178. Asnaghi A., Svennberg U., Bensow R. E. Numerical and experimental analysis of cavitation inception behaviour for high-skewed low-noise propellers [J]. Applied Ocean Research, 2018, 79: 197–214.

    Google Scholar 

  179. Aktas B., Atlar M., Turkmen S. et al. Propeller cavitation noise investigations of a research vessel using medium size cavitation tunnel tests and full-scale trials [J]. Ocean Engineering, 2016, 120: 122–135.

    Google Scholar 

  180. Faltinsen O. M. Hydrodynamics of marine and offshore structures [J]. Journal of Hydrodynamics, 2015, 26(6): 835–847.

    Google Scholar 

  181. Wu G. X. Numerical simulation of water entry of twin wedges [J]. Journal of Fluids and Structures, 2006, 22(1): 99–108.

    Google Scholar 

  182. Korobkin A. A., Pukhnachov V. V. Initial stage of water impact [J]. Annual Review of Fluid Mechanics, 1988, 20(1): 159–185.

    Google Scholar 

  183. de Graaf K. L., Brandner P. A., Pearce B. W. Spectral content of cloud cavitation about a sphere [J]. Journal of Fluid Mechanics, 2016, 812: R1.

    MathSciNet  MATH  Google Scholar 

  184. Wan C. R., Liu H. Shedding frequency of sheet cavitation around axisymmetric body at small angles of attack [J]. Journal of Hydrodynamics, 2017, 29(3): 520–523.

    Google Scholar 

  185. Truscott T. T., Epps B. P., Belden J. Water entry of projectiles [J]. Annual Review of Fluid Mechanics, 2014, 46(1): 355–378.

    MathSciNet  MATH  Google Scholar 

  186. Truscott T. T., Techet A. H. A spin on cavity formation during water entry of hydrophobic and hydrophilic spheres [J]. Physics of Fluids, 2009, 21(12): 121703.

    MATH  Google Scholar 

  187. Jiang Y., Bai T., Gao Y. et al. Water entry of a constraint posture body under different entry angles and ventilation rates [J]. Ocean Engineering, 2018, 153: 53–59.

    Google Scholar 

  188. Lee M., Longoria R. G., Wilson D. E. Cavity dynamics in high-speed water entry [J]. Physics of Fluids, 1997, 9(3): 540–550.

    MathSciNet  MATH  Google Scholar 

  189. Paryshev E. V. Approximate mathematical models in high-speed hydrodynamics [J]. Journal of Engineering Mathematics, 2006, 55(1): 41–64.

    MathSciNet  MATH  Google Scholar 

  190. Wang J., Faltinsen O. M. Improved numerical solution of Dobrovol’skaya’s boundary integral equations on similarity flow for uniform symmetrical entry of wedges [J]. Applied Ocean Research, 2017, 66: 23–31.

    Google Scholar 

  191. Sun P., Zhang A. M., Marrone S. et al. An accurate and efficient SPH modeling of the water entry of circular cylinders [J]. Applied Ocean Research, 2018, 72: 60–75.

    Google Scholar 

  192. Wang Y., Wu X., Huang C. et al. Unsteady characteristics of cloud cavitating flow near the free surface around an axisymmetric projectile [J]. International Journal of Multiphase Flow, 2016, 85: 48–56.

    Google Scholar 

  193. Abelson H. I. Pressure measurements in the water-entry cavity [J]. Journal of Fluid Mechanics, 1970, 44: 129–144.

    Google Scholar 

  194. Wang J., Lugni C., Faltinsen O. M. Experimental and numerical investigation of a freefall wedge vertically entering the water surface [J]. Applied Ocean Research, 2015, 51: 181–203.

    Google Scholar 

  195. Chen C., Yuan X., Liu X. et al. Experimental and numerical study on the oblique water-entry impact of a cavitating vehicle with a disk cavitator [J]. International Journal of Naval Architecture and Ocean Engineering, 2018, https:doi.org/10.1016/j.ijnaoe.2018.09.002.

    Google Scholar 

  196. Aristoff J. M., Bush J. W. M. Water entry of small hydrophobic spheres [J]. Journal of Fluid Mechanics, 2009, 619: 45–78.

    MathSciNet  MATH  Google Scholar 

  197. Truscott T. T., Epps B. P., Techet A. H. Unsteady forces on spheres during free-surface water entry [J]. Journal of Fluid Mechanics, 2012, 704: 173–210.

    MATH  Google Scholar 

  198. Yan H., Liu Y., Kominiarczuk J. et al. Cavity dynamics in water entry at low Froude numbers [J]. Journal of Fluid Mechanics, 2009, 641: 441–461.

    MATH  Google Scholar 

  199. Truscott T. T. Cavity dynamics of water entry for spheres and ballistic projectiles [D]. Doctoral Thesis, Cambridge, MA, USA: Massachusetts Institute Technology, 2009.

    Google Scholar 

  200. Neaves M. D., Edwards J. R. All-speed time-accurate underwater projectile calculations using a preconditioning algorithm [J]. Journal of Fluids Engineering, 2006, 128(2): 284–296.

    Google Scholar 

  201. Sanders W. C., Winkel E. S., Dowling D. R. et al. Bubble friction drag reduction in a high-Reynolds-number flatplate turbulent boundary layer [J]. Journal of Fluid Mechanics, 2006. 552: 353–380.

    MATH  Google Scholar 

  202. Wu S. J., Ouyang K., Shiah S. W. Robust design of microbubble drag reduction in a channel flow using the Taguchi method [J]. Ocean Engineering, 2008, 35(8-9): 856–863.

    Google Scholar 

  203. Li C., Zhang A. M., Wang S. et al. Formation and coalescence of nanobubbles under controlled gas concentration and species [J]. AIP Advances, 2018, 8(1): 015104.

    Google Scholar 

  204. Schmidtke E., Nutzel B., Ludwig S. Risk mitigation for sea mammals–The use of air bubbles against shock waves [C]. Proceedings of the International Conference on Acoustics “NAG/DAGA 2009”, Rotterdam, The Netherlands, 2009.

  205. Storey B. D., Szeri A. J. Mixture segregation within sonoluminescence bubbles [J]. Journal of Fluid Mechanics, 1999, 396: 203–221.

    MATH  Google Scholar 

  206. Jamaluddin A. R., Ball G. J., Turangan C. K. et al. The collapse of single bubbles and approximation of the far-field acoustic emissions for cavitation induced by shock wave lithotripsy [J]. Journal of Fluid Mechanics, 2011, 677: 305–341.

    MathSciNet  MATH  Google Scholar 

  207. Liu Y. Q., Sugiyama K., Takagi S. On the interaction of two encapsulated bubbles in an ultrasound field [J]. Journal of Fluid Mechanics, 2016, 804: 58–89.

    MathSciNet  MATH  Google Scholar 

  208. Lindner J. R. Microbubbles in medical imaging: Current applications and future directions [J]. Nature Reviews Drug Discovery, 2004, 3(6): 527–532.

    Google Scholar 

  209. Onari H. Fisheries experiments of cultivated shells using micro-bubbles techniques [J]. Journal of Heat Transfer Society of Japan, 2001, 40(160): 2–7.

    Google Scholar 

  210. Shen Y., Longo M. L., Powell R. L. Stability and rheological behavior of concentrated monodisperse food emulsifier coated microbubble suspensions [J]. Journal of Colloid and Interface Science, 2008, 327(1): 204–210.

    Google Scholar 

  211. Park J. Application of microbubbles to hydroponics solution promotes lettuce growth [J]. Horttechnology, 2009, 19(1): 212–215.

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank Fu-ren Ming, Shuai Li, Xiao Huang for their great help on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A-Man Zhang  (张阿漫).

Additional information

Project supported by the National Key Research and Development Projects (Grand No. 2018YFC0308900), the National Natural Science Foundation of China (Grand No. 11672082).

Biography: Shi-Ping Wang (1983-), Male, Ph. D., Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SP., Zhang, AM., Liu, YL. et al. Bubble dynamics and its applications. J Hydrodyn 30, 975–991 (2018). https://doi.org/10.1007/s42241-018-0141-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-018-0141-3

Key words

Navigation