Skip to main content
Log in

A review of transient flow structure and unsteady mechanism of cavitating flow

  • Review Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The flow structure and the unsteady mechanism of the unsteady cavitating flow are reviewed in this paper. The flow patterns and structures in different cavitation regime, for the attached cavitation and the vortical cavitation, are shown with both the visualization and the quantitative information. The attached cavitating flow around the Clark-Y hydrofoil and the vortical cavitating flow around the Tulin hydrofoil are considered. In particular, the phenomena such as the large-scale vortex structure and the re-entrant flow associated with the cloud cavitation, and the cavitating vortex street’s forming and crumbling are described. The evolution of the cavitation structure in the transient sheet/cloud cavity forming, along with the cavity collapse induced by the re-entrant flow and the shock wave propagation are discussed. The perspective future research of higher fidelity simulations, and the accurate identifications of the cavitating vortex structure is commented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iga Y. Numerical investigation of thermodynamic effect on unsteady cavitation in cascade [C]. 7th International Symposium on Cavitation, Ann Arbor, USA, 2009.

  2. Wang Z., Huang B., Zhang M. et al. Experimental and numerical investigation of ventilated cavitating flow structures with special emphasis on vortex shedding dynamics [J]. International Journal of Multiphase Flow, 2018, 98: 79–95.

    Article  Google Scholar 

  3. Ando K., Colonius T., Brennen C. E. Shock propagation in polydisperse bubbly liquids [J]. International Journal of Systems Assurance Engineering and Management, 2009, 5(2): 638–638.

    Google Scholar 

  4. Song C. Numerical simulation of unsteady cavitating flow [C]. 4th International Symposium on Cavitation, Pasadena, CA, 2001.

  5. Chen T., Huang B., Wang G. et al. Numerical investigation of thermo-sensitive cavitating flows in a wide range of free-stream temperatures and velocities in fluoroketone [J]. International Journal of Heat and Mass Transfer, 2017, 112: 125–136.

    Article  Google Scholar 

  6. Ji B., Luo X., Peng X. et al. Numerical investigation of the ventilated cavitating flow around an under-water vehicle based on a three-component cavitation model [J]. Journal of Hydrodynamics, 2010, 22(6): 753–759.

    Article  Google Scholar 

  7. Wang Y., Xu C., Wu X. et al. Ventilated cloud cavitating flow around a blunt body close to the free surface [J]. Physical Review Fluids, 2017, 2(8): 084303.

    Article  Google Scholar 

  8. Wang Y., Chen G., Du T. et al. Shedding phenomenon of ventilated partial cavitation around an underwater projectile [J]. Chinese Physics Letters, 2012, 29(1): 014601.

    Article  Google Scholar 

  9. Xiang M., Cheung S., Tu J. et al. Numerical research on drag reduction by ventilated partial cavity based on two-fluid model [J]. Ocean Engineering, 2011, 38(17–18): 2023–2032.

    Article  Google Scholar 

  10. Liu T., Huang B., Wang G. et al. Experimental investigation of ventilated partial cavitating flows with special emphasis on flow pattern regime and unsteady shedding behavior around an axisymmetric body at different angles of attack [J]. Ocean Engineering, 2018, 147: 289–303.

    Article  Google Scholar 

  11. Du T., Wang Y., Liao L. et al. A numerical model for the evolution of internal structure of cavitation cloud [J]. Physics of Fluids, 2016, 28(7): 077103.

    Article  Google Scholar 

  12. Ma X., Huang B., Zhao X. et al. Comparisons of spark-charge bubble dynamics near the elastic and rigid boundaries [J]. Ultrasonics Sonochemistry, 2018, 43: 80–90.

    Article  Google Scholar 

  13. Mahamuni N. N., Adewuyi Y. G. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation [J]. Ultrasonics sonochemistry, 2010, 17(6): 990–1003.

    Article  Google Scholar 

  14. Ma X., Huang B., Wang G. et al. Numerical simulation of the red blood cell aggregation and deformation behaviors in ultrasonic field [J]. Ultrasonics Sonochemistry, 2017, 38: 604–613.

    Article  Google Scholar 

  15. Gohil P. P., Saini R. P. Effect of temperature, suction head and flow velocity on cavitation in a Francis turbine of small hydro power plant [J]. Energy, 2015, 93: 613–624.

    Article  Google Scholar 

  16. Wu Q., Wang C., Huang B. et al. Measurement and prediction of cavitating flow-induced vibrations [J]. Journal of Hydrodynamics, 2018, 30(6): 1064–1071.

    Article  Google Scholar 

  17. Wu Q., Huang B., Wang G. et al. Numerical modelling of unsteady cavitation and induced noise around a marine propeller [J]. Ocean Engineering, 2018, 160: 143–155.

    Article  Google Scholar 

  18. Wu Q., Wang Y., Wang G. Experimental investigation of cavitating flow-induced vibration of hydrofoils [J]. Ocean Engineering, 2017, 144: 50–60.

    Article  Google Scholar 

  19. Ji B., Luo X., Peng X. et al. Numerical analysis of cavitation evolution and excited pressure fluctuation around a propeller in non-uniform wake [J]. International Journal of Multiphase Flow, 2012, 43: 13–21.

    Article  Google Scholar 

  20. Ji B., Luo X., Wu Y. et al. Numerical investigation of unsteady cavitating turbulent flow around a full scale marine propeller [J]. Journal of Hydrodynamics, 2010, 22(5 Suppl.): 747–752.

    Google Scholar 

  21. Ji B., Luo X., Wu Y. et al. Numerical investigation of three-dimensional cavitation evolution and excited pressure fluctuations around a twisted hydrofoil [J]. Journal of Mechanical Science and Technology, 2014, 28(7): 2659–2668.

    Article  Google Scholar 

  22. Ji B., Wang J., Luo X. et al. Numerical simulation of cavitation surge and vortical flows in a diffuser with swirling flow [J]. Journal of Mechanical Science and Technology, 2016, 30(6): 2507–2514.

    Article  Google Scholar 

  23. Arndt R. E. A. Cavitation in fluid machinery and hydraulic structures [J]. Annual Review of Fluid Mechanics, 1981, 13(1): 273–326.

    Article  Google Scholar 

  24. Wang G., Senocak I., Shyy W. et al. Dynamics of attached turbulent cavitating flows [J]. Progress in Aerospace Sciences, 2001, 37(6): 551–581.

    Article  Google Scholar 

  25. Franc J. P., Michel J. M. Fundamentals of cavitation [M]. Berlin, Germany: Springer Science and Business Media, 2006.

    Google Scholar 

  26. Luo X., Ji B., Tsujimoto Y. A review of cavitation in hydraulic machinery [J]. Journal of Hydrodynamics, 2016, 28(3): 335–358.

    Article  Google Scholar 

  27. Arakeri V. H., Acosta A. J. Viscous effects in the inception of cavitation on axisymmetric bodies [J]. Journal of Fluids Engineering, 1973, 95(4): 519–527.

    Article  Google Scholar 

  28. Kueny J. L. Analysis of partial cavitation: Image processing and numerical prediction [J]. ASME-FED, 1991, 116: 55–60.

    Google Scholar 

  29. Maeda M. Laser holography of bubble population in cavitation cloud on a foil section [J]. ASME-FED, 1991, 116: 67–76.

    Google Scholar 

  30. Guennoun F., Farhat M., Bouziad Y. A. et al. Experimental investigation of a particular traveling bubble cavitation [C]. Fifth International Symposium on Cavitation, Osaka, Japan, 2003.

  31. Washio S., Fujiyoshi S., Takahashi S. Observation of cavitation inception in separating water flows through constricted channels [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2009, 223(9): 2071–2080.

    Google Scholar 

  32. Kubota A., Kato H., Yamaguchi H. et al. Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique [J]. Journal of Fluids Engineering, 1989, 111(2): 204–210.

    Article  Google Scholar 

  33. Liu S., Higuchi J., Ikohagi T. Experimental study of cavity flow behavior on a 2-D hydrofoil [J]. Bulletin of the JSME, 1999, 42(4): 641–648.

    Google Scholar 

  34. Ceccio S. L., Brennen C. E. Observations of the dynamics and acoustics of travelling bubble cavitation [J]. Journal of Fluid Mechanics, 1991, 233: 633–660.

    Article  Google Scholar 

  35. Gopalan S., Katz J. Flow structure and modeling issues in the closure region of attached cavitation [J]. Physics of Fluids, 2000, 12(4): 895–911.

    Article  MATH  Google Scholar 

  36. Dreyer M., Decaix J., Münch-Alligné C. et al. Mind the gap: A new insight into the tip leakage vortex using stereo-PIV [J]. Experiments in Fluids, 2014, 55(11): 1849–1849.

    Article  Google Scholar 

  37. Kamono H. Simulation of cavity flow by a ventilated cavitation on a foil section [C]. ASME Cavitation and Multiphase Flow Forum, Albuquerque, New Mexico, USA, 1993, 183–189.

  38. Miller N., Mitchie R. E. Measurement of local voidage in liquid/gas two phase flow systems using a unversal probe [J]. The Journal of the British Nuclear Energy Society, 1970, 9(2): 94–100.

    Google Scholar 

  39. Stutz B., Reboud J. L. Two-phase flow structure of sheet cavitation [J]. Physics of Fluids, 1997, 9(12): 3678–3686.

    Article  MathSciNet  MATH  Google Scholar 

  40. Stutz B., Reboud J. L. Experiments on unsteady cavitation [J]. Experiments in Fluids, 1997, 22(3): 191–198.

    Article  MATH  Google Scholar 

  41. Katz J. Cavitation phenomena within regions of flow separation [J]. Journal of Fluid Mechanics, 1984, 140: 397–436.

    Article  Google Scholar 

  42. Couty P. Physical investigation of cavitation vortex collapse [D]. Doctoral Theisis, Nantes, France: Ecole Centrale de nantes, 2002.

    Google Scholar 

  43. Liu T., Huang B., Wang G. et al. Experimental investigation of the flow pattern for ventilated partial cavitating flows with effect of Froude number and gas entrainment [J]. Ocean Engineering, 2017, 129: 343–351.

    Article  Google Scholar 

  44. Peng X. Observations and numerical simulations of unsteady partial cavitation on 2-D hydrofoil [C]. Sixth International Symposium on Cavitation, Ann Arbor, Michigan, USA, 2009.

  45. Yu P., Ceccio S. Diffusion induced bubble populations downstream of a partial cavity [J]. Journal of fluids Engineering, 1997, 119(4): 782–787.

    Article  Google Scholar 

  46. Laberteaux K. R., Ceccio S. L., Mastrocola V. J. et al. High speed digital imaging of cavitating vortices [J]. Experiments in Fluids, 1998, 24(5–6): 489–498.

    Article  Google Scholar 

  47. Arndt R. E. A., Wosnik M. Towards the control of cavitating flows [C]. The 12th International Symposium on Transport Phenomenon and Dynamics of Rotating Machinery, Honolulu, Hawaii, USA, 2008.

  48. Kawanami Y., Kato H., Yamauchi H. et al. Mechanism and control of cloud cavitation [J]. Journal of Fluids Engineering, 1997, 119(4): 788–794.

    Article  Google Scholar 

  49. Leroux J. B., Astolfi J. A., Billard J. Y. An experimental study of unsteady partial cavitation [J]. Journal of Fluids Engineering, 2004, 126(1): 94–101.

    Article  Google Scholar 

  50. Leroux J. B., Coutier-Delgosha O., Astolfi J. A. A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil [J]. Physics of Fluids, 2005, 17(5): 1–20.

    Article  MATH  Google Scholar 

  51. Chen G. H., Wang G. Y., Hu C. L. et al. Observations and measurements on unsteady cavitating flows using a simultaneous sampling approach [J]. Experiments in Fluids, 2015, 56(2): 1–11.

    Article  Google Scholar 

  52. Huang B., Ducoin A., Young Y. L. Physical and numerical investigation of cavitating flows around a pitching hydrofoil [J]. Physics of Fluids, 2013, 25(10): 102109.

    Article  Google Scholar 

  53. Huang B., Wu Q., Wang G. Numerical simulation of unsteady cavitating flows around a transient pitching hydrofoil [J]. Science China Technological Sciences, 2014, 57(1): 101–116.

    Article  Google Scholar 

  54. Wu X., Wang Y., Huang C. Effect of mesh resolution on large eddy simulation of cloud cavitating flow around a three dimensional twisted hydrofoil [J]. European Journal of Mechanics-B/Fluids, 2016, 55: 229–240.

    Article  MathSciNet  MATH  Google Scholar 

  55. Ausoni P., Farhat M., Escaler X. et al. Cavitation influence on von Kármán vortex shedding and induced hydrofoil vibrations [J]. Journal of Fluids Engineering, 2007, 129(8): 966–973.

    Article  Google Scholar 

  56. Wang G. Y., Wu Q., Huang B. Dynamics of cavitation-structure interaction [J]. Acta Mechanica Sinica, 2017, 33(4): 685–708.

    Article  Google Scholar 

  57. Zhang M., Wu Q., Huang B. et al. Lagrangian-based numerical investigation of aerodynamic performance of an oscillating foil [J]. Acta Mechanica Sinica, 2018, 34(5): 839–854.

    Article  Google Scholar 

  58. Zhang H., Wu Q., Li Y. et al. Numerical investigation of the deformation characteristics of a composite hydrofoil with different ply angles [J]. Ocean Engineering, 2018, 163: 348–357.

    Article  Google Scholar 

  59. Ji B., Luo X. W., Arndt R. E. A. et al. Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil [J]. International Journal of Multiphase Flow, 2015, 68: 121–134.

    Article  MathSciNet  Google Scholar 

  60. Long Y., Long X. P., Ji B. et al. Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil [J]. Journal of Hydrodynamics, 2017, 29(4): 610–620.

    Article  Google Scholar 

  61. Liu M., Tan L., Liu Y. et al. Large eddy simulation of cavitation vortex interaction and pressure fluctuation around hydrofoil ALE 15 [J]. Ocean Engineering, 2018, 163: 264–274.

    Article  Google Scholar 

  62. Knapp R. T., Daily J. W., Hammitt F. G. Cavitation [M]. New York, USA: McGraw-Hill, 1970.

    Google Scholar 

  63. Tseng C. C., Liu P. B. Dynamic behaviors of the turbulent cavitating flows based on the Eulerian and Lagrangian viewpoints [J]. International Journal of Heat and Mass Transfer, 2016, 102: 479–500.

    Article  Google Scholar 

  64. Wu Q., Huang B., Wang G. et al. The transient characteristics of cloud cavitating flow over a flexible hydrofoil [J]. International Journal of Multiphase Flow, 2018, 99: 162–173.

    Article  MathSciNet  Google Scholar 

  65. Huang B., Zhao Y., Wang G. Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows [J]. Computers and Fluids, 2014 92: 113–124.

    Article  MATH  Google Scholar 

  66. Dular M., Khlifa I., Fuzier S. et al. Scale effect on unsteady cloud cavitation [J]. Experiments in Fluids, 2012, 53(5): 1233–1250.

    Article  Google Scholar 

  67. Peng X., Ji B., Cao Y. et al. Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils [J]. International Journal of Multiphase Flow, 2016, 79: 10–22.

    Article  Google Scholar 

  68. Ji B., Luo X., Peng X. et al. Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil [J]. Journal of Hydrodynamics, 2013, 25(4): 510–519.

    Article  Google Scholar 

  69. Wu Q., Huang B., Wang G. et al. Experimental and numerical investigation of hydroelastic response of a flexible hydrofoil in cavitating flow [J]. International Journal of Multiphase Flow, 2015, 74: 19–33.

    Article  Google Scholar 

  70. Huang B., Young Y., Wang G. et al. Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation [J]. Journal of Fluids Engineering, 2013, 135(7): 071301.

    Article  Google Scholar 

  71. Huang B., Physical and numerical investigation of unsteady cavitating flows [D]. Doctoral Thesis, Beijing, China: Beijing Institute of Technology, 2012(in Chinese).

    Google Scholar 

  72. Brizzolara S. A new family of dual-mode super-cavitating hydrofoils [C]. Fourth International Symposium on Marine Propulsors (SMP), Austin, TX, USA, 2015.

  73. Yari E., Ghassemi H. Hydrodynamic analysis of the surface-piercing propeller in unsteady open water condition using boundary element method [J]. International Journal of Naval Architecture and Ocean Engineering, 2016, 8(1): 22–37.

    Article  Google Scholar 

  74. Alimirzazadeh S., Roshan S. Z., Seif M. S. Unsteady RANS simulation of a surface piercing propeller in oblique flow [J]. Applied Ocean Research, 2016, 56: 79–91.

    Article  Google Scholar 

  75. Zhang M., Chen H., Wu Q. et al. Experimental and numerical investigation of cavitating vortical patterns around a Tulin hydrofoil [J]. Ocean Engineering, 2019, 173: 298–307.

    Article  Google Scholar 

  76. Li X., Wang G., Zhang M. et al. Structures of supercavitating multiphase flows [J]. International Journal of Thermal Sciences, 2008, 47(10): 1263–1275.

    Article  Google Scholar 

  77. Shyy W., Wang G., Li X. et al. Multiphase dynamics of supercavitating flows around a hydrofoil [C]. CAV2006: Sixth International Symposium on Cavitation, Wageningen, The Netherlands, 2006.

  78. Zhang M., Wang G., Li X. An experimental study of cavitating turbulent flow structures around a hydrofoil [C]. The 9th Asian International Conference on Fluid Machinery, Jeju, Korea, 2007.

  79. Zhang M., Chen H., Wu Q. et al. Experimental and numerical investigation of cavitating vortical patterns around a Tulin hydrofoil [J]. Ocean Engineering, 2019, 173: 298–307.

    Article  Google Scholar 

  80. Li X. Study on the mechanism of supercavitating flow around a hydrofoil [D]. Doctoral Theisis, Beijing, China: Beijing Institute of Technology, 2008 (in Chinese).

    Google Scholar 

  81. Arndt R. E. A. Instability of partial cavitation: A numerical/experimental approach [C]. Twenty-Third Symposium on Naval Hydrodynamics, Val de Reuil, France, 2000.

  82. Leroux J. B., Astolfi J. A., Billard J. Y. An experimental study of unsteady partial cavitation [J]. Journal of Fluids Engineering, 2004, 126(1): 94–101.

    Article  Google Scholar 

  83. Wu Q. Physical and numerical investigation of cavitating flow-induced vibrations [D]. Doctoral Theisis, Beijing, China: Beijing Institute of Technology, 2016 (in Chinese).

    Google Scholar 

  84. Dular M., Bachert R., Stoffel B. Experimental and numerical investigation of swept leading edge influence on the developed cavitation [C]. CAV2006: Sixth International Symposium on Cavitation, Wageningen, The Netherland, 2006.

  85. Yang J., Zhou L., Wang Z. Numerical simulation of three-dimensional cavitation around a hydrofoil [J]. Journal of Fluids Engineering, 2011, 133(8): 081301.

    Article  Google Scholar 

  86. Franc J. P. Partial cavity instabilities and re-entrant jet [C]. Fourth International Symposium on Cavitation, Pasadena, California, USA, 2001.

  87. De Lange D. F., De Bruin G. J., van Wijngaarden L. On the mechanism of cloud cavitation-experiment and modelling [C]. The second international symposium on Cavitation proceedings, Tokyo, Japan, 1994.

  88. Foeth E. J. The structure of three-dimensional sheet cavitation [D]. Doctoral Theisis, Delft, The Netherland: Delft University of Technology, 2008.

    Google Scholar 

  89. Kuiper G. New developments around sheet and tip vortex cavitation on ships propellers [C]. Fourth International Symposium on Cavitation, Pasadena, California, USA, 2001.

  90. Wang G., Zhang B., Huang B. et al. Unsteady dynamics of cloud cavitating flows around a hydrofoil [C]. Proceedings of the 7th International Symposium on Cavitation, Ann Arbor, Michigan, USA, 2009.

  91. Huang B., Young Y. L., Wang G. Y. et al. Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation [J]. Journal of Fluids Engineering, 2013, 135(7): 071301.

    Article  Google Scholar 

  92. Callenaere M., Franc J. P., Michel J. M. et al. The cavitation instability induced by the development of a re-entrant jet [J]. Journal of Fluid Mechanics, 2001, 444: 223–256.

    Article  MATH  Google Scholar 

  93. Laberteaux K. R., Ceccio S. L. Partial cavity flows. Part 2. Cavities forming on test objects with spanwise variation [J]. Journal of Fluid Mechanics, 2001, 431: 43–63.

    Article  MATH  Google Scholar 

  94. Laberteaux K. R., Ceccio S. L. Partial cavity flows. Part1. Cavities forming on models without spanwise variation [J]. Journal of Fluid Mechanics, 2001, 431: 1–41.

    Article  MATH  Google Scholar 

  95. Huang B., Zhao Y., Wang G. Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows [J]. Computers and Fluids, 2014 92: 113–124.

    Article  MATH  Google Scholar 

  96. Kawanami Y., Kato H., Yamaguchi H. et al. Inner structure of cloud cavity on a foil section [J]. JSME International Journal Series B Fluids and Thermal Engineering, 2002, 45(3): 655–661.

    Article  Google Scholar 

  97. Wang C. C., Huang B., Wang G. Y. et al. Numerical simulation of transient turbulent cavitating flows with special emphasis on shock wave dynamics considering the water/vapor compressibility [J]. Journal of Hydrodynamics, 2018, 30(4): 573–591.

    Article  Google Scholar 

  98. Brennen C. E. Fundamentals of multiphase flow [M]. Cambridge. UK: Cambridge University Press, 2005.

    Book  MATH  Google Scholar 

  99. Wang C., Wu Q., Huang B. et al. Numerical investigation of cavitation vortex dynamics in unsteady cavitating flow with shock wave propagation [J]. Ocean Engineering, 2018, 156: 424–434.

    Article  Google Scholar 

  100. Saito Y., Sato K. High-speed deforming behavior of cavitation cloud and propagation of bubble collapse [C]. The 8th Asian Symposium on Visualization, Chiangmai, Thailand, 2005.

  101. Wang C., Huang B., Wang G. et al. Unsteady pressure fluctuation characteristics in the process of breakup and shedding of sheet/cloud cavitation [J]. International Journal of Heat and Mass Transfer, 2017, 114: 769–785.

    Article  Google Scholar 

  102. Ganesh H., Mäkiharju S. A., Ceccio S. A. Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities [J]. Journal of Fluid Mechanics, 2016, 802: 37–78.

    Article  MathSciNet  Google Scholar 

  103. Long Y., Long X., Ji B. et al. Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil [J]. Journal of Hydrodynamics, 2017, 29(4): 610–620.

    Article  Google Scholar 

  104. Long Y., Long X., Ji B. et al. Verification and validation of large eddy simulation of attached cavitating flow around a Clark-Y hydrofoil [J]. International Journal of Multiphase Flow, 2019, 115: 93–107.

    Article  MathSciNet  Google Scholar 

  105. Liu C., Gao Y. S., Dong X. R. et al. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems [J]. Journal of Hydrodynamics, 2019, 31(2): 205–223.

    Article  Google Scholar 

  106. Zhang Z., Song X. D., Ye S. R. et al. Application of deep learning method to Reynolds stress models of channel flow based on reduced-order modeling of DNS data [J]. Journal of Hydrodynamics, 2019, 31(1): 1–8.

    Article  Google Scholar 

  107. Park J., Seong W. Novel scaling law for estimating propeller tip vortex cavitation noise from model experiment [J]. Journal of Hydrodynamics, 2017, 29(6): 962–971.

    Article  Google Scholar 

  108. Ye J. M., Xiong Y., Fang L. I. et al. Numerical prediction of blade frequency noise of cavitating propeller [J]. Journal of Hydrodynamics, 2012, 24(3): 371–377.

    Article  Google Scholar 

  109. Wu Q., Huang B., Wang G. et al. Numerical modelling of unsteady cavitation and induced noise around a marine propeller [J]. Ocean Engineering, 2018, 160: 143–155.

    Article  Google Scholar 

Download references

Acknowledgments

Some of the experimental results in this paper are obtained in EPFL-LMH with the help of Prof. Farhat. This work was supported by the Open Foundation of Key Laboratory of Fluid and Power Machinery, Ministry of Education of China, Xihua University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-yu Wang.

Additional information

Project supported by the National Natural Science Foundation of China (Grant Nos. 51839001, 51679005 and 91752105), the Natural Science Foundation of Beijing (Grant No. 3172029).

Biography: Biao Huang (1985-), Male, Ph. D., Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, B., Qiu, Sc., Li, Xb. et al. A review of transient flow structure and unsteady mechanism of cavitating flow. J Hydrodyn 31, 429–444 (2019). https://doi.org/10.1007/s42241-019-0050-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-019-0050-0

Key words

Navigation