Skip to main content
Log in

Effect of Zr-deoxidation on microstructure and mechanical behavior of microalloyed heavy plates with low impurity content

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The significance of different deoxidation practises on the ductility and impact toughness of next generation of microalloyed heavy plates was elucidated to explore the best deoxidation practice in obtaining required mechanical properties, which was judged by the combined effects of composition, size and number density of inclusions on the ductility of the experimental high-strength low-alloy steel. The impurity contents, i.e., total O + N + S contents, of 82 × 10−6 (Al-killed) and 118 × 10−6 (Zr-killed) have been induced to characterize both the steels. Ductility was characterized using tensile and Charpy V-notch testing. The number, size and composition of the inclusions were characterized using a field emission scanning electron microscope with an energy dispersive spectrometer. In the Al-killed steel, the inclusion structure consisted of titanium nitrides, stringer calcium aluminates and elongated manganese sulfides, whereas in the Zr-killed steel, the inclusion structure consisted of mainly fine spherical oxide inclusions with sulphide shells. The impurity content did not have a significant effect on the number density of inclusions, as with higher and lower impurity content, the number of inclusions was 83.7 and 78.8 mm−2, respectively. However, the size distribution of the inclusions, especially the coarse inclusions with their longest length greater than 8 µm, differs much from each other. The number density of coarse inclusions differs from 0.8 to 1.1 mm−2 with processing, and in Al-killed steel, 55.5% of the coarse inclusions were titanium nitrides or manganese sulfides, whereas in Zr-killed steel, only 22.5% of the coarse inclusions were titanium nitrides and manganese sulfides. Coarse titanium nitrides were especially detrimental to the impact toughness. The number density of them should be below 0.33 mm−2 in order to guarantee the best possible toughness in the steel in question. The average crystallographic grain size detected by electron backscattered diffraction of Zr-killed steel (4.28 ± 2.70 μm) was smaller than that of Al-killed steel (6.00 ± 4.80 μm). As a result from the grain refinement and sulphide shape control, Zr-killed steel exhibited superior impact toughness (223 ± 70 J) at − 80 °C as compared with Al-killed steel (153 ± 68 J). Thus, Zr-killed steel was observed to provide good performance in terms of mechanical properties as compared with Al-killed steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Pomey, B. Trentini, in: Proceedings of the International Conference of Production and Application of Clean Steels, The Iron and Steel Institute, London, Balatonfured, Hungary, 1970, pp. 1–14.

  2. F.B. Pickering, Physical metallurgy and the design of steels, Applied Science Publishers, London, UK, 1978.

  3. A.D. Wilson, in: R. Rungta (Eds.), Proceedings of a symposium of inclusions and their influence on material behavior, ASM International, Chicago, USA, 1988, pp. 21–34.

  4. C. Hu, K. Wu, A. Trotsan, Y. Li, O. Isayev, O. Hress, I. Rodionova, Metallurgist 60 (2016) 888–895.

    Article  Google Scholar 

  5. T.Q. He, K.M. Wu, A. Trotsan, H.W. Yu, Y.Z. Xiong, Wear 303 (2013) 524–532.

    Article  Google Scholar 

  6. T. Gladman, The physical metallurgy of microalloyed steels, Maney Publishing, Leeds, UK, 1997.

    Google Scholar 

  7. A. Kaijalainen, P. Karjalainen, D. Porter, P. Suikkanen, J. Kömi, V. Kesti, T. Saarinen, in: Proceedings of the 8th International Conference on CLEAN STEEL, Vol. 14, OMBKE, Budapest, Hungary, 2012, pp. 16.

  8. J. Steninger, A. Melander, Scand. J. Metall. 11 (1982) 55–71.

    Google Scholar 

  9. W.V. Bielefeldt, A.C.F. Vilela, Steel Res. Int. 86 (2015) 375–385.

    Article  Google Scholar 

  10. Z. Yu, C. Liu, Metall. Mater. Trans. B 50 (2019) 772–781.

    Article  Google Scholar 

  11. J. Zhang, P.H. Feng, Y.C. Pan, W.S. Hwang, Y.H. Su, M.J. Lu, Metall. Mater. Trans. A 47 (2016) 5049–5057.

    Article  Google Scholar 

  12. M.K. Paek, K.H. Do, Y.B. Kang, I.H. Jung, J.J. Pak, Metall. Mater. Trans. B 47 (2016) 2837–2847.

    Article  Google Scholar 

  13. V. Dashevskii, A. Aleksandrov, A. Kanevskii, L. Leont’ev, Metall. Mater. Trans. B 47 (2016) 1839–1850.

  14. M. Li, H. Matsuura, F. Tsukihashi, Metall. Mater. Trans. B 48 (2017) 1915–1923.

    Article  Google Scholar 

  15. H.N. Lou, C. Wang, B.X. Wang, Z.D. Wang, R.D.K. Misra, ISIJ Int. 59 (2019) 312–318.

    Article  Google Scholar 

  16. R. Inoue, T. Ariyama, H. Suito, ISIJ Int. 48 (2008) 1175–1181.

    Article  Google Scholar 

  17. I. Barin, Thermochemical data of pure substances, 3rd ed., Wiley-VCH Verlag GmbH, Weinheim, Germany, 2008.

    Google Scholar 

  18. X. Zhuo, X. Wang, W. Wang, H. Lee. J. Univ. Sci. Technol. Beijing 14 (2007) 14–21.

    Article  Google Scholar 

  19. J.W. Lei, K.M. Wu, Y. Li, T.P. Hou, X. Xie, R.D.K. Misra, J. Iron Steel Res. Int. 26 (2019) 1117–1125.

    Article  Google Scholar 

  20. T.N. Baker, Mater. Sci. Technol. 31 (2015) 265–294.

    Article  Google Scholar 

  21. J. Lu, G. Cheng, B. Tan, J. Che, ISIJ Int. 58 (2018) 921–928.

    Article  Google Scholar 

  22. M. Shi, R. Kannan, J. Zhang, X. Yuan, L. Li, Metall. Mater. Trans. B 50 (2019) 2574–2585.

    Article  Google Scholar 

  23. C. Wang, Z.D. Wang, G.D. Wang, ISIJ Int. 56 (2016) 1800–1807.

    Article  Google Scholar 

  24. L.E.K. Holappa, A.S. Helle, J. Mater. Process. Technol. 53 (1995) 177–186.

    Article  Google Scholar 

  25. D. Liu, B. Cheng, M. Luo, ISIJ Int. 51 (2011) 603–611.

    Article  Google Scholar 

  26. H. Tervo, A. Kaijalainen, T. Pikkarainen, S. Mehtonen, D. Porter, Mater. Sci. Eng. A 697 (2017) 184–193.

    Article  Google Scholar 

  27. H. Tervo, Effect of inclusions on mechanical properties of steel, University of Oulu, Oulu, Finland, 2014.

    Google Scholar 

  28. E.B. Pretorius, H.G. Oltmann, T. Cash, Iron Steel Technol. 7 (2010) 31–44.

    Google Scholar 

  29. R.K. Goyal, A. Ghosh, Trans. Indian Inst. Met. 45 (1992) 303–314.

    Google Scholar 

  30. H. Preßlinger, M. Mayr, E. Tragl, C. Bernhard, Steel Res. Int. 77 (2006) 107–115.

    Article  Google Scholar 

  31. R.K. Ray, J.J. Jonas, Int. Mater. Rev. 35 (1990) 1–36.

    Article  Google Scholar 

  32. W. Yan, Y.Y. Shan, K. Yang, Metall. Mater. Trans. A 37 (2006) 2147–2158.

    Article  Google Scholar 

  33. D.P. Fairchild, D.G. Howden, W.A.T. Clark, Metall. Mater. Trans. A 31 (2000) 641–652.

    Article  Google Scholar 

  34. M. Hino, K. Ito, Thermodynamic data for steelmaking, Tohoku University Press, Sendai, Japan, 2010.

    Google Scholar 

  35. Y. Liu, G. Li, X. Wan, X. Zhang, Y. Shen, K. Wu, Ironmak. Steelmak. 46 (2019) 113–123.

    Article  Google Scholar 

  36. K. He, T.N. Baker, Mater. Sci. Eng. A 215 (1996) 57–66.

    Article  Google Scholar 

  37. A.M. Guo, S.R. Li, J. Guo, P.H. Li, Q.F. Ding, K.M. Wu, X.L. He, Mater. Charact. 59 (2008) 134–139.

    Article  Google Scholar 

  38. K. Song, M. Aindow, Mater. Sci. Eng. A 479 (2008) 365–372.

    Article  Google Scholar 

  39. J. Moon, C. Lee, Mater. Charact. 73 (2012) 31–36.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the National Natural Science Foundation of China (U1532268 and U20A20279), Wuhan Science and Technology Program (Grant No. 2019010701011382) and the 111 Project, Higher Education Discipline Innovation Project (Grant No. 18018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai-ming Wu or R. D. K. Misra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Cy., Dong, Hy., Wu, Km. et al. Effect of Zr-deoxidation on microstructure and mechanical behavior of microalloyed heavy plates with low impurity content. J. Iron Steel Res. Int. 28, 190–200 (2021). https://doi.org/10.1007/s42243-020-00525-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00525-7

Keywords

Navigation