Skip to main content

Advertisement

Log in

Radiation effects on the performance of flexible perovskite solar cells for space applications

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Solar cells for space applications are required to be tolerant to harsh environmental conditions. Especially, tolerance against radiation and charged particles is mandatory. Here we study the effect of low-energy (<< 1 MeV) proton radiation to evaluate the radiation tolerance of flexible perovskite solar cells (PSCs). Low-energy protons are more likely to be stopped in the shallower regions of solar cells, thereby causing greater performance degradation than high-energy protons. Flexible PSCs with layer sequence PET/ITO/PEDOT:PSS/perovskite/PCBM/BCP/metal were fabricated and were irradiated with 100 keV protons (fluence from ~ 3 × 1010 to ~ 3 × 1012 protons/cm2, equating several years in space). Flexible PSCs exhibited a good radiation tolerance and did not show color center formation, revealing their outstanding resistance against low-energy proton radiation. This can be credited to the combined effect of intrinsically large carrier diffusion length exceeding the thin absorber film thickness and the defect tolerance of perovskite crystals.

TOC graphics

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.J. Loferski, Rev. Phys. Appl. 1, 221 (1966)

    Article  CAS  Google Scholar 

  2. T.V. Torchynska, G. Polupan, S. Sc, Superf. y Vacío17, 21 (2004)

  3. D.A. Lamb, C.I. Underwood, V. Barrioz, R. Gwilliam, J. Hall, M.A. Baker, S.J.C. Irvine, Prog. Photovolt. Res. Appl., 1 (2017)

  4. S.G.F. Bailey, J. Dennis, Prog. Photovoltaics Res. Appl. 6, 1 (1998)

    Article  CAS  Google Scholar 

  5. R. Wang, Z. Guo, G. Wang, Sol. Energy Mater. Sol. Cells 90, 1052 (2006)

    Article  CAS  Google Scholar 

  6. R. Wang, Z. Feng, Y. Liu, M. Lu, Plasma Sci. Technol. 14, 647 (2012)

    Article  CAS  Google Scholar 

  7. J. Kuendig, M. Goetz, A. Shah, L. Gerlach, E. Fernandez, Sol. Energy Mater. Sol. Cells 79, 425 (2003)

    Article  CAS  Google Scholar 

  8. A.D. Verkerk, J.K. Rath, R.E.I. Schropp, Energy Procedia 2, 221 (2010)

    Article  CAS  Google Scholar 

  9. Y. Morita, T. Ohshima, I. Nashiyama, Y. Yamamoto, O. Kawasaki, S. Matsuda, J. Appl. Phys. 81, 6491 (1997)

    Article  CAS  Google Scholar 

  10. T. Sumita, M. Imaizumi, S. Matsuda, T. Ohshima, A. Ohi, H. Itoh, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 448–451 (2003)

  11. M. Imaizumi, T. Nakamura, T. Takamoto, T. Ohshima, M. Tajima, Prog. Photovolt. Res. Appl. 25, 161 (2017)

    Article  CAS  Google Scholar 

  12. S. Krishnan, G. Sanjeev, M. Pattabi, X. Mathew, Sol. Energy Mater. Sol. Cells 93, 2 (2009)

    Article  CAS  Google Scholar 

  13. F. Lang, N.H. Nickel, J. Bundesmann, S. Seidel, A. Denker, S. Albrecht, V.V. Brus, J. Rappich, B. Rech, G. Landi, H.C. Neitzert, Adv. Mater. 28, 8726 (2016)

    Article  CAS  Google Scholar 

  14. V.V. Brus, F. Lang, J. Bundesmann, S. Seidel, A. Denker, B. Rech, G. Landi, H.C. Neitzert, J. Rappich, N.H. Nickel, Adv. Electron. Mater. 3, 1600438 (2017)

    Article  Google Scholar 

  15. N. Chandrasekaran, T. Soga, Y. Inuzuka, H. Taguchi, M. Imaizumi, T. Ohshima, T. Jimbo, Jpn. J. Appl. Phys. 43, 10 (2004)

    Article  Google Scholar 

  16. R. Wang, J. Yang, Q. Fan, Y. Xu, X. Sun, Pan Tao Ti Hsueh Pao/Chinese J. Semicond. 26, 1558 (2005)

    CAS  Google Scholar 

  17. S. Sato, K. Beernink, T. Ohshima, in Proc. 10th Int. Work. Radiat. Eff. Semicond. Devices Sp. Appl., 2012, pp. 44–47

  18. S.I. Maximenko, M.P. Lumb, R. Hoheisel, M. Gonzalez, D.A. Scheiman, S.R. Messenger, T.N.D. Tibbits, M. Imaizumi, T. Ohshima, S.I. Sato, P.P. Jenkins, R.J. Walters, J. Appl. Phys. 118, 245705 (2015)

    Article  Google Scholar 

  19. M. Paulescu, D. Vizman, M. Lascu, R. Negrila, M. Stef, in AIP Conf. Proc., 2017, p. 1796

  20. M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.H. Ho-Baillie, Prog. Photovolt. Res. Appl. 25, 668 (2017)

    Article  Google Scholar 

  21. National Renewable Energy Laboratory (NREL), Best Research-Cell Efficiencies, 2019, https://www.nrel.gov/pv/cell-efficiency.html

  22. C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, Adv. Mater. 26, 1584 (2014)

    Article  CAS  Google Scholar 

  23. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Science (80-. )342, 341 (2013)

    Article  CAS  Google Scholar 

  24. J.B. You, Z.R. Hong, Y. Yang, Q. Chen, M. Cai, T.B. Song, C.C. Chen, S.R. Lu, Y.S. Liu, H.P. Zhou, Y. Yang, ACS Nano 8, 1674 (2014)

    Article  CAS  Google Scholar 

  25. D. Zhao, M. Sexton, H.‐Y. Park, G. Baure, J.C. Nino, F. So, Adv. Energy Mater5, 1401855 (2014)

  26. T.M. Schmidt, T.T. Larsen‐Olsen, J.E. Carlé, D. Angmo, F.C. Krebs, Adv. Energy Mater.5, 1500569 (2015)

  27. Y. Zhang, Z. Wu, P. Li, L.K. Ono, Y. Qi, J. Zhou, H. Shen, C. Surya, Z. Zheng, Adv. Energy Mater.8, 1701569 (2017)

  28. H. Zhang, H. Wang, H. Zhu, C.‐C. Chueh, W. Chen, S. Yang, A.K.‐Y. Jen, Adv. Energy Mater0, 1702762 (2018)

  29. Z. Yang, C.‐C. Chueh, F. Zuo, J.H. Kim, P.‐W. Liang, A.K.‐Y. Jen,Adv. Energy Mater.2015, 5, 1500328

  30. J. Lee, J. Kim, C.‐L. Lee, G. Kim, T. K. Kim, H. Back, S. Jung, K. Yu, S. Hong, S. Lee, S. Kim, S. Jeong, H. Kang, K. Lee, Adv. Energy Mater.7, 1700226 (2017)

  31. M. Kaltenbrunner, G. Adam, E.D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D.H. Apaydin, H. Groiss, M.C. Scharber, M.S. White, N.S. Sariciftci, S. Bauer, Nat. Mater. 14, 1032 (2015)

    Article  CAS  Google Scholar 

  32. J. Jean, A. Wang, V. Bulović, Org. Electron. physics, Mater. Appl 31, 120 (2016)

    CAS  Google Scholar 

  33. I. Cardinaletti, T. Vangerven, S. Nagels, R. Cornelissen, D. Schreurs, J. Hruby, J. Vodnik, D. Devisscher, J. Kesters, J. D’Haen, A. Franquet, V. Spampinato, T. Conard, W. Maes, W. Deferme, J.V. Manca, Sol. Energy Mater. Sol. Cells 182, 121–127 (2018)

    Article  CAS  Google Scholar 

  34. J. Huang, M. D. Kelzenberg, P. Espinet-González, C. Mann, D. Walker, A. Naqavi, N. Vaidya, E. Warmann, H. A. Atwater, in 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), 2017, pp. 1248–1252

  35. G. Rybicki, I. Weinberg, D. Scheiman, C. Vargas-Aburto, R. Uribe, Prog. Photovolt. Res. Appl. 4, 101 (1996)

    Article  CAS  Google Scholar 

  36. S. Kanaya, G.M. Kim, M. Ikegami, T. Miyasaka, K. Suzuki, Y. Miyazawa, H. Toyota, K. Osonoe, T. Yamamoto, K. Hirose, Proton Irradiation Tolerance of High-Efficiency Perovskite Absorbers for Space Applications. The Journal of Physical Chemistry Letters 10, 6990–6995 (2019)

    Article  CAS  Google Scholar 

  37. J. Barbé, D. Hughes, Z. Wei, A. Pockett, H.K.H. Lee, K.C. Heasman, M.J. Carnie, T.M. Watson, W.C. Tsoi, Solar RRL 3, 1900219 (2019)

    Article  Google Scholar 

  38. M. Saito, F. Nishiyama, K. Kobayashi, S. Nagata, K. Takahiro, Nucl. Instruments Methods Phys. Res. Sect. B 268, 2918 (2010)

  39. Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Nat. Commun., 5 (2014). https://doi.org/10.1038/ncomms6784

  40. F. Di Giacomo, A. Fakharuddin, R. Jose, T.M. Brown, Energy Environ. Sci. 9, 3007 (2016)

    Article  Google Scholar 

  41. C. Wang, C. Xiao, Y. Yu, D. Zhao, R.A. Awni, C.R. Grice, K. Ghimire, I. Constantinou, W. Liao, A. J. Cimaroli, P. Liu, J. Chen, N.J. Podraza, C.‐S. Jiang, M.M. Al‐Jassim, X. Zhao, Y. Yan, Adv. Energy Mater7, 1700414 (2017)

  42. T. Liu, K. Chen, Q. Hu, R. Zhu, Q. Gong, Adv. Energy Mater.6, 1600457 (2016)

  43. W. Yan, S. Ye, Y. Li, W. Sun, H. Rao, Z. Liu, Z. Bian, C. Huang, Adv. Energy Mater.6, 1600474 (2016)

  44. K.L. Gardner, J.G. Tait, T. Merckx, W. Qiu, U.W. Paetzold, L. Kootstra, M. Jaysankar, R. Gehlhaar, D. Cheyns, P. Heremans, J. Poortmans, Adv. Energy Mater., 6 (2016). https://doi.org/10.1002/aenm.201600386

  45. J. Ziegler, “http://www.srim.org/,” n.d.

  46. C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Inorg. Chem. 52, 9019 (2013)

    Article  CAS  Google Scholar 

  47. F. Machui, S. Rathgeber, N. Li, T. Ameri, C.J. Brabec, J. Mater. Chem. 22, 15570 (2012)

    Article  CAS  Google Scholar 

  48. A. Elschner, Sol. Energy Mater. Sol. Cells 95, 1333 (2011)

    Article  CAS  Google Scholar 

  49. Y. Miyazawa, M. Ikegami, H.-W. Chen, T. Ohshima, M. Imaizumi, K. Hirose, T. Miyasaka, iScience2, 148 (2018)

    Article  CAS  Google Scholar 

  50. T. Sumita, M. Imaizumi, S. Matsuda, T. Ohshima, A. Ohi, T. Kamiya, 3rd World Conf. onPhotovoltaic Energy Conversion, 2003. Proc, vol 1 (2003), p. 689

  51. Y. Miyazawa, M. Ikegami, T. Miyasaka, T. Ohshima, M. Imaizumi, K. Hirose, IEEE 42nd Photovolt. Spec. Conf. 2015, 1 (2015)

    Google Scholar 

  52. H.C. Neitzert, P. Spinillo, S. Bellone, G.D. Licciardi, M. Tucci, F. Roca, L. Gialanella, M. Romano, Sol. Energy Mater. Sol. Cells 83, 435 (2004)

    Article  CAS  Google Scholar 

  53. S. Kawakita, M. Imaizumi, M. Yamaguchi, K. Kushiya, T. Ohshima, H. Itoh, S. Matsuda, Japanese J. Appl. Physics, Part 2 Lett41, L797 (2002)

    Article  CAS  Google Scholar 

  54. R. A. Knief, 1981 Nuclear energy technology. Theory and practice of commercial nuclear power. United States: Hemisphere Publishing Corporation

  55. F. Bebensee, J. Zhu, J.H. Baricuatro, J.A. Farmer, Y. Bai, H.-P. Steinrück, C.T. Campbell, J.M. Gottfried, Langmuir 26, 9632 (2010)

    Article  CAS  Google Scholar 

  56. R.A. Street, J.E. Northrup, B.S. Krusor, Phys. Rev. B - Condens. Matter Mater. Phys 85, 1 (2012)

    Article  Google Scholar 

  57. W. Tress, N. Marinova, T. Moehl, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, Energy Environ. Sci. 8, 995 (2015)

    Article  CAS  Google Scholar 

  58. S. Van Reenen, M. Kemerink, H.J. Snaith, J. Phys. Chem. Lett. 6, 3808 (2015)

    Article  Google Scholar 

  59. M.F. Bartusiak, J. Becher, Appl. Opt. 18, 3342 (1979)

    Article  CAS  Google Scholar 

  60. A.I. Gusarov, D. Doyle, A. Hermanne, F. Berghmans, M. Fruit, G. Ulbrich, M. Blondel, Appl. Opt. 41, 678 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Wroclaw Technology Park for their support.

Funding

Project co-financed from European Regional Development Fund within the Smart Growth Operational Program under Priority I: Support for conducting R&D works by enterprises, Submeasure 1.1.1, “Fast track” SMEs. The program implementing agency is the National Centre for Research and Development (grant agreement no. POIR.01.01.01-00-0090/15-00).

Author information

Authors and Affiliations

Authors

Contributions

Olga Malinkiewicz and Mitsuru Imaizumi developed the concept and all authors contributed to the experimental work as well as writing of this manuscript.

Corresponding author

Correspondence to Olga Malinkiewicz.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 266 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malinkiewicz, O., Imaizumi, M., Sapkota, S.B. et al. Radiation effects on the performance of flexible perovskite solar cells for space applications. emergent mater. 3, 9–14 (2020). https://doi.org/10.1007/s42247-020-00071-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-020-00071-8

Navigation