Skip to main content
Log in

Structural, mechanical, magnetic, electronic, and thermal investigations of Ag2YB (Y = Nd, Sm, Gd) full-Heusler alloys

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

A series of full-Heusler based on rare earth Ag2YB (Y = Nd, Sm, Gd) are studied by linearized augmented plane waves with total potential (FP-LAPW) method. We have investigated the structural and elastic properties with generalized gradient approximation (GGA) using Perdew–Burke–Ernzehrof parameterization for electron exchange and correlation. We have found that our three compounds are stable in AlCu2Mn-type structure (FM) states that are ductile and anisotropic at equilibrium state. The lattice parameters, elastic constants, and their associated parameters are compared with other available experimental and theoretical results. The electronic and magnetic properties are studied with GGA and GGA + U approximations. Based on the quasi-harmonic Debye model, we have studied the variation of heat capacity and coefficient of thermal expansion as a function of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.A. Khandy, I. Islam, D.C. Gupta, A. Laref, Full Heusler alloys (Co2TaSi and Co2TaGe) as potential spintronic materials with tunable band profiles. J. Solid State Chem. 270(2019), 173–179 (2018). https://doi.org/10.1016/j.jssc.2018.11.011

    Article  CAS  Google Scholar 

  2. F. Semari, F. Dahmane, N. Baki, Y. Al-Douri, S. Akbudak, G. Uğur, Ş Uğur, A. Bouhemadou, R. Khenata, C.H. Voon, First-principle calculations of structural, electronic and magnetic investigations of Mn 2 RuGe 1–x Sn x quaternary Heusler alloys. Chin. J. Phys. 56(2), 567–573 (2018). https://doi.org/10.1016/j.cjph.2018.01.015

    Article  CAS  Google Scholar 

  3. O. Amrich, Mohammed El Amine, Baltach H. Monir, S. Bin Omran, Xiaotian Wang, Y. AlDouri, A. Bouhemadou, R. Khenata, Half-metallic ferrimagnetic characteristics of Co2YZ (Z = P, As, Sb, and Bi) new full-Heusler alloys: A DFT study. J. Supercond. Nov. Magn. 31(1), 241–250 (2017). https://doi.org/10.1007/s10948-017-4206-2

    Article  CAS  Google Scholar 

  4. P.K. Kamlesh, R. Gautam, S. Kumari, A.S. Verma, Investigation of inherent properties of XScZ (X = Li, Na, K; Z = C, Si, Ge) half-Heusler compounds: Appropriate for photovoltaic and thermoelectric applications. Phys. B: Condens. Matter 412536(2020). https://doi.org/10.1016/j.physb.2020.412536

  5. A. Bhardwaj, K.S. Jat, V.V Khovalyo. Sagar, S. Patnaik, Reduction in thermal conductivity of n-type ZrNiPb- based half–Heusler compounds via compositional engineering approach. J. Phys. Chem. Ref. 2115, 030584 (2019). https://doi.org/10.1063/1.5113423

  6. T. Zerrouki, H. Rached, D. Rached, M. Caid, O. Cheref, Mohamed Rabah First-principles calculations to investigate structural stabilities, mechanical and optoelectronic properties of NbCoSn and NbFeSb half-Heusler compounds. Int. J. Quantum Chem. 121, e26582 (2021). https://doi.org/10.1002/qua.26582

    Article  CAS  Google Scholar 

  7. S.A. Khandy, D.C. Gupta, DFT investigations on mechanical stability, electronic structure and magnetism in Co2TaZ (Z = Al, Ga, In) heusler alloys. Semicond. Sci. Technol. 32, 125019 (2017). https://doi.org/10.1088/1361-6641/aa9785

    Article  CAS  Google Scholar 

  8. B. Fadila, M. Ameri, D. Bensaid, M. Noureddine, I. Ameri, S. Mesbah, Y. Al-Douri, Structural, magnetic, electronic and mechanical properties of full-Heusler alloys Co2YAl (Y = Fe, Ti): First principles calculations with different exchange-correlation potentials. J. Magn. Magn. Mater. 448, 208–220 (2018). https://doi.org/10.1016/j.jmmm.2017.06.048

    Article  CAS  Google Scholar 

  9. M. Ayad, F. Belkharroubi, F.Z. Boufadi, M. Khorsi, M.K. Zoubir, M. Ameri, D. Bensaid, First-principles calculations to investigate magnetic and thermodynamic properties of new multifunctional full-Heusler alloy Co2TaGa. Indian J. Phys. 94, 767–777 (2019). https://doi.org/10.1007/s12648-019-01518-3

    Article  CAS  Google Scholar 

  10. Ali H. SadiaTabassam, G Murtaza Reshak, S. Muhammad, A. Laref, Masood Yousaf, Am Mustafa Al. Bakri, J. Bila, Co2YZ (Y= Cr, Nb, Ta, V and Z= Al, Ga) Heusler alloys under the effect of pressure and strain. J. Mol. Graph. Model. 104, 107841 (2017). https://doi.org/10.1016/j.jmgm.2021.107841

    Article  CAS  Google Scholar 

  11. F. Belkharroubi, F. Khelfaoui, K. Amara, N. Marbouh, M. Ameri, Abderrahmane Y. Si, Robust half metallicity state with the hydrostatic and tetragonal distortion for a new quaternary HeuslerZrTiRhGa: FP-LAPW calculations. Phys. B: Phys. Condens. Matter 557, 56–62 (2019). https://doi.org/10.1016/j.pyhsb.2018.12.037

    Article  CAS  Google Scholar 

  12. A. Maizia, F. Belkharroubi, M. Bourdim, F. Khelfaoui, S. Azzi, K. Amara, First-principles study of a half-metallic ferrimagnetic new full-Heusler Mn2OsGe alloy. SPIN 10, 2050026 (2020). https://doi.org/10.1142/S2010324720500265

    Article  CAS  Google Scholar 

  13. L. Boumia, F. Dahmane, B. Doumi, D.P. Rai, S.A. Khandy, H. Khachai, R. Khenata, Structural, electronic and magnetic properties of new full Heusler alloys Rh2CrZ (Z=Al, Ga, In): First-principles calculations. Chin. J. Phys. 59, 281–290 (2019). https://doi.org/10.1016/j.cjph.2019.04.002

    Article  CAS  Google Scholar 

  14. M.K. Hussain, O.T. Hassan, A.M. Algubili, Investigations of the electronic and magnetic structures of Zr2NiZ (Z = Ga, In, B) Heusler compounds: First principles study. J. Electron. Mater. 47, 6221–6228 (2018). https://doi.org/10.1007/s11664-018-6512-2

    Article  CAS  Google Scholar 

  15. M. Belkhouane, S. Amari, A. Yakoubi, A. Tadjer, S. Méçabih, G. Murtaza, R. Bin Omran, R. Khenata, First-principles study of the electronic and magnetic properties of Fe2MnAl, Fe2MnSi and Fe2MnSi0.5Al0.5. J. Magn. Magn. Mater. 377, 211–214 (2015). https://doi.org/10.1016/j.jmmm.2014.10.094

    Article  CAS  Google Scholar 

  16. R.M. Galera, J. Pierre, E. Siaud, A.P. Murani, Magnetic and electrical properties of heusler alloys with rare earths: RInAg2. J. Less Common Metals 97, 151–161 (1984). https://doi.org/10.1016/0022-5088(84)90019-5

    Article  CAS  Google Scholar 

  17. M.J. Besnus, J.P. Kappler, A. Meyer, J. Sereni, E. Siaud, R. Lahiouel, J. Pierre, Crystallographic and magnetic properties of REInAu2 intermetallics. Physica B+C 130, 240–242 (1985). https://doi.org/10.1016/0378-4363(85)90230-X

    Article  CAS  Google Scholar 

  18. H.R. Pleger, E. Brück, E. Braun, F. Oster, A. Freimuth, B. Politt, D. Wohllebeben, Specific heat, magnetic susceptibility and transport properties of polycristalline CelnAu and CelnAu2. Anomalous Rare Earths Actinides , 107–110 (1987). https://doi.org/10.1016/B978-1-4832-2948-5.50036-8

  19. M.J. Besnus, J.P. Kappler, M.F. Ravet, A. Meyer, R. Lahiouel, J. Pierre, J. Sereni, Structural and magnetic properties of the ternary rare earth (RE) compound series REInAu2 (RE = La to Lu, Y). J. Less Common Metals 120, 101–112 (1986). https://doi.org/10.1016/0022-5088(86)90632-6

    Article  CAS  Google Scholar 

  20. K. Alami-Yadri, H. Wilhelm, D. Jaccard, Electrical resistivity of YbInAu2 and YbCuAl up to 8GPa. Solid State Commun. 108, 279–283 (1998). https://doi.org/10.1016/S0038-1098(98)00371-8

    Article  CAS  Google Scholar 

  21. M. Kurisu, A. Fuse, T. Nobata, G. Nakamoto, Structural and magnetic properties of RInAu2 (R=La, Ce, Pr and Nd) at high pressure. Phys. B: Condens. Matter. 281–282, 147–149 (2000). https://doi.org/10.1016/S0921-4526(99)01083-2

    Article  Google Scholar 

  22. S. Berri, D. Maouche, F. Zerarga, Y. Medkour, Ab initio study of the structural, electronic, elastic and magnetic properties of Cu2GdIn, Ag2GdIn and Au2GdIn. Phys. B Condens. Matter. 407, 3328–3334 (2012). https://doi.org/10.1016/j.physb.2012.04.012

    Article  CAS  Google Scholar 

  23. F. Khelfaoui, M. Ameri, D. Bensaid, I. Ameri, Y. Al-Douri, Structural, elastic, thermodynamic, electronic, and magnetic investigations of full-Heusler compound Ag2CeAl: FP-LAPW method. J. Supercond. Nov. Magn. 31, 3183–3192 (2018). https://doi.org/10.1007/s10948-017-4530-6

    Article  CAS  Google Scholar 

  24. P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399–415 (1990). https://doi.org/10.1016/0010-4655(90)90187-6

    Article  CAS  Google Scholar 

  25. Blaha P, Schwarz K , Medsen GKH , Kvasnicka D, Luitz J, WIEN2k: An augmented plane wave local orbitals program for calculating crystal properties, Techn University at Wien Austria (2001). http://www.wien2k.at

  26. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  27. H. Saib, S. Dergal, H. Rached, M. Dergal, Spin gapless semiconductor behavior in d-d half-Heusler CrSbSr : Potential candidate for spintronic application. J. SPIN (2020). https://doi.org/10.1142/S2010324720500253

  28. O. Ismail, R. Habib, A.-R. Ahmed, R. Abderrahmane, R. Djamel, Study of the structural, mechanical and thermodynamic properties of the new MAX phase compounds (Zr1-xTix)3AlC2. Comput. Condens. Matter 23, e00468 (2020). https://doi.org/10.1016/j.cocom.2020.e00468

    Article  Google Scholar 

  29. H. Rached, S. Bendaoudia, D. Rached, Investigation of Iron-based double perovskite oxides on the magnetic phase stability, mechanical, electronic and optical properties via first-principles calculation. Mater. Chem. Phys. 193, 453–469 (2017). https://doi.org/10.1016/j.matchemphys.2017.03.006

    Article  CAS  Google Scholar 

  30. M.H. Elahmar, H. Rached, D. Rached, S. Benalia, R. Khenata, Z.E. Biskri, S. Bin Omran, Structural stability, electronic structure and magnetic properties of the new hypothetical half-metallic ferromagnetic full-Heusler alloy CoNiMnSi. Mater. Sci.-Pol. 34, 85–93 (2016). https://doi.org/10.1515/msp-2016-0011

    Article  CAS  Google Scholar 

  31. H. Rached, M.H. Elahmar, D. Rached, R. Khenata, G. Murtaza, S. Bin Omran, W.K. Ahmed, Structural, mechanical, electronic and magnetic properties of a new series of quaternary Heusler alloys CoFeMnZ (Z=Si, As, Sb): A first-principle study. J. Magn. Magn. Mater. 393, 65–174 (2015). https://doi.org/10.1016/j.jmmm.2015.05.019

    Article  CAS  Google Scholar 

  32. S. Galehgirian, F. Ahmadian, First principles study on half-metallic properties of Heusler compounds Ti2VZ (Z=Al, Ga, and In). Solid State Commun. 202, 52–57 (2015). https://doi.org/10.1016/j.ssc.2014.10.017

    Article  CAS  Google Scholar 

  33. M.K. Hussain, G.Y. Gao, K.-L. Yao, Half-metallic properties in the new Ti2NiB Heusler alloy. J. Supercond. Nov. Magn. 28, 3285–3291 (2015). https://doi.org/10.1007/s10948-015-3149-8

    Article  CAS  Google Scholar 

  34. M.K. Hussain, G.Y. Gao, K.–L. Yao, Half-metallic properties of the new Ti2YPb(Y = Co, Fe) Heusler alloys. Int. J. Mod. Phys. B 29, 1550175–1 (2015). https://doi.org/10.1142/S0217979215501751

    Article  CAS  Google Scholar 

  35. A. Reshak, Spin-polarized second harmonic generation from the antiferromagnetic CaCoSO single crystal. Sci. Rep. 7, 46415 (2017). https://doi.org/10.1038/srep46415

    Article  CAS  Google Scholar 

  36. A.H. Reshak, Abinitio study of TaON, an active photocatalyst under visible light irradiation. J. Phys. Chem. Chem. Phys. 16, 10558–10565 (2014). https://doi.org/10.1039/c4cp00285g

    Article  CAS  Google Scholar 

  37. G.E. Davydyuk, O.Y. Khyzhun, A.H. Reshak, H. Kamarudin, G.L. Myronchuk, S.P. Danylchuk, A.O. Fedorchuk, L.V. Piskach, Yu. MozolyukM, O.V. Parasyuk, Photoelectrical properties and the electronic structure of Tl1−xIn1−xSnxSe2 (x = 0, 0.1, 0.2, 0.25) single crystalline alloys. J. Phys. Chem. Chem. Phys. 15, 6965–6972 (2013). https://doi.org/10.1039/C3CP50836F

    Article  CAS  Google Scholar 

  38. J.P. Perdew, Burke Kieron, Ernzerhof Matthias, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLtt.77.3865

    Article  CAS  Google Scholar 

  39. A. Akriche, H. Bouafia, S. Hiadsi, B. Abidri, B. Sahli, M. Elchikh, B. Djebour, First-principles study of mechanical, exchange interactions and the robustness in Co2MnSi full Heusler compounds. J. Magn. Magn. Mater. 422, 13–19 (2017). https://doi.org/10.1016/j.jmmm.2016.08.059

    Article  CAS  Google Scholar 

  40. D.P. Rai, A. Shankar, Ghimire M P. Sandeep, R.K. Thapa, A comparative study of a Heusler alloy Co2FeGe using LSDA and LSDA+U. Phys. B: Condens. Matter 407, 3689–3693 (2012). https://doi.org/10.1016/j.physb.2012.04.055

    Article  CAS  Google Scholar 

  41. X. Wang, Z. Cheng, R. Guo, J. Wang, H. Rozale, L. Wang, G. Liu, First-principles study of new quaternary Heusler compounds without 3d transition metal elements: ZrRhHfZ (Z = Al, Ga, In). Mater. Chem. Phys. 193, 99–108 (2017). https://doi.org/10.1016/j.matchemphys.2017.02.019

    Article  CAS  Google Scholar 

  42. D.P. Rai, J. Maibam, B.I. Sharma, A. Shankar, T.R.K. Sandeep, S.H. Ke, Prediction of half-metallic ferromagnetism (HMF) in hypothetical Heusler compound Co2VSb using modified Becke Johnson (mBJ) potential. J. Alloy. Compd. 589(2014), 553–557 (2014). https://doi.org/10.1016/j.jallcom.2013.12.049

    Article  CAS  Google Scholar 

  43. A. Bakhshayeshi, M.M. Sarmazdeh, R.T. Mendi, A. Boochani, First-principles prediction of electronic, magnetic, and optical properties of Co2MnAs full-Heusler half-metallic compound. J. Electron. Mater. 46, 2196–2204 (2016). https://doi.org/10.1007/s11664-016-51581

    Article  Google Scholar 

  44. D.P. Rai, L. Siakeng, G.M. Mikhailov, Electronic, elastic and X-ray spectroscopic properties of direct and inverse full Heusler compounds Co2 FeAl and Fe2CoAl, promising materials for spintronic applications: DFT+U approach. J. Mater. Chem. C. 6, 10341–10349 (2018). https://doi.org/10.1039/c8tc02530d

    Article  CAS  Google Scholar 

  45. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  46. F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. U. S. A. 30, 244–247 (1994). https://doi.org/10.1073/pnas.30.9.244

    Article  Google Scholar 

  47. M.A. Blanco, E. Francisco, V. Luana, GIBBS : isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun. 158, 57–72 (2004). https://doi.org/10.1016/j.comphy.2003.12.001

  48. X.T. Wang, X.F. Dai, H.Y. Jia, L.Y. Wang, X.F. Liu, Y.T. Cui, G.D. Liu, Topological insulating characteristic in half-Heusler compounds composed of light elements. Phys. Lett. A 378, 1662–1666 (2014). https://doi.org/10.1016/j.physleta.2014.04.013

    Article  CAS  Google Scholar 

  49. H. Mebtouche, O. Baraka, A. Yakoubi, R. Khenata, S.A. Tahir, R. Ahmed, S.H. Naqib, A. Bouhemadou, S. Bin Omran, X. Wang, First-principles calculations of the structural, electronic, mechanical and thermodynamic properties of MAX Phase Mon+1GeCn (n=1,2, and 3) compound. J. Mater. Today Commun. 25, 101420 (2020). https://doi.org/10.1016/j.mtcomm.2020.101420

    Article  CAS  Google Scholar 

  50. E. Schreiber, O.L. Anderson, N. Soga, Elastic constants and their measurements. McGraw-Hil, New York 42, 747–748 (1975). https://doi.org/10.1115/1.3423687

    Article  Google Scholar 

  51. M.J. Mehl, Pressure dependence of the elastic moduli in aluminum-rich Al-Li compounds. Phys. Rev. B Condes. Matter. 47, 2493–2500 (1993). https://doi.org/10.1103/PhysRevB.47.2493

    Article  CAS  Google Scholar 

  52. Wallace D.C, Thermodynamics of crystals, Acta Crystallographica Section, A 1973, 582–583 https://doi.org/10.1107/S0365110X5500279X

  53. Born .M on the stability of crystal lattices IV, Proc Cambridge Philosophical Socety. 36 (1940) 466 – 478. https://doi.org/10.1017/S0305004100017515

  54. M. Born, K. Huang, Dynamical theory of crystal lattices. Acta Crystallogr. A 9, 837–838 (1956). https://doi.org/10.1107/S0365110X56002370

    Article  Google Scholar 

  55. A. Bouhemadou, R. Khenata, M. Maamache, Structural phase stability and elastic properties of lanthanum monochalcogenides at high pressure. J. Mol. Struct. (Thoechem) 777(1–3), 5–10 (2006). https://doi.org/10.1016/j.theochem.2006.08.031

    Article  CAS  Google Scholar 

  56. Born M, Huang K, Dynamical theory of crystal lattices, Clarendon press 9 (1954), https://doi.org/10.4236/oalib.1100648

  57. D.G. Pettifor, Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 18, 345–349 (1992). https://doi.org/10.1179/mst.1992.8.4.345

    Article  Google Scholar 

  58. R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 65, 349–354 (1952). https://doi.org/10.1088/0370-1298/65/5/307

    Article  Google Scholar 

  59. H. Hayat Ullah, F.S. Kayani, R. Khenata, Insight into the mechanical, thermal, electronic and magnetic properties of cubic lanthanide built perovskites oxides PrXO3 (X=Al, Ga). J. Mater. Res. Express 6, 126105 (2019)

    Article  Google Scholar 

  60. S. Singh, R. Kumar, Ab-initio calculations of elastic constants and thermodynamic properties of LuAuPb and YAuPb half-heusler compounds. J. Alloy. Compd. 722, 544–548 (2017). https://doi.org/10.1016/j.jallcom.2017.06.131

    Article  CAS  Google Scholar 

  61. J.F. Nye, Propriétés physiques des matériaux. J. Alloys Compd. 44, 41108808 (2013). https://doi.org/10.1016/j.jallcom.2012.08.077

    Article  CAS  Google Scholar 

  62. S. Yalameha, A. Vaez, Structural, electronic, elastic and thermodynamic properties of Al1-xZxNi (Z=Cr, V and x= 0, 0.125, 0.25) alloys: First-principle calculations. J. Comput. Condens. Matter 21, e00415 (2019). https://doi.org/10.1016/j.cocom.2019.e00415

    Article  Google Scholar 

  63. D. Pettifor, Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345–349 (1992). https://doi.org/10.1179/mst.1992.8.4.345

    Article  CAS  Google Scholar 

  64. E. Schreiber, O.L. Anderson, N. Soga, Elastic constants and their measurement. McGraw-Hill New York, J. Annalender Physik 274, 573–587 (1889). https://doi.org/10.1002/andp.18892741206

    Article  Google Scholar 

  65. H.-C. Cheng, C.-F. Yu, W.H. Chen, First-principles density functional calculation of mechanical, thermodynamic and electronic properties of CuIn and Cu2In crystals. J. Alloy. Compd. 546, 286–295 (2013). https://doi.org/10.1016/j.jallcom.2012.08.077

    Article  CAS  Google Scholar 

  66. B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, J. Harris, P.C. Schmidt, Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases. Intermetallics 11, 00127–00129 (2003). https://doi.org/10.1016/S0966-9795(02)00127-9

    Article  Google Scholar 

  67. I. Jum’h, S. Sâadessaoud, H. Baaziz, Z. Charifi, A. Telfah, Electronic and magnetic structure and elastic and thermal properties of Mn2-based full Heusler alloys. J. Supercond. Nov. Magn. 32, 3915–3926 (2019). https://doi.org/10.1007/s10948-019-5095-3

    Article  CAS  Google Scholar 

  68. V. Srivastava, N. Kaur, R. Khenata, S.A. Dar, Investigation of the electronic, magnetic, elastic, thermodynamic and thermoelectric properties of Mn2CoCr Heusler compound: A DFT-based simulation. J. Magn. Magn. Mater. 513, 167107 (2020). https://doi.org/10.1016/j.jmmm.2020.167107

    Article  CAS  Google Scholar 

  69. S.F. Pugh, XCII, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. J. Sci. 45, 823–843 (1954). https://doi.org/10.1080/14786440808520496

    Article  CAS  Google Scholar 

  70. M. Ameri et al., Ab initio calculations of structural, elastic and thermodynamic properties of HoX (X = N, O, S and Se). Mater. Sci. Semicond. Process. 26, 205–207 (2014). https://doi.org/10.1016/j.mssp.2014.03.042

    Article  CAS  Google Scholar 

  71. A.T. Petit, P.L. Dulong, The law of Dulong and Petit. J. Hist. Sci. 4, 1–22 (1968). https://doi.org/10.1017/S0007087400003150

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Al-Douri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asma, B., Belkharroubi, F., Ibrahim, A. et al. Structural, mechanical, magnetic, electronic, and thermal investigations of Ag2YB (Y = Nd, Sm, Gd) full-Heusler alloys. emergent mater. 4, 1769–1783 (2021). https://doi.org/10.1007/s42247-021-00257-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00257-8

Keywords

Navigation