Skip to main content
Log in

Construction of Cr2O3:ZnO Nanostructured Thin Film Prepared by Pulsed Laser Deposition Technique for NO2 Gas Sensor

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Rhombohedral structure of chromium oxide (Cr2O3) thin-film doped hexagonal zinc oxide (ZnO) nanoparticles have been prepared using pulsed laser deposition technique at a different weight percent of ZnO from 0 to 9 wt%. The results of X-ray diffraction analysis shown that the doped films are polycrystalline, and the average crystallite size of the synthesized thin films is found to be dependent on the ZnO concentration. The surface morphology of the prepared thin films was characterized by atomic force microscopy. The optical properties are investigated using ultraviolet–visible light (UV–Vis) absorption spectroscopy. The optical bandgap ranged from 2.45 to 2.68 eV, showing the shift towards longer-wavelength compared to bulk Cr2O3 (~ 3 eV). The sensitivity, response, and recovery times of the sensor towards nitrogen dioxide (NO2) gas were studied and discussed. The sensitivity increase with increasing the doping concentration, and started to decrease when ZnO concentrations reach 7 wt%. The optimal ZnO concentrations for NO2 gas sensitivity is 5 wt%, which attain maximum sensitivity of 87.5% at temperature of 523 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Maaza, B.D. Ngom, M. Achouri, K. Manikandan, Vacuum 114, 172 (2015)

    Article  CAS  Google Scholar 

  2. S.A. Makhlouf, J. Magn. Magn. Mater. 272–276, 1530 (2014)

    Google Scholar 

  3. H. Cao, X. Qiu, Y. Liang, M. Zhao, Q. Zhu, Appl. Phys. Lett. 88, 241112 (2006)

    Article  Google Scholar 

  4. Y. Zhou, X. Weng, L. Yuan, L. Deng, J. Ceram. Soc. Jpn. 122, 311 (2014)

    Article  Google Scholar 

  5. Y.C. Pu, M.G. Kibria, Z. Mi, J.Z. Zhang, J. Phys. Chem. Lett. 60, 2649 (2015)

    Article  Google Scholar 

  6. B.K. Miremadi, R.C. Singh, Z. Chen, S.R. Morrison, K. Colbow, Sens. Actuators B 21, 1 (1994)

    Article  CAS  Google Scholar 

  7. C.H. Hsu, D.H. Huang, W.Y. Ho, L.T. Huang, C.L. Chang, Mater. Sci. Eng. A 429, 212 (2006)

    Article  Google Scholar 

  8. D. Zhang, X. Li, B. Qin, X. Li, X. Guo, C. Lai, J. Am. Ceram. Soc. 97, 3413 (2014)

    Article  CAS  Google Scholar 

  9. Y. Wang, X. Yuan, X. Liu, J. Ren, W. Tong, Y. Wang, G. Lu, Solid State Sci. 10, 1117 (2008)

    Article  CAS  Google Scholar 

  10. M.N.H. Mia, M.F. Pervez, M.K. Hossain, M.R. Rahman, M.J. Uddin, M.A. Al Mashud, H.K. Ghosh, M. Hoq, Results Phys. 7, 2683 (2017)

    Article  Google Scholar 

  11. J. Sengupta, A. Ahmed, R. Labar, Mater. Lett. 109, 265 (2013)

    Article  CAS  Google Scholar 

  12. D. Niemeyer, D.E. Williams, P. Smith, K.F.E. Pratt, B. Slater, C.R.A. Catlow, A.M. Stoneham, J. Mater. Chem. 12, 667 (2002)

    Article  CAS  Google Scholar 

  13. K.J. Choi, H.W. Jang, Sensors 10, 4083 (2010)

    Article  CAS  Google Scholar 

  14. M.H. Suhail, A.A. Ramadan, S.B. Aziz, O.G. Abdullah, J. Sci. Adv. Mater. Devices 2, 301 (2017)

    Article  Google Scholar 

  15. M.H. Suhail, H.S. Al-Jumily, O.G. Abdullah, SN Appl. Sci. 1, 69 (2019)

    Article  Google Scholar 

  16. N. Barsan, M.S. Berberich, W. Gopel, Fresenius J. Anal. Chem. 365, 287 (1999)

    Article  CAS  Google Scholar 

  17. M.H. Suhail, O.G. Abdullah, G.A. Kadhim, J. Sci. Adv. Mater. Devices 4, 143 (2019)

    Article  Google Scholar 

  18. T.K.H. Starke, G.S.V. Coles, IEEE Sens. J. 2, 14 (2002)

    Article  CAS  Google Scholar 

  19. H. Du, P. Yao, Y. Sun, J. Wang, H. Wang, N. Yu, Sensors 17, 1822 (2017)

    Article  Google Scholar 

  20. N. Zhang, X. Ma, Y. Yin, Y. Chen, C. Li, J. Yin, S. Ruan, Inorg. Chem. Front. 6, 238 (2019)

    Article  CAS  Google Scholar 

  21. O.G. Abdullah, J. Mater. Sci. Mater. Electron. 27, 12106 (2016)

    Article  CAS  Google Scholar 

  22. A.M. Babeer, Silicon 9, 847 (2017)

    Article  CAS  Google Scholar 

  23. M. Suchea, N. Katsarakis, S. Christoulakis, S. Nikolopoulou, G. Kiriakidis, Sens. Actuators B 118, 135 (2006)

    Article  CAS  Google Scholar 

  24. N.G. Deshpande, Y.G. Gudage, R. Sharma, J.C. Vyas, J.B. Kim, Y.P. Lee, Sens. Actuators B 138, 76 (2009)

    Article  CAS  Google Scholar 

  25. X.Q. Pan, L. Fu, J. Electroceram. 7, 35 (2001)

    Article  Google Scholar 

  26. A.H. Mohamad, S.R. Saeed, O.G. Abdullah, Mater. Res. Express 6, 115332 (2019)

    Article  Google Scholar 

  27. O.G. Abdullah, S.A. Saleem, J. Electron. Mater. 45, 5910 (2016)

    Article  CAS  Google Scholar 

  28. S.F. Bdewi, O.G. Abdullah, B.K. Aziz, A.A.R. Mutar, J. Inorg. Organomet. Polym. Mater. 26, 326 (2016)

    Article  CAS  Google Scholar 

  29. S.B. Aziz, O.G. Abdullah, M.A. Brza, A.K. Azawy, D.A. Tahir, Results Phys. 15, 102776 (2019)

    Article  Google Scholar 

  30. M.F. Al-Kuhaili, S.M.A. Durrani, Opt. Mater. 29, 709 (2007)

    Article  CAS  Google Scholar 

  31. G. Goodlet, S. Faty, S. Cardoso, P.P. Freitas, A.M.P. Simoes, M.G.S. Ferreira, M.D.C. Belo, Corros. Sci. 46, 1479 (2004)

    Article  CAS  Google Scholar 

  32. O.G. Abdullah, D.A. Tahir, K. Kadir, J. Mater. Sci. Mater. Electron. 26, 6939 (2015)

    Article  CAS  Google Scholar 

  33. A.H. Mohamad, O.G. Abdullah, S.R. Saeed, Results Phys. 16, 102898 (2020)

    Article  Google Scholar 

  34. Z. Liao, H. Zhang, Y. Zhou, J. Xu, J. Zhang, D. Yu, Phys. Lett. A 372, 4505 (2008)

    Article  CAS  Google Scholar 

  35. A.F. Abdulameer, M.H. Suhail, O.G. Abdullah, I.M. Al-Essa, J. Mater. Sci. Mater. Electron. 28, 13472 (2017)

    Article  CAS  Google Scholar 

  36. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Sensors 10, 2088 (2010)

    Article  CAS  Google Scholar 

  37. L. Filipovic, S. Selberherr, Sensors 15, 7206 (2015)

    Article  CAS  Google Scholar 

  38. M. Kumar, V. Bhatt, A.C. Abhyankar, J. Kim, A. Kumar, S.H. Patil, J. Yun, Sci. Rep. 8, 8079 (2018)

    Article  Google Scholar 

  39. N. Jayababu, M. Poloju, J. Shruthi, M.V.R. Reddy, RSC Adv. 9, 13765 (2019)

    Article  CAS  Google Scholar 

  40. G.F. Fine, L.M. Cavanagh, A. Afonj, R. Binions, Sensors 10, 5469 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would wish to express their grateful appreciation to the Department of Physics, College of Science, at the University of Baghdad, for the facility in their laboratories and the support given to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omed Gh. Abdullah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suhail, M.H., Adehmash, I.K., Abdul Kareem, S.M. et al. Construction of Cr2O3:ZnO Nanostructured Thin Film Prepared by Pulsed Laser Deposition Technique for NO2 Gas Sensor. Trans. Electr. Electron. Mater. 21, 355–365 (2020). https://doi.org/10.1007/s42341-020-00182-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-020-00182-3

Keywords

Navigation