Skip to main content
Log in

Performance Evaluation and Comparison of Monolithic and Mechanically Stacked Dual Tandem InGaP/GaAs Heterojunction on Ge Cell: A TCAD Study

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

The photovoltaic characteristics of a mechanically and monolithic stacked tandem solar cell of the heterojunction InGaP/GaAs and Ge sub cells, were numerically simulated under 1-sun air mass 1.5 global spectrum (AM1.5G) at ambient temperature (300 K) using the two-dimensional device simulator Silvaco–Atlas. Our tandem structure consists of a thin upper cell with heterojunction of indium and gallium phosphide on gallium arsenide (In0.49Ga0.51P/GaAs), on a relatively thick germanium (Ge) substrate which acts as a lower cell in order to obtain good performances of such a structure. We studied both cells, stacked mechanically (four terminal:4T) and monolithic (two terminal:2T) using Silvaco ATLAS Virtual Wafer FabricationTool. First, we have simulated the single InGaP/GaAs and Ge solar cells with fixed thicknesses at 1.4 µm and 210 µm respectively. They presented a conversion efficiencies (ƞ) of 30.32% and 10.96% respectively. The efficiency of mechanically stacked tandem solar is 30.96% and short current density of 26.16 mA/cm2 which is limited by the lower short current density of both sub-cells. Using the method of current matching, by varying the base thicknesses of the InGaP/GaAs top and Ge bottom sub-cells, the numerical simulation results presented a matched maximum current Jsc value of 29.12 mA/cm2 obtained at base thicknesses of 0.605 and 209.9 μm for the InGaP/GaAs top and Ge bottom sub-cells respectively, leading to a high power conversion efficiency (ƞ) of the mechanically stacked sub cells of 34.77%, the open-circuit voltage and the fill factor are 1.329 V and 88.96%, respectively. Next, the sub-cells were interconnected with tunnel junctions (TJs), p-GaAs/n-GaAs to allow carrier transport, the results of the monolithic stacked sub-cells are converged with results of the mechanically stacked sub-cells, and are represented in the following results of the tandem cell: power conversion efficiency (ƞ) of 32.96%, the open-circuit voltage of 1.343 V, the short current of 29.19 mA/cm2 and the fill factor of 84.05%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Blakers, N. Zin, K.R. McIntosh, K. Fong, High efficiency silicon solar cells. Energy Procedia 33, 1–10 (2013)

    Article  Google Scholar 

  2. M.A. Green, E.D. Dunlop, D.H. Levi, J.Y. Hohl-Ebinger, M. Yoshita, A.W. Ho-Baillie, Solar cell efficiency tables (version 54). Prog. Photovolt. Res. Appl. 27(7), 565–575 (2019)

    Article  Google Scholar 

  3. H. Bencherif, L. Dehimi, F. Pezzimenti, F.G. Della Corte, Improving the efficiency of a-Si: H/c-Si thin heterojunction solar cells by using both antireflection coating engineering and diffraction grating. Optik 182, 682–693 (2016)

    Article  Google Scholar 

  4. M. David, M. Imaizumi, H. Akiyama, Y. Kanemitsu, Internal luminescence efficiencies in InGaP/GaAs/Ge triple-junction solar cells evaluated from photoluminescence through optical coupling between subcells. Sci. Rep. 6, 38297 (2016)

    Article  Google Scholar 

  5. F. Bouzid, F. Pezzimenti, L. Dehimi, M.L. Megherbi, F.G. Della Corte, Numerical simulations of the electrical transport characteristics of a Pt/n-GaN Schottky diode. Jpn. J. Appl. Phys. 56(9), 094301 (2017)

    Article  Google Scholar 

  6. C.-C. Chung, B.T. Tran, K.-L. Lin, Y.-T. Ho, H.-W. Yu, N.-H. Quan, E.Y. Chang, Efficiency improvement of InGaP/GaAs/Ge solar cells by hydrothermal-deposited ZnO nanotube structure. Nanoscale Res. Lett. 9(1), 338 (2014)

    Article  Google Scholar 

  7. P. Dai, J. Lu, M. Tan, Q. Wang, Y. Wu, L. Ji, L. Bian, S. Lu, H. Yang, Transparent conducting indium-tin-oxide (ITO) film as full front electrode in III–V compound solar cell. Chin. Phys. B 26(3), 037305 (2017)

    Article  Google Scholar 

  8. K. Tanabe, A review of ultrahigh efficiency III–V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures. Energies 2(3), 504–530 (2009)

    Article  CAS  Google Scholar 

  9. A. Moto, S. Tanaka, T. Tanabe, S. Takagishi, GaInP/GaAs and mechanically stacked GaInAs solar cells grown by MOCVD using TBAs and TBP as V-precursors. Sol. Energy Mater. Sol. Cells 66(1-4), 585–592 (2001)

    Article  CAS  Google Scholar 

  10. J. Plá, M. Barrera, F. Rubinelli, The influence of the InGaP window layer on the optical and electrical performance of GaAs solar cells. Semicond. Sci. Technol. 22(10), 1122–1130 (2007)

    Article  Google Scholar 

  11. P.P. Nayak, J.P. Dutta, G.P. Mishra, Efficient InGaP/GaAs DJ solar cell with double back surface field layer. Eng. Sci. Technol. Int. J. 18(3), 325–335 (2015)

    Google Scholar 

  12. L. Bouzid, L. Dehimi, F. Pezzimenti, M. Hadjab, A.H. Larbi, Numerical simulation study of a high efficient AlGaN-based ultraviolet photodetector. Superlattices Microstruct. 122, 57–73 (2018)

    Article  CAS  Google Scholar 

  13. J.W. Leem, Y.T. Lee, J.S. Yu, Optimum design of InGaP/GaAs dual-junction solar cells with different tunnel diodes. Opt. Quant. Electron. 41(8), 605–612 (2009)

    Article  CAS  Google Scholar 

  14. E. Chhid, M.I. Oumhaned, M. Feddaoui, A. Maloui, Study of the physical parameters on the GaAs solar cell efficiency. J. Ovonic Res. 13(3), 119–128 (2017)

    Google Scholar 

  15. S.-W. Feng, C.-M. Lai, C.-Y. Tsai, L.-W. Tu, Numerical simulations of the current-matching effect and operation mechanisms on the performance of InGaN/Si tandem cells. Nanoscale Res. Lett. 9(1), 652 (2014)

    Article  Google Scholar 

  16. M.N. Norizan, S.M. Zahari, I.S. Mohamad, R.A.M. Osman, M.M. Shahimin, S.A.Z. Murad, Indium (In) effects to the efficiency performance of Ga1-X InxP/GaAs based solar cell using silvaco software modelling & simulation. IOP Conf. Ser. Mater. Sci. Eng. 209(1), 012029 (2017)

    Article  Google Scholar 

  17. J.W. Leem, J.S. Yu, Theoretical modeling and optimization of III–V GaInP/GaAs/Ge monolithic triple-junction solar cells. J. Korean Phys. Soc. 64(10), 1561–1565 (2014)

    Article  CAS  Google Scholar 

  18. F. Djaafar, B. Hadri, G. Bachir, Comparison between the efficiency of heterojunction thin film InGaP\GaAs\Ge and InGaP\GaAs solar cell. parameters 3, 4 (2017)

    Google Scholar 

  19. M. Madhusudan, S. Pal, Optimization of individual single-junction cells for the development of high-efficiency Ge-GaAs-InGaP multi-junction solar cells. Devices Group, CSIR-CEERI (2012)

  20. ATLAS User’s Manual, Device simulation software (SILVACO International, Santa Clara, 2013)

    Google Scholar 

  21. H. Bencherif, L. Dehimi, F. Pezzimenti, F.G. Della Corte, Temperature and SiO 2/4H–SiC interface trap effects on the electrical characteristics of low breakdown voltage MOSFETs. Appl. Phys. A 125(5), 294 (2019)

    Article  CAS  Google Scholar 

  22. K.W.A. Chee, Y. Hu, Design and optimization of ARC less InGaP/GaAs single-/multi-junction solar cells with tunnel junction and back surface field layers. Superlattices Microstruct. 119, 25–39 (2018)

    Article  CAS  Google Scholar 

  23. A. Mesrane, F. Rahmoun, A. Mahrane, A. Oulebsir, Design and simulation of InGaN p–n junction solar cell. Int. J. Photoenergy 2015 (2015)

  24. M. Sotoodeh, A.H. Khalid, A.A. Rezazadeh, Empirical low-field mobility model for III–V compounds applicable in device simulation codes. J. Appl. Phys. 87(6), 2890–2900 (2000)

    Article  CAS  Google Scholar 

  25. F. Bouzid, F. Pezzimenti, L. Dehimi, F.G. Della Corte, M. Hadjab, A.H. Larbi, Analytical modeling of dual-junction tandem solar cells based on an InGaP/GaAs heterojunction stacked on a Ge substrate. J. Electron. Mater. 48(6), 4107–4116 (2019)

    Article  CAS  Google Scholar 

  26. M. Korun, T.S. Navruz, Comparison of Ge, InGaAs p–n junction solar cell. J. Phys. Conf. 707, 012035 (2016)

    Article  Google Scholar 

  27. H. Bencherif, L. Dehimi, F. Pezzimenti, A. Yousfi, Analytical model for the light trapping effect on ZnO: Al/c-Si/SiGe/c-Si solar cells with an optimized design, in 2018 International conference on applied smart systems (ICASS) (IEEE, 2018), pp. 1–6

  28. C. Pugazhenthi, A. Vigneshwaran, Role of surface recombination in multi-crystalline silicon solar cells. IOSR J. Appl. Phys. 6(2), 07–10 (2014)

    Article  Google Scholar 

  29. V.K. Narasimhan, N. Yastrebova, C.E. Valdivia, T.J. Hall, K. Hinzer, D. Masson, S. Fafard, A. Jaouad, R. Arès, V. Aimez, Effect of parameter variations on the current-voltage behavior of AlGaAs tunnel junction models, in 2008 1st Microsystems and Nanoelectronics Research Conference (IEEE, 2008), pp. 165–168

  30. G.S. Sahoo, G.P. Mishra, Effect of wideband gap tunnel diode and thickness of the window layer on the performance of a dual junction solar cell. Procedia Technol. 25, 684–691 (2016)

    Article  Google Scholar 

  31. G.S. Sahoo, P.P. Nayak, G.P. Mishra, An ARC less InGaP/GaAs DJ solar cell with hetero tunnel junction. Superlattices Microstruct. 95, 115–127 (2016)

    Article  CAS  Google Scholar 

  32. S.H. Jung, C.Z. Kim, Y. Kim, D.H. Jun, H.K. Kang, Comparative investigation of InGaP/InGaAs/Ge triple-junction solar cells using different Te-doped InGaP layers in tunnel junctions. J. Korean Phys. Soc. 68(6), 792–796 (2016)

    Article  CAS  Google Scholar 

  33. A.W. Walker, O. Thériault, M.M. Wilkins, IEEE Member, J.F. Wheeldon, K. Hinzer, Tunnel-junction-limited multijunction solar cell performance over concentration. IEEE J. Sel. Top. Quantum Electron 19(5), 1–8 (2013)

    Article  Google Scholar 

  34. S. Kang, K.W. Park, S. Ravindran, Y.T. Lee, Numerical analysis of p-GaAs/n-GaAs tunnel junction employing InAs intermediate layer for high concentrated photovoltaic applications. J. Phys. Conf. Ser. 490(1), 012178 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Terghini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terghini, O., Dehimi, L., Mefteh, A.M. et al. Performance Evaluation and Comparison of Monolithic and Mechanically Stacked Dual Tandem InGaP/GaAs Heterojunction on Ge Cell: A TCAD Study. Trans. Electr. Electron. Mater. 21, 384–393 (2020). https://doi.org/10.1007/s42341-020-00191-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-020-00191-2

Keywords

Navigation