Skip to main content
Log in

Surface Modifications for Light Trapping in Silicon Heterojunction Solar Cells: A Brief Review

  • Review Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Reducing crystalline silicon (c-Si) wafer thickness is an effective method to reduce the fabrication cost as it constitutes a major portion of the photovoltaic module cost. However, the open-circuit voltage and fill factor depend on the wafer thickness; further, the short-circuit current density (JSC), affects the device performance negatively. Therefore, light trapping is vital for increasing the JSC of Si solar cells. Consequently, it is essential for improving the conversion efficiency of the solar cell and reduce its production cost by decreasing the wafer thickness. It can be assumed that the thickness of the Si wafer will gradually achieve a minimum value of ~ 100 μm in the future. Therefore, reducing the as-cut wafer thickness will result in a more efficient use of Si. This paper reports the surface modification for light trapping based on the Si solar cell application. Additionally, we introduce methods for surface modification, such as front-side texturing and rear-side polishing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reprinted with permission from [21] Prog. Photovolt. Res. Appl. 26 (2018) 369, Copyright 2018 John Wiley & Sons, Ltd.

Fig. 3

Reprinted with permission from [4] Front. Energy 11(1) (2017) 78, Copyright 2014 Higher Education Press

Fig. 4

Reprinted with permission from [25] J. Electrochem. Soc. 123(12) (1976) 1903, Copyright 2020 by ECS-The Electrochemical Society

Fig. 5

Reprinted with permission from [26], Sol. Energy Mater. Sol. Cells 152 (2016) 80, Copyright 2016 Elsevier

Similar content being viewed by others

References

  1. M. Santhakumari, N. Sagar, Renew. Sust. Energy Rev. 110, 83–100 (2019)

    Article  CAS  Google Scholar 

  2. International Technology Roadmap for Photovoltaic (ITRPV) 2018 Results 10th Edition March (2019)

  3. M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, E. Maruyama, IEEE J. Photovolt. 4(1), 96–99 (2014)

    Article  Google Scholar 

  4. F. Meng, J. Liu, L. Shen, J. Shi, A. Han, L. Zhang, Y. Liu, J. Yu, J. Zhang, R. Zhou, Z. Liu, Front. Energy 11(1), 78–84 (2017)

    Article  Google Scholar 

  5. S.Y. Herasimenka, W.J. Dauksher, S.G. Bowden, Appl. Phys. Lett. 103, 053511 (2013)

    Article  Google Scholar 

  6. T. Mishima, M. Taguchi, H. Sakata, E. Maruyama, Sol. Energy Mater. Sol. Cells 95, 18–21 (2011)

    Article  CAS  Google Scholar 

  7. M. Taguchi, Y. Tsunomura, H. Inoue, S. Taira, T. Nakashima, T. Baba, and H. Sakata, E. Maruyama, High-Efficiency HIT Solar Cell on Thin (%3c100 μm) Silicon Wafer, 24th European Photovoltaic Solar Energy Conference, 2–124 September 2009, Hamburg, Germany, pp. 1690–1693.

  8. T. Kinoshita, D. Fujishima, A. Yano, A. Ogane, S. Tohoda, K. Matsuyama, Y. Nakamura, N. Tokuoka, H. Kanno, H. Sakata, M. Taguchi, and E. Maruyama, The Approaches for High Efficiency HITTM Solar Cell with Very Thin (%3c100 µm) Silicon Wafer over 23%, 26th European Photovoltaic Solar Energy Conference and Exhibition, 2011, pp. 871–874 https://doi.org/10.4229/26thEUPVSEC2011-2AO.2.6

  9. K. Maki, D. Fujishima, H. Inoue, Y. Tsunomura, T. Asaumi, S. Taira, T. Kinoshita, M. Taguchi, H. Sakata, H. Kanno, and E. Maruyama, High-efficiency HIT Solar Cells with a very Thin Structure Enabling a High Voc, 2011 37th IEEE Photovoltaic Specialists Conference (PVSC) 19-24 June 2011, Seattle WA, USA, pp. 57–61

  10. S. Tohoda, D. Fujishima, A. Yano, A. Ogane, K. Matsuyama, Y. Nakamura, N. Tokuoka, H. Kanno, T. Kinoshita, H. Sakata, M. Taguchi, E. Maruyama, J. Non-Cryst. Solids 358, 2219–2222 (2012)

    Article  CAS  Google Scholar 

  11. A. Cuevas, T. Allen, J. Bullock, Y. Wan, D. Van, and X. Zhang, Skincare for Healthy Silicon Solar Cells, 2015 42nd IEEE Photovoltaic Specialists Conference (PVSC) 14-19 June 2015, New Orleans, LA, USA

  12. D. Fujishima, H. Inoue, Y. Tsunomura, T. Asaumi, S. Taira, T. Kinoshita, M. Taguchi, H. Sakata, and E. Maruyama, High-Performance Hit Solar Cells For Thinner Silicon Wafers, 2010 35th IEEE Photovoltaic Specialists Conference (PVSC), 20-25 June 2010, Honolulu, HI, USA, pp. 3137–3140

  13. M.K. Ju, K. Mallem, S. Dutta, N. Balaji, D. Oh, E.-C. Cho, Y.H. Cho, Y.K. Kim, J. Yi, Mater. Sci. Semicond. Proc. 85, 68–75 (2018)

    Article  CAS  Google Scholar 

  14. J. Yang, H. Shen, L. Sun, Mater. Sci. Semicond. Proc. 94, 1–8 (2019)

    Article  CAS  Google Scholar 

  15. A. Abdulkadir, A.A. Aziz, M.Z. Pakhuruddin, Mater. Sci. Semicond. Proc. 105, 104728 (2020)

    Article  CAS  Google Scholar 

  16. A.K. Dikshit, N.C. Mandal, S. Bose, N. Mukherjee, P. Chakrabarti, Sol. Energy 193, 293–302 (2019)

    Article  Google Scholar 

  17. P. Kowalczewski, L.C. Andreani, Sol. Energy Mater. Sol. Cells 143, 260–268 (2015)

    Article  CAS  Google Scholar 

  18. H. Nishino, M. Hara, Y. Yano, M. Toda, Y. Kanamori, M. Kajita, T. Ido, T. Ono, Appl. Phys. Express 12, 072012 (2019)

    Article  Google Scholar 

  19. E. Fornies, C. Zaldo, J.M. Albella, Sol. Energy Mater. Sol. Cells 87(1), 583–593 (2005)

    Article  CAS  Google Scholar 

  20. S.C. Baker-Finch, K.R. Mclntosh, Prog. Photovolt. Res Appl. 21(5), 960–971 (2013)

    Google Scholar 

  21. Z. Mrazkova, I.P. Sobkowicz, M. Foldyna, K. Postava, I. Florea, J. Pištora, P.R.I. Cabarrocas, Prog. Photovolt. Res. Appl. 26, 369–376 (2018)

    Article  CAS  Google Scholar 

  22. K. Dasgupta, S. Ray, A. Mondal, U. Gangopadhyay, Mater. Today 4, 12698–12707 (2017)

    Google Scholar 

  23. M. Ju, N. Balaji, C. Park, H.T.T. Nguyen, J. Cui, D. Oh, M. Jeon, J. Kang, G. Shim, J. Yi, RSC Adv. 6, 49831–49838 (2016)

    Article  Google Scholar 

  24. A. Razzaq, V. Depauw, J. Cho, H.S. Radhakrishnan, I. Gordon, J. Szlufcik, Y. Abdulraheem, J. Poortmanas, Sol. Energy Mater. Sol. Cells 206, 110263 (2020)

    Article  CAS  Google Scholar 

  25. B. Schwartz, H. Robbins, J. Electrochem. Soc. 123(12), 1903–1909 (1976)

    Article  CAS  Google Scholar 

  26. F. Pfeffer, J. Eisenlohr, A. Basch, M. Hermle, B.G. Lee, J.C. Goldschmidt, Sol. Energy Mater. Sol. Cells 152, 80–86 (2016)

    Article  CAS  Google Scholar 

  27. A. Hajjiah, F. Duerinckx, M.R. Payo, I.K. Filipek, J. Poortmans, Sol. Energy Mater. Sol. Cells 151, 139–148 (2016)

    Article  CAS  Google Scholar 

  28. F. Feldmann, M. Bivour, C. Reichel, M. Hermle, S.W. Glunz, Sol. Energy Mater. Sol. Cells 120, 270–274 (2014)

    Article  CAS  Google Scholar 

  29. Y.K. Kim, S. Jung, M. Ju, K. Ryu, J. Park, H. Choi, D. Yang, Y. Lee, J. Yi, Sol. Energy 85, 1085–1090 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20163010012230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junsin Yi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H., Ju, M., Khokhar, M.Q. et al. Surface Modifications for Light Trapping in Silicon Heterojunction Solar Cells: A Brief Review. Trans. Electr. Electron. Mater. 21, 349–354 (2020). https://doi.org/10.1007/s42341-020-00203-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-020-00203-1

Keywords

Navigation