Skip to main content
Log in

A Journey from Bulk MOSFET to 3 nm and Beyond

  • Review Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

To overcome scaling issues such as controlling gate leakage, drain induced barrier lowering, higher subthreshold conduction, polysilicon gate depletion, and other short channel effects various engineering proposed. The gate dielectric, metal work function, and device structural engineering enabled the semiconductor industry to make a transition from the conventional planar MOSFET towards a revolutionary 3D tri-gate structure called FinFET. FinFET is one of the fundamental invention in the semiconductor industry, which replaced the planar CMOS technology around 22 nm technology. By following Moore’s law, it accelerated the scaling to 7 nm, but at 5 nm, in the same way, GAAFET replaced FinFET due to technological hurdles. Nanosheet, which is one type of GAAFET are in the recent trend. But researchers are trying to explore the possibilities to continue the miniaturization beyond 3 nm by combining the effect of non-silicon channel material such as Ge, InGaAs, or 2D materials with nanosheet, which will improve the functionality of the device while going down in the technology node. In this survey, an attempt has been made for the structure present till 7 nm process. Also, a few new proposals in research to take the scaling up to 3 nm and beyond are included. The future innovations may put an intercept on the slowing down of Moore’s law, and bring the miniaturization back in the track.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Source Imec/ISS

Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing, R. Mahnkopf, Version 2, 14 (2010)

    Google Scholar 

  2. G.E. Moore et al., Electronics (1965). https://www.cs.csub.edu/~melissa/cs350-f15/notes/Doc/gordon_moore_1965_article.pdf

  3. R.R. Schaller, IEEE Spectr. 34, 52 (1997)

    Google Scholar 

  4. M. Lundstrom, Science (80–) 299, 210 (2003)

    CAS  Google Scholar 

  5. P.K. Bondyopadhyay, Proc. IEEE 86, 78 (1998)

    Google Scholar 

  6. R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, A.R. LeBlanc, IEEE J. Solid-State Circuits 9, 256 (1974)

    Google Scholar 

  7. C. Hu, ECS Trans. 50, 17 (2013)

    Google Scholar 

  8. S. Deb, N.B. Singh, N. Islam, S.K. Sarkar, IEEE Trans. Nanotechnol. 11, 472 (2011)

    Google Scholar 

  9. J.H. Stathis, IBM J. Res. Dev. 46, 265 (2002)

    CAS  Google Scholar 

  10. J. Suñé, M. Nafria, E. Miranda, X. Oriols, R. Rodriguez, X. Aymerich, Semicond. Sci. Technol. 15, 445 (2000)

    Google Scholar 

  11. G. Ghibaudo, R. Clerc, E. Vincent, S. Bruyere, J.L. Autran, C. R. l’Acad. Des Sci. IV-Phys. 1, 911 (2000)

    CAS  Google Scholar 

  12. H.-S.P. Wong, Solid State Electron. 49, 755 (2005)

    CAS  Google Scholar 

  13. I.R. Committee et al., Semicond. Ind. Assoc. http://www.itrs.net/Links/2011ITRS/2011Chapters/2011ExecSum.pdf (2011)

  14. M. Wu, Y.I. Alivov, H. Morkoc, J. Mater. Sci. Mater. Electron. 19, 915 (2008)

    CAS  Google Scholar 

  15. S. Datta, Electrochem. Soc. Interface 22, 41 (2013)

    CAS  Google Scholar 

  16. P.M. Zeitzoff, H.R. Huff, in AIP Conference Proceedings (2005), pp. 203–213

  17. C.C. Wu, D.W. Lin, A. Keshavarzi, C.H. Huang, C.T. Chan, C.H. Tseng, C.L. Chen, C.Y. Hsieh, K.Y. Wong, M.L. Cheng, T.H. Li, in 2010 International Electron Devices Meeting (2010). https://doi.org/10.1109/IEDM.2010.5703430

  18. M.J. Sherony, L.T. Su, J.E. Chung, D.A. Antoniadis, IEEE Electron Device Lett. 16, 100 (1995)

    Google Scholar 

  19. M.T. Bohr, R.S. Chau, T. Ghani, K. Mistry, IEEE Spectr. 44, 29 (2007)

    Google Scholar 

  20. V. Subramanian, J. Kedzierski, N. Lindert, H. Tam, Y. Su, J. McHale, K. Cao, T.-J. King, J. Bokor, C. Hu, in 1999 57th Annual Device Research Conference Digest (Cat. No. 99TH8393) (1999), pp. 28–29

  21. E. Rauly, O. Potavin, F. Balestra, C. Raynaud, Solid State Electron. 43, 2033 (1999)

    CAS  Google Scholar 

  22. L. Geppert, IEEE Spectr. 39, 28 (2002)

    Google Scholar 

  23. A. Chaudhry, M.J. Kumar, IEEE Trans. Device Mater. Reliab. 4, 99 (2004)

    Google Scholar 

  24. E. Suzuki, K. Ishii, S. Kanemaru, T. Maeda, T. Tsutsumi, T. Sekigawa, K. Nagai, H. Hiroshima, IEEE Trans. Electron Devices 47, 354 (2000)

    CAS  Google Scholar 

  25. T. Poiroux, M. Vinet, O. Faynot, J. Widiez, J. Lolivier, T. Ernst, B. Previtali, S. Deleonibus, Microelectron. Eng. 80, 378 (2005)

    CAS  Google Scholar 

  26. Q. Liu, M. Vinet, J. Gimbert, N. Loubet, R. Wacquez, L. Grenouillet, Y. Le Tiec, A. Khakifirooz, T. Nagumo, K. Cheng, et al., in 2013 IEEE International Electron Devices Meeting (2013), pp. 2–9

  27. R.D. Clark, Materials (Basel). 7, 2913 (2014)

    Google Scholar 

  28. J. Robertson, Solid State Electron. 49, 283 (2005)

    CAS  Google Scholar 

  29. J. Robertson, J. Non. Cryst. Solids 303, 94 (2002)

    CAS  Google Scholar 

  30. J. Robertson, Compr. Semicond. Sci. Technol. Online Version 4, 132 (2011)

    CAS  Google Scholar 

  31. M. Houssa, L. Pantisano, R. Ragnarsson LÅand Degraeve, T. Schram, G. Pourtois, S. De Gendt, G. Groeseneken, M.M. Heyns, Mater. Sci. Eng. R Rep. 51, 37 (2006)

    Google Scholar 

  32. S. Mohsenifar, M.H. Shahrokhabadi, Terminology 2, 5 (2015)

    Google Scholar 

  33. B. Ryu, K.-J. Chang, Appl. Phys. Lett. 97, 242910 (2010)

    Google Scholar 

  34. D.G. Schlom, S. Guha, S. Datta, MRS Bull. 33, 1017 (2008)

    CAS  Google Scholar 

  35. J.H. Choi, Y. Mao, J.P. Chang, Mater. Sci. Eng. R Rep. 72, 97 (2011)

    Google Scholar 

  36. A. Srivastava, O. Mangla, R.K. Nahar, V. Gupta, C.K. Sarkar, J. Mater. Sci. Mater. Electron. 25, 3257 (2014)

    CAS  Google Scholar 

  37. H. Wang, Y. Wang, J. Feng, C. Ye, B.Y. Wang, H.B. Wang, Q. Li, Y. Jiang, A.P. Huang, Z.S. Xiao, Appl. Phys. A 93, 681 (2008)

    CAS  Google Scholar 

  38. H.-L. Lu, D.W. Zhang, High-k gate. Dielectr. C. Technol. 31 (2012)

  39. K.P. Pradhan, S.K. Mohapatra, P.K. Sahu, D.K. Behera, Microelectronics J. 45, 144 (2014)

    CAS  Google Scholar 

  40. C. Zhao, C.Z. Zhao, M. Werner, S. Taylor, P.R. Chalker, ISRN Nanotechnol. 2012 (2012). https://doi.org/10.5402/2012/689023

  41. R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, M. Metz, IEEE Electron Device Lett. 25, 408 (2004)

    CAS  Google Scholar 

  42. J. Robertson, R.M. Wallace, Mater. Sci. Eng. R Rep. 88, 1 (2015)

    Google Scholar 

  43. K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, et al., in 2007 IEEE International Electron Devices Meeting (2007), pp. 247–250

  44. K.J. Kuhn, U. Avci, A. Cappellani, M.D. Giles, M. Haverty, S. Kim, R. Kotlyar, S. Manipatruni, D. Nikonov, C. Pawashe, et al., in 2012 IEEE International Electron Devices Meeting (2012), pp. 1–8

  45. B.S. Doyle, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, A. Murthy, R. Rios, R. Chau, IEEE Electron Device Lett. 24, 263 (2003)

    CAS  Google Scholar 

  46. P.M. Solomon, K.W. Guarini, Y. Zhang, K. Chan, E.C. Jones, G.M. Cohen, A. Krasnoperova, M. Ronay, O. Dokumaci, H.J. Hovel et al., IEEE Circuits Devices Mag. 19, 48 (2003)

    Google Scholar 

  47. T. Sekigawa, Solid State Electron. 27, 827 (1984)

    Google Scholar 

  48. D.J. Frank, S.E. Laux, M.V. Fischetti, IEDM Tech. Dig. 553 (1992). https://doi.org/10.1109/IEDM.1992.307422

  49. D. Hisamoto, T. Kaga, Y. Kawamoto, E. Takeda, in International Technical Digest Electron Devices Meeting (1989), pp. 833–836

  50. V. Narendar, Silicon 10, 2419 (2018)

    CAS  Google Scholar 

  51. S. Dey, S.K. Banerjee (2011)

  52. J.L. Huguenin, G. Bidal, S. Denorme, D. Fleury, N. Loubet, A. Pouydebasque, P. Perreau, F. Leverd, S. Barnola, R. Beneyton et al., Solid State Electron. 54, 883 (2010)

    CAS  Google Scholar 

  53. A. Fasoli, W.I. Milne, Mater. Sci. Semicond. Process. 15, 601 (2012)

    CAS  Google Scholar 

  54. D. Bhattacharya, N.K. Jha, Adv. Electron. 2014 (2014). https://doi.org/10.1155/2014/365689

  55. R. Sonkusare, O. Joshi, S.S. Rathod, Microelectronics J. 91, 1 (2019)

    Google Scholar 

  56. C.H. Lee, J.M. Yoon, C. Lee, H.M. Yang, K.N. Kim, T.Y. Kim, H.S. Kang, Y.J. Ahn, D. Park, K. Kim, in Digest of Technical Paper 2004 Symposium VLSI Technology 2004 (2004), pp. 130–131

  57. K. Kim, in IEEE International Devices Meeting 2005. IEDM Technical Digest (2005), pp. 323–326

  58. C.H. Lin, B. Greene, S. Narasimha, J. Cai, A. Bryant, C. Radens, V. Narayanan, B. Linder, H. Ho, A. Aiyar, et al., in 2014 IEEE International Electron Devices Meeting (2014), pp. 3–8

  59. S.-J. Choi, J.-W. Han, S. Kim, D.-H. Kim, M.-G. Jang, J.-H. Yang, J.S. Kim, K.H. Kim, G.S. Lee, J.S. Oh, et al., in 2008 IEEE International Electron Devices Meeting (2008), pp. 1–4

  60. T. Tanaka, E. Yoshida, T. Miyashita, in IEDM Technical Digest IEEE International Electron Devices Meeting 2004 (2004), pp. 919–922

  61. T. Dutta, G. Pahwa, A.R. Trivedi, S. Sinha, A. Agarwal, Y.S. Chauhan, IEEE Electron Device Lett. 38, 1161 (2017)

    Google Scholar 

  62. H. Ananthan, A. Bansal, K. Roy, in International Symposium on Signals, Circuits and Systems Proceedings, SCS 2003.(Cat. No. 03EX720) (2004), pp. 511–516

  63. Z. Guo, S. Balasubramanian, R. Zlatanovici, T.-J. King, B. Nikolić, in Proceedings of the 2005 International Symposium Low Power Electronics and Design (2005), pp. 2–7

  64. A. Kranti, G.A. Armstrong, IEEE Trans. Electron. Devices 54, 3308 (2007)

    CAS  Google Scholar 

  65. V. Kilchytska, N. Collaert, R. Rooyackers, D. Lederer, J.-P. Raskin, D. Flandre, in Proceedings of the 30th European Solid-State Circuits Conference (IEEE Cat. No. 04EX850) (2004), pp. 65–68

  66. C.C. Wu, D.W. Lin, A. Keshavarzi, C.H. Huang, C.T. Chan, C.H. Tseng, C.L. Chen, C.Y. Hsieh, K.Y. Wong, M.L. Cheng, et al., in 2010 International Electron Devices Meeting (2010), pp. 21–27

  67. X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y.-K. Choi, K. Asano, et al., in International Electron Devices Meeting 1999. Technical Digest (Cat. No. 99CH36318) (1999), pp. 67–70

  68. D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, C. Hu, IEEE Trans. Electron Devices 47, 2320 (2000)

    CAS  Google Scholar 

  69. B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C.-Y. Yang, C. Tabery, C. Ho, Q. Xiang, T.-J. King, et al., in Digest International Electron Devices Meeting (2002), pp. 251–254

  70. R. Xie, P. Montanini, K. Akarvardar, N. Tripathi, B. Haran, S. Johnson, T. Hook, B. Hamieh, D. Corliss, J. Wang, et al., in 2016 IEEE International Electron Devices Meeting (2016), pp. 2–7

  71. F.-L. Yang, D.-H. Lee, H.-Y. Chen, C.-Y. Chang, S.-D. Liu, C.-C. Huang, T.-X. Chung, H.-W. Chen, C.-C. Huang, Y.-H. Liu, et al., in Digest Technical Paper 2004 Symposium VLSI Technology 2004. (2004), pp. 196–197

  72. F. Ishikawa, I. Buyanova, Novel Compound Semiconductor Nanowires: Materials, Devices, and Applications (CRC Press, Boca Raton, 2017)

    Google Scholar 

  73. N. Singh, A. Agarwal, L.K. Bera, T.Y. Liow, R. Yang, S.C. Rustagi, C.H. Tung, R. Kumar, G.Q. Lo, N. Balasubramanian et al., IEEE Electron Device Lett. 27, 383 (2006)

    CAS  Google Scholar 

  74. M. Li, K.H. Yeo, S.D. Suk, Y.Y. Yeoh, D.-W. Kim, T.Y. Chung, K.S. Oh, W.-S. Lee, in 2009 Symposium VLSI Technology (2009), pp. 94–95

  75. S.-D. Kim, M. Guillorn, I. Lauer, P. Oldiges, T. Hook, M.-H. Na, in 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (2015), pp. 1–3

  76. H. Lee, L.-E. Yu, S.-W. Ryu, J.-W. Han, K. Jeon, D.-Y. Jang, K.-H. Kim, J. Lee, J.-H. Kim, S. Jeon, et al., in 2006 Symposium VLSI Technology 2006. Digest Technical Paper (2006), pp. 58–59

  77. N. Mendiratta, S.L. Tripathi, J. Semicond. 41, 061401 (2020). https://doi.org/10.1088/1674-4926/41/6/061401

  78. U.K. Das, T.K. Bhattacharyya, IEEE Trans. Electron Devices 67, 2633 (2020). https://doi.org/10.1109/TED.2020.2987139

  79. H. Mertens, R. Ritzenthaler, A. Hikavyy, M.-S. Kim, Z. Tao, K. Wostyn, S.A. Chew, A. De Keersgieter, G. Mannaert, E. Rosseel, et al., in 2016 IEEE Symposium VLSI Technology (2016), pp. 1–2

  80. J. Ryckaert, P. Schuddinck, P. Weckx, G. Bouche, B. Vincent, J. Smith, Y. Sherazi, A. Mallik, H. Mertens, S. Demuynck, et al., in 2018 IEEE Symposium VLSI Technology (2018), pp. 141–142

  81. S. Kal, Y. Oniki, M. Falugh, C. Pereira, Q. Wang, F. Holsteyns, J. Smith, A. Mosden, K. Kumar, J. Boemmels, et al., in Advanced Etch Technology Nanopatterning VIII (2019), p. 109630L

  82. N. Collaert, in 2020 IEEE International Solid-State Circuits Conference (2020), pp. 25–29

  83. A. Mocuta, P. Weckx, S. Demuynck, D. Radisic, Y. Oniki, J. Ryckaert, in 2018 IEEE Symposium VLSI Technology (2018), pp. 147–148

  84. P. Schuddinck, O. Zografos, P. Weckx, P. Matagne, S. Sarkar, Y. Sherazi, R. Baert, D. Jang, D. Yakimets, A. Gupta, et al., in 2019 Symposium VLSI Technology (2019), pp. T204–T205

  85. S.M.Y. Sherazi, J.K. Chae, P. Debacker, L. Matti, D. Verkest, A. Mocuta, R.H. Kim, A. Spessot, A. Dounde, J. Ryckaert, in Design Co-Optimization Manufacturing XIII (2019), p. 1096206

  86. J. Ryckaert, M.H. Na, P. Weckx, D. Jang, P. Schuddinck, B. Chehab, S. Patli, S. Sarkar, O. Zografos, R. Baert, et al., in 2019 IEEE International Electron Devices Meeting (2019), pp. 24–29

  87. E. Ko, J. Shin, C. Shin, Nano Converg. 5, 1 (2018)

    Google Scholar 

  88. A. Seabaugh, C. Alessandri, M.A. Heidarlou, H.-M. Li, L. Liu, H. Lu, S. Fathipour, P. Paletti, P. Pandey, T. Ytterdal, in 2016 46th European Solid State Device Research Conference (2016), pp. 349–351

  89. H. Amrouch, G. Pahwa, A.D. Gaidhane, J. Henkel, Y.S. Chauhan, IEEE Access 6, 52754 (2018)

    Google Scholar 

  90. J.A. Del Alamo, D.A. Antoniadis, J. Lin, W. Lu, A. Vardi, X. Zhao, IEEE J. Electron Devices Soc. 4, 205 (2016)

    Google Scholar 

  91. L.-E. Wernersson, Microelectron. Eng. 147, 344 (2015)

    CAS  Google Scholar 

  92. F. Schwierz, J.J. Liou, in 2020 IEEE Latin-American Electron Devices Conference (2020), pp. 1–4

  93. A.S. Geege, N. Armugam, P. Vimala, T.S.A. Samuel, in 2020 5th International Conference on Circuits Devices and Systems (2020), pp. 311–315

  94. R. Dutta, S.C. Konar, N. Paitya, in Computational Advancement in Communication Circuits and Systems (Springer, Berlin, 2020), pp. 345–355

  95. S.A. Sahu, R. Goswami, S.K. Mohapatra, Silicon 12, 513 (2020)

    CAS  Google Scholar 

  96. S. Dash, G.P. Mishra, Adv. Nat. Sci. Nanosci. Nanotechnol. 7, 25012 (2016)

    Google Scholar 

  97. N. Guenifi, S.B. Rahi, T. Ghodbane, Mater. Focus 7, 866 (2018)

    CAS  Google Scholar 

  98. D. Jena, Proc. IEEE 101, 1585 (2013)

    CAS  Google Scholar 

  99. H. Ilatikhameneh, Y. Tan, B. Novakovic, G. Klimeck, R. Rahman, J. Appenzeller, IEEE J. Explor. Solid-State Comput. Devices Circuits 1, 12 (2015)

    Google Scholar 

  100. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, L. Colombo, Nat. Nanotechnol. 9, 768 (2014)

    CAS  Google Scholar 

  101. W. Li, J.C.S. Woo, IEEE Trans. Electron. Devices 67, 1480 (2020)

    Google Scholar 

  102. S. Badgujjar, G. Wadhwa, S. Singh, B. Raj, Trans. Electr. Electron. Mater. 21, 74 (2020)

    Google Scholar 

  103. V. P.-H. Hu, H.-H. Lin, Y.-K. Lin, C. Hu, IEEE Trans. Electron Devices 67, 2593 (2020). https://doi.org/10.1109/TED.2020.2986793

  104. M.R. Tripathy, A.K. Singh, S. Chander, P.K. Singh, K. Baral, S. Jit, in 2020 5th International Conference on Circuits Devices and Systems (2020), pp. 180–183

  105. S.B. Rahi, P. Asthana, S. Gupta, J. Comput. Electron. 16, 30 (2017)

    CAS  Google Scholar 

  106. P.K. Asthana, Y. Goswami, S. Basak, S.B. Rahi, B. Ghosh, RSC Adv. 5, 48779 (2015)

    CAS  Google Scholar 

  107. S.M. Biswal, B. Baral, D. De, A. Sarkar, Superlattices Microstruct. 91, 319 (2016)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushanta Kumar Mohapatra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samal, A., Tripathi, S.L. & Mohapatra, S.K. A Journey from Bulk MOSFET to 3 nm and Beyond. Trans. Electr. Electron. Mater. 21, 443–455 (2020). https://doi.org/10.1007/s42341-020-00222-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-020-00222-y

Keywords

Navigation