Skip to main content
Log in

Thermal Design and Analysis of Unfurlable CFRP Skin-Based Parabolic Reflector for Spaceborne SAR Antenna

  • Original Paper
  • Published:
International Journal of Aeronautical and Space Sciences Aims and scope Submit manuscript

Abstract

To ensure high-resolution image acquisition for a spaceborne parabolic synthetic aperture radar (SAR) antenna, an appropriate thermal design is important to minimize the thermal distortion of the antenna reflector in severe on-orbit thermal environments. This paper describes the results of a preliminary thermal design and the analysis of a carbon fiber reinforced plastic skin-based unfurlable parabolic reflector for use in a spaceborne SAR antenna. The effectiveness of passive thermal designs for an antenna reflector using different thermal coatings was investigated with on-orbit thermal analyses according to the various antenna look angles to derive the most suitable design for minimizing the thermal gradient of the reflector. This contributes to minimize loss in antenna gain to ensure the SAR performance. In addition, the influence of the solar panel on the thermal gradient of the reflector was also analyzed because it is also important in affecting the thermal distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wiley CA (1985) Synthetic aperture radars—a paradigm for technology evolution. IEEE Trans Aerosp Electron Syst 21(3):440–443

    Article  Google Scholar 

  2. Gens R, Van Genderen JL (2013) Review article SAR interferometry-issues, techniques, applications. Int J Remote Sens 17(10):1803–1835

    Article  Google Scholar 

  3. Heer C, Fischer C, Schaefer C (2010) Spaceborne SAR systems and technologies. In: IEEE MTT-S international microwave symposium, pp 538–541

  4. Krieger G, Moreira A, Fiedler H, Hajnsek I, Werner M, Younis M, Zink M (2007) TanDEM-X: a Satellite formation for high-resolution SAR interferometry. IEEE Trans Geosci Remote Sens 45(11):3317–3341

    Article  Google Scholar 

  5. Morena LC, James KV, Beck J (2004) An introduction to the RADARSAT-2 mission. Can J Remote Sens 30(3):221–234

    Article  Google Scholar 

  6. Werninghaus R, Buckreuss S (2010) The TerraSAR-X Mission and system design. IEEE Trans Geosci Remote Sens 48(2):606–614

    Article  Google Scholar 

  7. Naftaly U, Levy-Nathansohn R (2008) Overview of the TECSAR satellite hardware and mosaic mode. IEEE Trans Geosci Remote Sens 5(3):423–426

    Article  Google Scholar 

  8. L’Abbate M, Germani C, Torre A, Campolo G, Cascone D, Bombaci O, Soccorsi M, Iorio M, Varchetta S, Federici S (2015) Compact SAR and micro satellite solutions for Earth observation. In: 31st space symposium, pp 1–17

  9. Mondéjar AG (2009) Feasibility study on SAR systems on small satellites. Master Thesis. Universitat Politècnica de Catalunya Barcelonatech (UPC), pp 1–84

  10. Schmid M, Barho R (2003) Development summary and test results of a 3 meter unfurlable CFRP skin antenna reflector. In: Proceedings of 10th European space mechanisms and tribology symposium, pp 145–151

  11. Wang P, Wang F, Shi T, Wang B (2017) Thermal distortion compensation of a high precision umbrella antenna. J Phys Conf Ser 916:1–8

    Google Scholar 

  12. Reznik SV, Prosuntsov PV, Novikov AD (2017) Comparison of space antennas mirror reflectors parameters made of composite materials. MATEC Web Conf 110:1–4

    Article  Google Scholar 

  13. Imbriale WA, Gao SS, Boccia L (2012) Space antenna handbook. Wiley, New York, pp 133–178

    Book  Google Scholar 

  14. Tsunoda H, Nakajima K, Miyasaka A (1992) Thermal design verification of a large deployable antenna for a communications satellite. J Spacecr Rockets 29(2):271–278

    Article  Google Scholar 

  15. Rao S, Shafai L, Sharma SK (2013) Handbook of reflector antennas and feed systems volume III applications of reflectors. Artech House, pp 341–382

  16. Sacchi E, Guglielmo C, Colangelo G (1997) The thermal control of Artemis spacecraft. In: 27th international conference on environmental systems, pp 1–7

  17. Tanaka S, Ikeda T, Senba A (2016) Thermal deformation generated on a CFRP laminated reflector. Mech Eng J 3(6):1–9

    Google Scholar 

  18. Al-hindawi A (2016) Modeling of surface temperature distribution and thermal effects on reflector antenna radiation characteristics. J Model Simul Antennas Propag 2(1):22–33

    Google Scholar 

  19. Xu L, Ding J, Wang Y, Xie Y, Wu X, Ma Z (2019) Thermal stability analysis and experimental study of a new type of grid-reinforced carbon fiber mirror. Appl Compos Mater 26:469–478

    Article  Google Scholar 

  20. Wang B, Wang P (2019) Study on thermal distortion and thermal design optimization of satellite antenna reflector during orbit period. In: Proceeding of international conference on computer, communications and mechatronics engineering, pp 149–155

  21. Guo W, Li Y, Li ZY, Tian S, Wang S (2016) Thermal-structural analysis of large deployable space antenna under extreme heat loads. J Therm Stress 39(8):887–905

    Article  Google Scholar 

  22. Nie R, He B, Yan S, Ma X (2020) Design optimization of mesh antennas for on-orbit thermal effects. Int J Mech Sci 175 (in-progress)

  23. Nie R, He B, Yan S, Ma X (2020) Optimization design method for mesh reflector antennas considering the truss deformation and thermal effects. Eng Struct 208:1–10

    Article  Google Scholar 

  24. Chahat N, Sauder J, Mitchell M, Beidleman N, Freebury G (2016) One-meter deployable mesh reflector for deep space network telecommunication at X- and Ka-band. IEEE Trans Antennas Propag 68(2):1–9

    Google Scholar 

  25. Thermal Desktop User’s Manual, Ver 5.8 (2017) C&R Technologies, Inc., Boulder

  26. SINDA/FLUINT User’s Manual, Ver 5.8 (2015) C&R Technologies, Inc., Boulder

  27. Ruze J (1966) Antenna tolerance theory—a review. Proc IEEE 54(4):633–640

    Article  Google Scholar 

  28. Rochblatt DJ, Seidel BL (1992) Microwave antenna holography. IEEE Trans Microw Theory Tech 40(6):1294–1300

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Deployable SAR Reflector for Satellite Development Program (2019) and funded by the Defense Acquisition Program Administration and Agency for Defense Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Ung Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, TY., Kim, SY., Yi, DW. et al. Thermal Design and Analysis of Unfurlable CFRP Skin-Based Parabolic Reflector for Spaceborne SAR Antenna. Int. J. Aeronaut. Space Sci. 22, 433–444 (2021). https://doi.org/10.1007/s42405-020-00301-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42405-020-00301-7

Keywords

Navigation