Skip to main content

Advertisement

Log in

Applications of Nonlinearity in Passive Vibration Control: A Review

  • Review
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Background

Vibration present on various levels in many engineering fields and hence vibration mitigation has become a subject of intense study. The nonlinear vibration isolation devices are effective for broad frequency bandwidth and can provide better vibration isolation than linear devices. The need for nonlinearity in stiffness and damping characteristics has motivated researchers to apply the nonlinearity found in mechanisms or materials in the passive vibration control devices.

Review Factor

This review discusses the applications of nonlinearity in the passive vibration control devices to provide an understanding of how the nonlinearity is applied and useful in the implemented system. Further, applications for nonlinearity can also be extended in the energy harvesting devices, Nonlinear energy sink, metamaterials for the purpose of vibration isolation and energy harvesting. The need for nonlinearity also encouraged research work through inspiration from the nature called bio-inspired devices. The bio-inspired devices mimic the nonlinearity of the biological system to suppress the vibrations.

Conclusions

The nonlinear passive isolation is effective for wide frequency bandwidth than the linear isolation system. Further, the nonlinear systems also reduce transmissibility much efficiently than the linear system. The nonlinear energy harvesting system shows a great scope to harvest energy from wide ranges of excitations. The bio-inspired devices also are proven to be effective in vibration isolation. Additionally the design of the metamaterial with nonlinearity in the microstructure, proves to be promising in the vibration suppression applications. Based on the review, the nonlinearity introduced into the systems has greater benefits than the linear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45

Similar content being viewed by others

References

  1. Huang W et al (2018) Research on representative engineering vibration isolation and control using particle swarm optimization technique. J Vib Eng Technol 6(3):179–195

    Article  Google Scholar 

  2. Klembczyk, A.R. Introduction to Shock and Vibration Isolation and Damping Systems. 2014.

  3. Zheng P, Wang R, Gao J (2020) A comprehensive review on regenerative shock absorber systems. J Vib Eng Technol 8(1):225–246

    Article  Google Scholar 

  4. Mallik AK (1990) Principles of vibration control. Affiliated East-West Press, India

    Google Scholar 

  5. Simmons R (2007) Vibration isolation. ASHRAE 49:30–40

    Google Scholar 

  6. Abolfathi A (2012) Nonlinear vibration isolators with asymmetric stiffness, in institute of sound and vibration research. University of Southampton, Southampton, p 238

    Google Scholar 

  7. Ibrahim RA (2008) Recent advances in nonlinear passive vibration isolators. J Sound Vib 314(3):371–452

    Article  MathSciNet  Google Scholar 

  8. Xingtian L, Xiuchang H, Hongxing H (2013) Performance of a zero stiffness isolator under shock excitations. J Vib Control 20(14):2090–2099

    Article  Google Scholar 

  9. Yang X et al (2020) Structural design and isolation characteristic analysis of new quasi-zero-stiffness. J Vib Eng Technol 8(1):47–58

    Article  Google Scholar 

  10. Li FS, Chen Q, Zhou JH (2018) dynamic properties of a novel vibration isolator with negative stiffness. J Vib Eng Technol 6(3):239–247

    Article  Google Scholar 

  11. Cheng C et al (2018) Resonance response of a quasi-zero stiffness vibration isolator considering a constant force. J Vib Eng Technol 6(6):471–481

    Article  Google Scholar 

  12. Platus D (1992) Negative-stiffness-mechanism vibration isolation systems. SPIE technical: OPTCON '91, vol 1619: SPIE

  13. Alabuzhev PM, Rivin EI (1989) Vibration protection and measuring systems with quasi-zero stiffness. Taylor & Francis, Boca Raton

    Google Scholar 

  14. Carrella A, Brennan MJ, Waters TP (2007) Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J Sound Vib 301(3):678–689

    Article  Google Scholar 

  15. Carrella A et al (2009) On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J Sound Vib 322(4):707–717

    Article  Google Scholar 

  16. Zhou N, Liu K (2010) A tunable high-static–low-dynamic stiffness vibration isolator. J Sound Vib 329(9):1254–1273

    Article  Google Scholar 

  17. Zhu T et al (2015) Vibration isolation using six degree-of-freedom quasi-zero stiffness magnetic levitation. J Sound Vib 358:48–73

    Article  Google Scholar 

  18. Lan C-C, Yang S-A, Wu Y-S (2014) Design and experiment of a compact quasi-zero-stiffness isolator capable of a wide range of loads. J Sound Vib 333(20):4843–4858

    Article  Google Scholar 

  19. Huang X et al (2014) Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: a theoretical and experimental study. J Sound Vib 333(4):1132–1148

    Article  Google Scholar 

  20. Araki Y et al (2015) Integrated mechanical and material design of quasi-zero-stiffness vibration isolator with superelastic Cu–Al–Mn shape memory alloy bars. J Sound Vib 358:74–83

    Article  Google Scholar 

  21. Zhou J et al (2015) Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms. J Sound Vib 346:53–69

    Article  Google Scholar 

  22. Sun X et al (2014) Vibration isolation via a scissor-like structured platform. J Sound Vib 333(9):2404–2420

    Article  Google Scholar 

  23. Sun X, Jing X (2015) Multi-direction vibration isolation with quasi-zero stiffness by employing geometrical nonlinearity. Mech Syst Signal Process 62–63:149–163

    Article  Google Scholar 

  24. Sun X, Jing X (2016) A nonlinear vibration isolator achieving high-static–low-dynamic stiffness and tunable anti-resonance frequency band. Mech Syst Signal Process 80:166–188

    Article  Google Scholar 

  25. Ishida S, Suzuki K, Shimosaka H (2017) Design and experimental analysis of origami-inspired vibration isolator with quasi-zero-stiffness characteristic. J Vib Acoust 139:5

    Google Scholar 

  26. Cai C et al (2020) Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps. Compos Struct 236:111862

    Article  Google Scholar 

  27. Fan H et al (2020) Design of metastructures with quasi-zero dynamic stiffness for vibration isolation. Compos Struct 20:112244

    Article  Google Scholar 

  28. Virgin LN, Santillan ST, Plaut RH (2008) Vibration isolation using extreme geometric nonlinearity. J Sound Vib 315(3):721–731

    Article  Google Scholar 

  29. Virgin LN, Davis RB (2003) Vibration isolation using buckled struts. J Sound Vib 260(5):965–973

    Article  Google Scholar 

  30. Le TD, Ahn KK (2011) A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat. J Sound Vib 330(26):6311–6335

    Article  Google Scholar 

  31. Jo H, Yabuno H (2010) Amplitude reduction of parametric resonance by dynamic vibration absorber based on quadratic nonlinear coupling. J Sound Vib 329(11):2205–2217

    Article  Google Scholar 

  32. Winterflood J, Blair DG (1998) A long-period vertical vibration isolator for gravitational wave detection. Phys Lett A 243(1):1–6

    Article  Google Scholar 

  33. Shaw AD et al (2013) A nonlinear spring mechanism incorporating a bistable composite plate for vibration isolation. J Sound Vib 332(24):6265–6275

    Article  Google Scholar 

  34. Lu Z et al (2013) An investigation of a two-stage nonlinear vibration isolation system. J Sound Vib 332(6):1456–1464

    Article  Google Scholar 

  35. Le TD, Ahn KK (2013) Experimental investigation of a vibration isolation system using negative stiffness structure. Int J Mech Sci 70:99–112

    Article  Google Scholar 

  36. Chin EJ et al (2005) Low frequency vertical geometric anti-spring vibration isolators. Phys Lett A 336(2):97–105

    Article  MATH  Google Scholar 

  37. de Haro SL, Paupitz Gonçalves PJ, Wagg D (2018) On the dynamic behavior of the Zener model with nonlinear stiffness for harmonic vibration isolation. Mech Syst Signal Process 112:343–358

    Article  Google Scholar 

  38. Rao MD (2003) Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes. J Sound Vib 262(3):457–474

    Article  Google Scholar 

  39. Thureau P, Lecler D (1981) An introduction to the principles of vibrations of linear systems. Wiley, New York

    Google Scholar 

  40. Lang ZQ et al (2006) Analytical description of the effects of system nonlinearities on output frequency responses: a case study. J Sound Vib 295(3):584–601

    Article  Google Scholar 

  41. Lang ZQ et al (2007) Output frequency response function of nonlinear Volterra systems. Automatica 43(5):805–816

    Article  MathSciNet  MATH  Google Scholar 

  42. Lang ZQ et al (2009) Theoretical study of the effects of nonlinear viscous damping on vibration isolation of sdof systems. J Sound Vib 323(1):352–365

    Article  Google Scholar 

  43. Daley S, Hätönen J, Owens DH (2006) Active vibration isolation in a “smart spring” mount11“Smart Spring” is a trademark of BAE Systems using a repetitive control approach. Control Eng Pract 14(9):991–997

    Article  Google Scholar 

  44. Sharma SK, Saini U, Kumar A (2019) Semi-active control to reduce lateral vibration of passenger rail vehicle using disturbance rejection and continuous state damper controllers. J Vib Eng Technol 7(2):117–129

    Article  Google Scholar 

  45. Ho C, Lang Z-Q, Billings SA (2014) Design of vibration isolators by exploiting the beneficial effects of stiffness and damping nonlinearities. J Sound Vib 333(12):2489–2504

    Article  Google Scholar 

  46. Xu H, Jin X, Huang Z (2019) Random response of spring–damper–mass–belt system with coulomb friction. J Vib Eng Technol 20:19

    Google Scholar 

  47. Liao J et al (2019) Numerical study of dry friction vibration system with oblique friction force. J Vib Eng Technol 7(1):1–9

    Article  Google Scholar 

  48. Yu, A., Vibration damping of stranded cable. 1949, Leigh University.

  49. Vanderveldt HH, Chung BS, Reader WT (1973) Some dynamic properties of axially loaded wire ropes. Exp Mech 13(1):24–30

    Article  Google Scholar 

  50. Claren R, Diana G (1969) Mathematical analysis of transmission line vibration. Power Apparat Syst IEEE Trans 88(12):1741–1771

    Article  Google Scholar 

  51. Claren R, Diana G (1969) Dynamic strain distribution on loaded stranded cables. Power Appar Syst IEEE Trans 88(11):1678–1690

    Article  Google Scholar 

  52. Xu YL et al (1999) Experimental study of vibration mitigation of bridge stay cables. J Struct Eng 125(9):977–986

    Article  Google Scholar 

  53. Ko JM et al (2002) Field vibration tests of bridge stay cables incorporated with magnetorheological (MR) dampers

  54. Demetriades GF, Constantinou MC, Reinhorn AM (1993) Study of wire rope systems for seismic protection of equipment in buildings. Eng Struct 15(5):321–334

    Article  Google Scholar 

  55. Sauter D, Hagedorn P (2002) On the hysteresis of wire cables in Stockbridge dampers. Int J Non-Linear Mech 37(8):1453–1459

    Article  MATH  Google Scholar 

  56. Carpineto N, Lacarbonara W, Vestroni F (2014) Hysteretic tuned mass dampers for structural vibration mitigation. J Sound Vib 333(5):1302–1318

    Article  Google Scholar 

  57. Barry O, Oguamanam DC, Lin DC (2013) Aeolian vibration of a single conductor with a Stockbridge damper. Proc Inst Mech Eng Part C J Mech Eng Sci 227(5):935–945

    Article  Google Scholar 

  58. Barbieri N, Barbieri R (2012) Dynamic analysis of stockbridge damper. Adv Acoust Vib 2012:8

    Google Scholar 

  59. Diana G et al (2002) Stockbridge type damper effectiveness evaluation, Part II: the influence of the impedance matrix terms on the energy dissipated. Power Eng Rev IEEE 22(11):63–64

    Google Scholar 

  60. Diana G et al (2003) Stockbridge-type damper effectiveness evaluation. I. Comparison between tests on span and on the shaker. Power Deliv IEEE Trans 18(4):1462–1469

    Article  Google Scholar 

  61. Li L et al (2013) Experimental study on mitigation devices of aeolian vibration of bundled conductors. Adv Struct Eng 16(9):1557–1566

    Article  Google Scholar 

  62. Barry O, Zu JW, Oguamanam DCD (2015) Nonlinear dynamics of stockbridge dampers. J Dyn Syst Meas Contr 137(6):061017–061017

    Article  Google Scholar 

  63. Balaji P et al (2015) Wire rope isolators for vibration isolation of equipment and structures—a review. In IOP conference series: materials science and engineering. IOP Publishing, Bristol

    Google Scholar 

  64. Ni YQ et al (1999) Modelling and identification of a wire-cable vibration isolator via a cyclic loading test. Proc Inst Mech Eng Part I J Syst Control Eng 213(3):163–172

    Article  Google Scholar 

  65. Chungui Z et al (2009) Hybrid modeling of wire cable vibration isolation system through neural network. Math Comput Simul 79(10):3160–3173

    Article  MathSciNet  MATH  Google Scholar 

  66. Weimin C, Gang L, Wei C (1997) Research on ring structure wire-rope isolators. J Mater Process Technol 72(1):24–27

    Article  Google Scholar 

  67. Tinker ML, Cutchins MA (1992) Damping phenomena in a wire rope vibration isolation system. J Sound Vib 157(1):7–18

    Article  Google Scholar 

  68. Leblouba M, Rahman ME, Barakat S (2019) Behavior of polycal wire rope isolators subjected to large lateral deformations. Eng Struct 191:117–128

    Article  Google Scholar 

  69. Demetriades GF, Constantinou MC, Reinhorn AM (1992) Study of wire rope systems for seismic protection of equipment in buildings (NCEER-92-0012), in Department of Civil Engineering. State Univeristy of New York, New Yotk

    Google Scholar 

  70. Balaji PS et al (2015) Experimental investigation on the hysteresis behavior of the wire rope isolators. J Mech Sci Technol 29(4):1527–1536

    Article  Google Scholar 

  71. Balaji PS et al (2016) An analytical study on the static vertical stiffness of wire rope isolators. J Mech Sci Technol 30(1):287–295

    Article  Google Scholar 

  72. Balaji PS et al (2016) Static lateral stiffness of wire rope isolators. Mech Based Design Struct Mach 44(4):462–475

    Article  Google Scholar 

  73. Massa G et al (2013) Sensitive equipments on WRS-BTU isolators. Meccanica 48(7):1777–1790

    Article  MATH  Google Scholar 

  74. Alessandri S et al (2015) Seismic retrofitting of an HV circuit breaker using base isolation with wire ropes. Part 2: Shaking-table test validation. Eng Struct 98:263–274

    Article  Google Scholar 

  75. Alessandri S et al (2015) Seismic retrofitting of an HV circuit breaker using base isolation with wire ropes. Part 1: Preliminary tests and analyses. Eng Struct 98:251–262

    Article  Google Scholar 

  76. Narkhede DI, Sinha R (2014) Behavior of nonlinear fluid viscous dampers for control of shock vibrations. J Sound Vib 333(1):80–98

    Article  Google Scholar 

  77. Kangda MZ, Bakre S (2020) Performance evaluation of moment-resisting steel frame buildings under seismic and blast-induced vibrations. J Vib Eng Technol 8(1):1–26

    Article  Google Scholar 

  78. Rivin EI (2003) Passive vibration isolation. ASME Press, New York

    Book  Google Scholar 

  79. Pekcan G, Mander JB, Chen SS (1999) Fundamental considerations for the design of non-linear viscous dampers. Earthq Eng Struct Dyn 28(11):1405–1425

    Article  Google Scholar 

  80. Soong TT, Dargush GF (1997) Passive energy dissipation systems in structural engineering. Wiley, New York

    Google Scholar 

  81. KrÜGer W et al (1997) Aircraft landing gear dynamics: simulation and control. Veh Syst Dyn 28(2–3):119–158

    Article  Google Scholar 

  82. Koo J-H, Shukla A, Ahmadian M (2008) Dynamic performance analysis of non-linear tuned vibration absorbers. Commun Nonlinear Sci Numer Simul 13(9):1929–1937

    Article  Google Scholar 

  83. Naeim F, Kelly JM (1999) Design of seismic isolated structures: from theory to practice. John Wiley, New York

    Book  Google Scholar 

  84. Van Engelen NC (2019) Fiber-reinforced elastomeric isolators: a review. Soil Dyn Earthq Eng 125:105621

    Article  Google Scholar 

  85. Kandasamy R et al (2016) A review of vibration control methods for marine offshore structures. Ocean Eng 127:279–297

    Article  Google Scholar 

  86. Shen X et al (2019) Design, experiment and verification of resonant frequency-tunable vibration isolator based on annular metal rubbers and shape memory alloy actuators. J Vib Eng Technol 7(3):277–289

    Article  Google Scholar 

  87. Kolekar S et al (2019) Vibration controllability of sandwich structures with smart materials of electrorheological fluids and magnetorheological materials: a review. J Vib Eng Technol 7(4):359–377

    Article  Google Scholar 

  88. Ölander A (1932) An electrochemical investigation of solid cadmium-gold alloys. J Am Chem Soc 54(10):3819–3833

    Article  Google Scholar 

  89. Ebara M et al (2014) Smart biomaterials. Springer, Japan

    Book  Google Scholar 

  90. Mohd Jani J et al (2014) A review of shape memory alloy research, applications and opportunities. Mater Des (1980–2015) 56:1078–1113

    Article  Google Scholar 

  91. Rustighi E, Brennan MJ, Mace BR (2004) A shape memory alloy adaptive tuned vibration absorber: design and implementation. Smart Mater Struct 14(1):19–28

    Article  Google Scholar 

  92. Yang K, Gu CL (2002) A novel robot hand with embedded shape memory alloy actuators. Proc Inst Mech Eng Part C J Mech Eng Sci 216(7):737–745

    Article  Google Scholar 

  93. Braun SG, Ewins DJ, Rao SS (2001) Encyclopedia of vibration, three-volume set. Elsevier, New York

    Google Scholar 

  94. Ghasemi MR, Shabakhty N, Enferadi MH (2019) Vibration control of offshore jacket platforms through shape memory alloy pounding tuned mass damper (SMA-PTMD). Ocean Eng 191:106348

    Article  Google Scholar 

  95. Williams KA, Chiu GTC, Bernhard RJ (2005) Nonlinear control of a shape memory alloy adaptive tuned vibration absorber. J Sound Vib 288(4):1131–1155

    Article  Google Scholar 

  96. Sunjai NS, Josephine SRD, Dhanalakshmi K (2014) Design and experimental evaluation of higher order sliding mode control for vibration suppression of shape memory alloy actuated structure. IFAC Proc Vol 47(1):1061–1066

    Article  Google Scholar 

  97. Alaneme KK, Okotete EA, Anaele JU (2019) Structural vibration mitigation—a concise review of the capabilities and applications of Cu and Fe based shape memory alloys in civil structures. J Build Eng 22:22–32

    Article  Google Scholar 

  98. Song G, Ma N, Li HN (2006) Applications of shape memory alloys in civil structures. Eng Struct 28(9):1266–1274

    Article  Google Scholar 

  99. Dolce M, Cardone D, Marnetto R (2001) SMA recentering devices for seismic isolation of civil structures. In: SPIE's 8th annual international symposium on smart structures and materials, vol 4330, SPIE

  100. Khan M, Lagoudas D (2002) Modeling of shape memory alloy pseudoelastic spring elements using Preisach model for passive vibration isolation. In: SPIE's 9th annual international symposium on smart structures and materials, vol 4693, SPIE

  101. Li H, Liu M, Ou J (2004) Vibration mitigation of a stay cable with one shape memory alloy damper. Struct Control Health Monit 11(1):21–36

    Article  Google Scholar 

  102. Hu Z, Zheng G (2016) A combined dynamic analysis method for geometrically nonlinear vibration isolators with elastic rings. Mech Syst Signal Process 76–77:634–648

    Article  Google Scholar 

  103. Mallik AK et al (1999) On the modelling of non-linear elastomeric vibration isolators. J Sound Vib 219(2):239–253

    Article  Google Scholar 

  104. Tang N, Rongong JA, Sims ND (2018) Design of adjustable tuned mass dampers using elastomeric O-rings. J Sound Vib 433:334–348

    Article  Google Scholar 

  105. Damanpack AR et al (2014) On the vibration control capability of shape memory alloy composite beams. Compos Struct 110:325–334

    Article  Google Scholar 

  106. Şigaher AN, Constantinou MC (2003) Scissor-jack-damper energy dissipation system. Earthq Spectra 19(1):133–158

    Article  Google Scholar 

  107. Wang C et al (2019) Nonlinear damping and nonlinear responses of recycled aggregate concrete frames under earthquake loading. Eng Struct 201:109575

    Article  Google Scholar 

  108. Dziedziech K et al (2018) Analysis of tuned liquid column damper nonlinearities. Eng Struct 171:1027–1033

    Article  Google Scholar 

  109. Ismail M et al (2013) Characterization, modeling and assessment of Roll-N-Cage isolator using the cable-stayed bridge benchmark. Acta Mech 224(3):525–547

    Article  MATH  Google Scholar 

  110. Jiang W et al (2020) Double jump broadband energy harvesting in a Helmholtz–Duffing Oscillator. J Vib Eng Technol 20:20

    Google Scholar 

  111. Shi DH et al (2019) Research on energy-regenerative performance of suspension system with semi-active control. J Vib Eng Technol 7(5):465–475

    Article  Google Scholar 

  112. Guo H et al (2019) Parametric prediction models of harvesting electric energy density for piezoelectric transducers. J Vib Eng Technol 7(4):389–398

    Article  Google Scholar 

  113. Chen Y et al (2018) Theoretical assessment on piezoelectric energy harvesting in smart self-powered asphalt pavements. J Vib Eng Technol 6(1):1–10

    Article  Google Scholar 

  114. Suzuki Y et al (2010) A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications. J Micromech Microeng 20(10):104002

    Article  Google Scholar 

  115. Wang Z et al (2019) Parametric influence on energy harvesting of magnetic levitation using harmonic balance method. J Vib Eng Technol 7(6):543–549

    Article  Google Scholar 

  116. Wu T-L, Lai Y-H, Fung R-F (2019) Comparisons of fitness functions in identifying an electromagnetic energy harvester. J Vib Eng Technol 7(2):167–177

    Article  Google Scholar 

  117. Liu C, Jing X (2016) Vibration energy harvesting with a nonlinear structure. Nonlinear Dyn 84(4):2079–2098

    Article  MathSciNet  Google Scholar 

  118. Wei C, Jing X (2017) Vibrational energy harvesting by exploring structural benefits and nonlinear characteristics. Commun Nonlinear Sci Numer Simul 48:288–306

    Article  MathSciNet  MATH  Google Scholar 

  119. Wu Z, RL Harne, KW Wang (2014) Energy harvester synthesis via coupled linear-bistable system with multistable dynamics. J Appl Mech 81:6.

  120. Challa VR et al (2008) A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater Struct 17(1):015035

    Article  Google Scholar 

  121. Yuan T-C, Yang J, Chen L-Q (2018) Nonlinear dynamics of a circular piezoelectric plate for vibratory energy harvesting. Commun Nonlinear Sci Numer Simul 59:651–656

    Article  MathSciNet  MATH  Google Scholar 

  122. Daqaq MF (2012) On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations. Nonlinear Dyn 69(3):1063–1079

    Article  MathSciNet  Google Scholar 

  123. Li Y, Zhou S, Litak G (2020) Uncertainty analysis of bistable vibration energy harvesters based on the improved interval extension. J Vib Eng Technol 8(2):297–306

    Article  Google Scholar 

  124. Tang L, Yang Y, Soh C-K (2012) Improving functionality of vibration energy harvesters using magnets. J Intell Mater Syst Struct 23(13):1433–1449

    Article  Google Scholar 

  125. Cottone F et al (2012) Piezoelectric buckled beams for random vibration energy harvesting. Smart Mater Struct 21(3):035021

    Article  Google Scholar 

  126. Zhou Z, Qin W, Zhu P (2017) A broadband quad-stable energy harvester and its advantages over bi-stable harvester: simulation and experiment verification. Mech Syst Signal Process 84:158–168

    Article  Google Scholar 

  127. Chiacchiari S et al (2017) Vibration energy harvesting from impulsive excitations via a bistable nonlinear attachment. Int J Non-Linear Mech 94:84–97

    Article  Google Scholar 

  128. Aravind Kumar K, Ali SF, Arockiarajan A (2015) Piezomagnetoelastic broadband energy harvester: nonlinear modeling and characterization. Eur Phys J Spec Top 224(14):2803–2822

    Article  Google Scholar 

  129. Firoozy P, Khadem SE, Pourkiaee SM (2017) Broadband energy harvesting using nonlinear vibrations of a magnetopiezoelastic cantilever beam. Int J Eng Sci 111:113–133

    Article  MathSciNet  MATH  Google Scholar 

  130. Thomson G et al (2019) Advantages of nonlinear energy harvesting with dielectric elastomers. J Sound Vib 442:167–182

    Article  Google Scholar 

  131. Yildirim T et al (2017) Design of an enhanced wideband energy harvester using a parametrically excited array. J Sound Vib 410:416–428

    Article  Google Scholar 

  132. Li S et al (2019) Energy-harvesting variable/constant damping suspension system with motor based electromagnetic damper. Energy 189:116199

    Article  Google Scholar 

  133. Gendelman O et al (2000) Energy pumping in nonlinear mechanical oscillators: Part I—dynamics of the underlying hamiltonian systems. J Appl Mech 68(1):34–41

    Article  MathSciNet  MATH  Google Scholar 

  134. Vakakis AF (2001) Inducing passive nonlinear energy sinks in vibrating systems. J Vib Acoust 123(3):324–332

    Article  Google Scholar 

  135. Kerschen G et al (2005) Irreversible passive energy transfer in coupled oscillators with essential nonlinearity. SIAM J Appl Math 66(2):648–679

    Article  MathSciNet  MATH  Google Scholar 

  136. Dekemele K, Van Torre P, Loccufier M (2020) Design, construction and experimental performance of a nonlinear energy sink in mitigating multi-modal vibrations. J Sound Vib 473:115243

    Article  Google Scholar 

  137. Vakakis AF et al (2008) Nonlinear targeted energy transfer in mechanical and structural systems. Springer, Netherlands

    MATH  Google Scholar 

  138. Panagopoulos PN, Gendelman O, Vakakis AF (2007) Robustness of nonlinear targeted energy transfer in coupled oscillators to changes of initial conditions. Nonlinear Dyn 47(4):377–387

    Article  MathSciNet  MATH  Google Scholar 

  139. Vakakis AF, Gendelman O (2000) Energy pumping in nonlinear mechanical oscillators: Part II—resonance capture. J Appl Mech 68(1):42–48

    Article  MATH  Google Scholar 

  140. McFarland DM, Bergman LA, Vakakis AF (2005) Experimental study of non-linear energy pumping occurring at a single fast frequency. Int J Non-Linear Mech 40(6):891–899

    Article  MATH  Google Scholar 

  141. Pennisi G et al (2018) Design and experimental study of a nonlinear energy sink coupled to an electromagnetic energy harvester. J Sound Vib 437:340–357

    Article  Google Scholar 

  142. Yang K et al (2017) Nonlinear energy sink for whole-spacecraft **vibration reduction. J Vib Acoust 139:2.

  143. Bab S et al (2017) Vibration attenuation of a continuous rotor-blisk-journal bearing system employing smooth nonlinear energy sinks. Mech Syst Signal Process 84:128–157

    Article  Google Scholar 

  144. Nucera F et al (2010) Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: computational results. J Sound Vib 329(15):2973–2994

    Article  Google Scholar 

  145. Al-Shudeifat MA et al (2017) Numerical and experimental investigations of a rotating nonlinear energy sink. Meccanica 52(4):763–779

    Article  Google Scholar 

  146. Weiss M et al (2014) Dynamical behavior of a mechanical system including Saint-Venant component coupled to a non-linear energy sink. Int J Non-Linear Mech 63:10–18

    Article  Google Scholar 

  147. Gendelman OV (2012) Analytic treatment of a system with a vibro-impact nonlinear energy sink. J Sound Vib 331(21):4599–4608

    Article  Google Scholar 

  148. Kerschen G et al (2008) Impulsive periodic and quasi-periodic orbits of coupled oscillators with essential stiffness nonlinearity. Commun Nonlinear Sci Numer Simul 13(5):959–978

    Article  MathSciNet  MATH  Google Scholar 

  149. Yao H et al (2019) Using grounded nonlinear energy sinks to suppress lateral vibration in rotor systems. Mech Syst Signal Process 124:237–253

    Article  Google Scholar 

  150. Yao H et al (2020) Bi-stable buckled beam nonlinear energy sink applied to rotor system. Mech Syst Signal Process 138:106546

    Article  Google Scholar 

  151. Vakakis AF et al (2003) Dynamics of linear discrete systems connected to local, essentially non-linear attachments. J Sound Vib 264(3):559–577

    Article  Google Scholar 

  152. Kerschen G et al (2007) Theoretical and experimental study of multimodal targeted energy transfer in a system of coupled oscillators. Nonlinear Dyn 47(1):285–309

    MathSciNet  MATH  Google Scholar 

  153. Guo C et al (2015) Vibration reduction in unbalanced hollow rotor systems with nonlinear energy sinks. Nonlinear Dyn 79(1):527–538

    Article  Google Scholar 

  154. Bab S et al (2017) Vibration mitigation of a rotating beam under external periodic force using a nonlinear energy sink (NES). J Vib Control 23(6):1001–1025

    Article  MathSciNet  Google Scholar 

  155. Ebrahimzade N, Dardel M, Shafaghat R (2018) Investigating the aeroelastic behaviors of rotor blades with nonlinear energy sinks. AIAA J 56(7):2856–2869

    Article  Google Scholar 

  156. Bergeot B, Bellizzi S, Cochelin B (2017) Passive suppression of helicopter ground resonance using nonlinear energy sinks attached on the helicopter blades. J Sound Vib 392:41–55

    Article  Google Scholar 

  157. Kremer D, Liu K (2017) A nonlinear energy sink with an energy harvester: harmonically forced responses. J Sound Vib 410:287–302

    Article  Google Scholar 

  158. Bab S, Khadem SE, Shahgholi M (2014) Lateral vibration attenuation of a rotor under mass eccentricity force using non-linear energy sink. Int J Non-Linear Mech 67:251–266

    Article  Google Scholar 

  159. Farzaneh HH, Lindemann U (2019) A practical guide to bio-inspired design. Springer, Berlin

    Book  Google Scholar 

  160. Helms M, Vattam SS, Goel AK (2009) Biologically inspired design: process and products. Des Stud 30(5):606–622

    Article  Google Scholar 

  161. Benyus JM (2009) Biomimicry: innovation inspired by nature. HarperCollins e-books, New York

    Google Scholar 

  162. Lepora NF, Verschure P, Prescott TJ (2013) The state of the art in biomimetics. Bioinspir Biomimet 8(1):013001

    Article  Google Scholar 

  163. Jing X et al (2019) A novel bio-inspired anti-vibration structure for operating hand-held jackhammers. Mech Syst Signal Process 118:317–339

    Article  Google Scholar 

  164. Wang Y et al (2019) Subharmonics and ultra-subharmonics of a bio-inspired nonlinear isolation system. Int J Mech Sci 152:167–184

    Article  Google Scholar 

  165. Wang X et al (2020) Vibration suppression for post-capture spacecraft via a novel bio-inspired Stewart isolation system. Acta Astronaut 168:1–22

    Article  Google Scholar 

  166. Wu Z et al (2015) Vibration isolation by exploring bio-inspired structural nonlinearity. Bioinspir Biomimet 10(5):056015

    Article  Google Scholar 

  167. Dai H et al (2020) Bio-inspired anti-impact manipulator for capturing non-cooperative spacecraft: theory and experiment. Mech Syst Signal Process 142:106785

    Article  Google Scholar 

  168. Dai H et al (2018) Post-capture vibration suppression of spacecraft via a bio-inspired isolation system. Mech Syst Signal Process 105:214–240

    Article  Google Scholar 

  169. Dai H et al (2018) Accurate modeling and analysis of a bio-inspired isolation system: with application to on-orbit capture. Mech Syst Signal Process 109:111–133

    Article  Google Scholar 

  170. Matsumoto Y, Griffin MJ (1998) Dynamic response of the standing human body exposed to vertical vibration: influence of posture and vibration magnitude. J Sound Vib 212(1):85–107

    Article  Google Scholar 

  171. Smeathers JE (1989) Measurement of transmissibility for the human spine during walking and running. Clin Biomech 4(1):34–40

    Article  Google Scholar 

  172. Umberger BR (2008) Effects of suppressing arm swing on kinematics, kinetics, and energetics of human walking. J Biomech 41(11):2575–2580

    Article  Google Scholar 

  173. Collins SH, Adamczyk PG, Kuo AD (2009) Dynamic arm swinging in human walking. Proc Biol Sci 276(1673):3679–3688

    Article  Google Scholar 

  174. Paddan GS, Griffin MJ (1993) The transmission of translational floor vibration to the heads of standing subjects. J Sound Vib 160(3):503–521

    Article  Google Scholar 

  175. Feng X et al (2019) Bio-inspired anti-vibration with nonlinear inertia coupling. Mech Syst Signal Process 124:562–595

    Article  Google Scholar 

  176. Jiang G, Jing X, Guo Y (2020) A novel bio-inspired multi-joint anti-vibration structure and its nonlinear HSLDS properties. Mech Syst Signal Process 138:106552

    Article  Google Scholar 

  177. Yang HTY et al (2010) Bio-inspired passive actuator simulating an abalone shell mechanism for structural control. Smart Mater Struct 19(10):105011

    Article  Google Scholar 

  178. Kim Y, Kim C, Langari R (2010) Novel bio-inspired smart control for hazard mitigation of civil structures. Smart Mater Struct 19(11):115009

    Article  Google Scholar 

  179. Yang HT et al (2019) Preliminary design, experiment, and numerical study of a prototype hydraulic bio-inspired damper. J Sound Vib 459:114845

    Article  Google Scholar 

  180. Chen X et al (2016) Bio-inspired passive optimized base-isolation system for seismic mitigation of building structures. J Eng Mech 142(1):04015061

    Article  Google Scholar 

  181. Kim GW, Kang J (2019) The V-shaped band-stop vibration isolator inspired by middle ear. Appl Acoust 150:162–168

    Article  Google Scholar 

  182. Cummer SA, Christensen J, Alù A (2016) Controlling sound with acoustic metamaterials. Nat Rev Mater 1(3):16001

    Article  Google Scholar 

  183. Sang S, Sandgren E (2018) Study of two-dimensional acoustic metamaterial based on lattice system. J Vib Eng Technol 6(6):513–521

    Article  Google Scholar 

  184. Sang S, Sandgren E (2019) Study of in-plane wave propagation in 2-dimensional anisotropic elastic metamaterials. J Vib Eng Technol 7(1):63–72

    Article  Google Scholar 

  185. Chen L, Bian Y-S, Zhou R (2019) Large band gaps of petal-shaped acoustic metamaterials based on local resonance. J Vib Eng Technol 7(1):53–61

    Article  Google Scholar 

  186. Bakır M et al (2017) Multifunctional metamaterial sensor applications based on chiral nihility. Opt Quant Electron 49(11):346

    Article  Google Scholar 

  187. Bakır M et al (2018) Metamaterial-based energy harvesting for GSM and satellite communication frequency bands. Opt Eng 57(8):087110

    Article  Google Scholar 

  188. Lee SH et al (2009) Acoustic metamaterial with negative modulus. J Phys Condens Matter 21(17):175704

    Article  Google Scholar 

  189. Pai PF (2010) Metamaterial-based broadband elastic wave absorber. J Intell Mater Syst Struct 21(5):517–528

    Article  Google Scholar 

  190. Cai W et al (2007) Optical cloaking with metamaterials. Nat Photon 1(4):224–227

    Article  Google Scholar 

  191. Ambati M et al (2007) Surface resonant states and superlensing in acoustic metamaterials. Phys Rev B 75(19):195447

    Article  Google Scholar 

  192. Sigalas M, Economou EN (1993) Band structure of elastic waves in two dimensional systems. Solid State Commun 86(3):141–143

    Article  Google Scholar 

  193. Kushwaha MS et al (1993) Acoustic band structure of periodic elastic composites. Phys Rev Lett 71(13):2022–2025

    Article  Google Scholar 

  194. Jensen JS (2003) Phononic band gaps and vibrations in one- and two-dimensional mass–spring structures. J Sound Vib 266(5):1053–1078

    Article  Google Scholar 

  195. Liu Z et al (2000) Locally resonant sonic materials. Science 289(5485):1734

    Article  Google Scholar 

  196. Akjouj A et al (2003) Stopping and filtering waves in phononic circuits. J Phys Condens Matter 16(1):37–44

    Article  Google Scholar 

  197. Khelif A et al (2003) Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials. Phys Rev B 68(2):024302

    Article  Google Scholar 

  198. Tol S, Degertekin FL, Erturk A (2017) Structurally embedded reflectors and mirrors for elastic wave focusing and energy harvesting. J Appl Phys 122(16):164503

    Article  Google Scholar 

  199. Zhou X, Liu X, Hu G (2012) Elastic metamaterials with local resonances: an overview. Theoret Appl Mech Lett 2(4):041001

    Article  Google Scholar 

  200. Xu X et al (2015) Experimental study on acoustic subwavelength imaging based on zero-mass metamaterials. EPL (Europhysics Letters) 109(2):28001

    Article  Google Scholar 

  201. Yang Z et al (2008) Membrane-type acoustic metamaterial with negative dynamic mass. Phys Rev Lett 101(20):204301

    Article  Google Scholar 

  202. Huang HH, Sun CT, Huang GL (2009) On the negative effective mass density in acoustic metamaterials. Int J Eng Sci 47(4):610–617

    Article  Google Scholar 

  203. Zhu R et al (2014) Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial. Nat Commun 5(1):5510

    Article  Google Scholar 

  204. Xu X et al (2019) Tailoring vibration suppression bands with hierarchical metamaterials containing local resonators. J Sound Vib 442:237–248

    Article  Google Scholar 

  205. Barnhart MV et al (2019) Experimental demonstration of a dissipative multi-resonator metamaterial for broadband elastic wave attenuation. J Sound Vib 438:1–12

    Article  Google Scholar 

  206. Lai Y et al (2011) Hybrid elastic solids. Nat Mater 10(8):620–624

    Article  Google Scholar 

  207. Manimala JM, Sun CT (2014) Microstructural design studies for locally dissipative acoustic metamaterials. J Appl Phys 115(2):023518

    Article  Google Scholar 

  208. Xu X et al (2019) A nonlinear dissipative elastic metamaterial for broadband wave mitigation. Int J Mech Sci 164:105159

    Article  Google Scholar 

  209. Chen YY, Hu GK, Huang GL (2016) An adaptive metamaterial beam with hybrid shunting circuits for extremely broadband control of flexural waves. Smart Mater Struct 25(10):105036

    Article  Google Scholar 

  210. Boechler N, Theocharis G, Daraio C (2011) Bifurcation-based acoustic switching and rectification. Nat Mater 10(9):665–668

    Article  Google Scholar 

  211. Gulevich DR et al (2017) Exploring nonlinear topological states of matter with exciton-polaritons: edge solitons in kagome lattice. Sci Rep 7(1):1780

    Article  MathSciNet  Google Scholar 

  212. Deng B et al (2018) Metamaterials with amplitude gaps for elastic solitons. Nat Commun 9(1):3410

    Article  Google Scholar 

  213. Casalotti A, El-Borgi S, Lacarbonara W (2018) Metamaterial beam with embedded nonlinear vibration absorbers. Int J Non-Linear Mech 98:32–42

    Article  Google Scholar 

  214. Zhu R et al (2014) A chiral elastic metamaterial beam for broadband vibration suppression. J Sound Vib 333(10):2759–2773

    Article  Google Scholar 

  215. Bae MH, Oh JH (2020) Amplitude-induced bandgap: new type of bandgap for nonlinear elastic metamaterials. J Mech Phys Solids 139:103930

    Article  MathSciNet  Google Scholar 

  216. Correa Dixon M et al (2015) Negative stiffness honeycombs for recoverable shock isolation. Rapid Prototyp J 21(2):193–200

    Article  Google Scholar 

  217. Fulcher BA et al (2014) Analytical and experimental investigation of buckled beams as negateve stiffness elements for passive vibration and shock isolation systems. J Vib Acoust 136:3

    Article  Google Scholar 

  218. Restrepo D, Mankame ND, Zavattieri PD (2015) Phase transforming cellular materials. Extreme Mech Lett 4:52–60

    Article  Google Scholar 

  219. Lakes RS (2001) Extreme damping in composite materials with a negative stiffness phase. Phys Rev Lett 86(13):2897–2900

    Article  Google Scholar 

  220. Che K et al (2016) Three-dimensional-printed multistable mechanical metamaterials with a deterministic deformation sequence. J Appl Mech 84:1

    Google Scholar 

  221. Correa DM, Seepersad CC, Haberman MR (2015) Mechanical design of negative stiffness honeycomb materials. Integrat Mater Manuf Innov 4(1):165–175

    Article  Google Scholar 

  222. Goldsberry BM, Haberman MR (2018) Negative stiffness honeycombs as tunable elastic metamaterials. J Appl Phys 123(9):091711

    Article  Google Scholar 

  223. Manu O et al (2017) Performance analysis of effect of vibrations on solar panel conversion efficiency. In: 2017 international conference on smart technologies for smart nation (SmartTechCon)

  224. Ciocănea A, Burețea DL (2017) The influence of flow tube vibrations over the efficiency of solar water heating collectors. Energy Proced 112:330–335

    Article  Google Scholar 

  225. Fu H, Sharif Khodaei Z, Aliabadi MH (2019) A bio-inspired host-parasite structure for broadband vibration energy harvesting from low-frequency random sources. Appl Phys Lett 114:143901

    Article  Google Scholar 

Download references

AcknowledgementS

The author would like to thank the Department of Mechanical Engineering, National Institute of Technology Rourkela for extending the facilities for this review.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Balaji.

Ethics declarations

Conflict of interest

The author declares that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaji, P.S., Karthik SelvaKumar, K. Applications of Nonlinearity in Passive Vibration Control: A Review. J. Vib. Eng. Technol. 9, 183–213 (2021). https://doi.org/10.1007/s42417-020-00216-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-020-00216-3

Keywords

Navigation