Skip to main content
Log in

Uniaxial fatigue behavior of thermal-aged cerium oxide-modified vulcanized natural rubber

  • Original Paper
  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

The present work investigated the cyclic deformation behavior and fatigue life of thermal-aged cerium oxide (CeO2)-modified vulcanized natural rubber (NR/CeO2). Thermal aging was carried out at the temperature ranging from 60 to 100 °C for 24 h and 72 h, respectively. The experimental results show that the CeO2 filler is a useful reinforcing role, which can improve the comprehensive mechanical properties of the heat-aged vulcanizates. The uniaxial fatigue properties of thermal-aged NR/CeO2 rubber were studied at the strain amplitudes of 0–125%, 0–150% and 0–175%, respectively. The axial stress amplitude of NR/CeO2 is higher than that of NR. The CeO2 filler can significantly improve the fatigue strength of rubbers. When the aging temperature is lower than 80 °C, the fatigue life of NR/CeO2 is longer than that of NR at the axial strains of 0–125% and 0–150%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Munoz L, Vanel L, Sanseau O, Sotta P, Long D, Guy L, Odoni L (2011) Fatigue behavior in filled natural rubber: study of the mechanical damage dynamics. Key Eng Mater 488–489:666–669. https://doi.org/10.4028/www.scientific.net/KEM.488-489.666

    Article  CAS  Google Scholar 

  2. Ayoub G, Naït-abdelaziz M, Zaïri F, Gloaguen JM (2010) Multiaxial fatigue life prediction of rubber-like materials using the continuum damage mechanics approach. Procedia Eng 2(1):985–993. https://doi.org/10.1016/j.proeng.2010.03.107

    Article  Google Scholar 

  3. Le Cam JB, Huneau B, Verron E (2013) Fatigue damage in carbon black filled natural rubber under uni- and multi-axial loading conditions. Int J Fatigue 52:82–94. https://doi.org/10.1016/j.ijfatigue.2013.02.022

    Article  CAS  Google Scholar 

  4. Kim W (2004) Fatigue life estimation of an engine rubber mount. Int J Fatigue 26(5):553–560. https://doi.org/10.1016/j.ijfatigue.2003.08.025

    Article  CAS  Google Scholar 

  5. Cadwell SM, Merrill RA, Sloman CM, Yost FL (1940) Dynamic fatigue life of rubber. Ind Eng Chem Anal Ed 12(1):19–23

    Article  CAS  Google Scholar 

  6. Gent AN, Ellul MD, Finney RH, Hamed GR, Hertz DL, James FO, Lake GD, Miller TS, Campion RP (2012) Engineering with rubber. Hanser, Munich, Cincinnati

  7. Lee BL, Ku BH, Liu DS, Hippo PK (1998) Fatigue of cord—rubber composites: II. Strain-based failure criteria. Rubber Chem Technol 71(5):866–888

    Article  CAS  Google Scholar 

  8. Sun C (2000) Effect of fatigue step loading sequence on residual strength. Tire Sci Technol 28(3):196–208

    Article  Google Scholar 

  9. Mars WV, Fatemi A (2004) Observations of the constitutive response and characterization of filled natural rubber under monotonic and cyclic multiaxial stress states. J Eng Mater Technol 126(1):19–28. https://doi.org/10.1115/1.1631432

    Article  CAS  Google Scholar 

  10. Mars WV, Fatemi A (2006) Nucleation and growth of small fatigue cracks in filled natural rubber under multiaxial loading. J Mater Sci 41(22):7324–7332. https://doi.org/10.1007/s10853-006-0962-2

    Article  CAS  Google Scholar 

  11. Saintier N, Cailletaud G, Piques R (2006) Multiaxial fatigue life prediction for a natural rubber. Int J Fatigue 28(5–6):530–539. https://doi.org/10.1016/j.ijfatigue.2005.05.011

    Article  CAS  Google Scholar 

  12. Fielding JH (2002) Flex life and crystallization of synthetic rubber. Indengchem 35(2):1259–1261

    Google Scholar 

  13. Lindley PB (1974) Non-relaxing crack growth and fatigue in a non-crystallizing rubber. Rubber Chem Technol 47(5):1253–1264

    Article  CAS  Google Scholar 

  14. Abraham F, Alshuth T, Jerrams S (2005) The effect of minimum stress and stress amplitude on the fatigue life of non strain crystallising elastomers. Mater Des 26(3):239–245. https://doi.org/10.1016/j.matdes.2004.02.020

    Article  CAS  Google Scholar 

  15. Wang Y, Yu W, Chen X, Yan L (2010) Fatigue life prediction of vulcanized natural rubber under proportional and non-proportional loading. Fatigue Fract Eng M 31(1):38–48

    Article  Google Scholar 

  16. Wang YP, Chen X, Yu WW (2013) Microscopic mechanism of multiaxial fatigue of vulcanised natural rubber. Plast Rubber Compos 40(10):491–496. https://doi.org/10.1179/1743289811y.0000000012

    Article  Google Scholar 

  17. Wang YP, Chen X, Yu WW, Yan L (2009) Experimental study on multiaxial ratcheting behavior of vulcanized natural rubber. Polym Eng Sci 49(3):506–513. https://doi.org/10.1002/pen.21314

    Article  CAS  Google Scholar 

  18. Le Cam JB, Huneau B, Verron E, Gornet L (2004) Mechanism of fatigue crack growth in carbon black filled natural rubber. Macromolecules 37(13):5011–5017

    Article  Google Scholar 

  19. Wang XL, Shangguan WB, Rakheja S, Li W, Yu B (2014) A method to develop a unified fatigue life prediction model for filled natural rubbers under uniaxial loads. Fatigue Fract Eng M 37(1):50–61. https://doi.org/10.1111/ffe.12081

    Article  Google Scholar 

  20. Seichter S, Archodoulaki VM, Koch T, Holzner A, Wondracek A (2017) Investigation of different influences on the fatigue behaviour of industrial rubbers. Polym Test 59:99–106. https://doi.org/10.1016/j.polymertesting.2017.01.018

    Article  CAS  Google Scholar 

  21. Dong B, Liu C, Wu YP (2014) Fracture and fatigue of silica/carbon black/natural rubber composites. Polym Test 38:40–45. https://doi.org/10.1016/j.polymertesting.2014.06.004

    Article  CAS  Google Scholar 

  22. Dong B, Zhang L, Wu Y (2017) Influences of different dimensional carbon-based nanofillers on fracture and fatigue resistance of natural rubber composites. Polym Test. https://doi.org/10.1016/j.polymertesting.2017.08.035

    Article  Google Scholar 

  23. South JT, Case SW, Reifsnider KL (2003) Effects of thermal aging on the mechanical properties of natural rubber. Rubber Chem Technol 76(4):785–802. https://doi.org/10.5254/1.3547772

    Article  CAS  Google Scholar 

  24. Mars WV, Fatemi A (2004) Factors that affect the fatigue life of rubber: a literature survey. Rubber Chem Technol 77(3):391–412. https://doi.org/10.5254/1.3547831

    Article  CAS  Google Scholar 

  25. Choi JH, Kang HJ, Jeong HY, Lee TS, Yoon SJ (2005) Heat aging effects on the material property and the fatigue life of vulcanized natural rubber, and fatigue life prediction equations. J Mech Sci Technol 19(6):1229–1242

    Article  Google Scholar 

  26. Fan R, Zhang Y, Huang C, Zhang Y, Fan Y, Sun K (2010) Effect of crosslink structures on dynamic mechanical properties of natural rubber vulcanizates under different aging conditions. J Appl Polym Sci 81(3):710–718. https://doi.org/10.1002/app.1488

    Article  Google Scholar 

  27. Pourmand P, Hedenqvist MS, Furó I, Gedde UW (2017) Deterioration of highly filled EPDM rubber by thermal ageing in air: kinetics and non-destructive monitoring. Polym Test 64:267–276. https://doi.org/10.1016/j.polymertesting.2017.10.019

    Article  CAS  Google Scholar 

  28. Johlitz M, Diercks N, Lion A (2014) Thermo-oxidative ageing of elastomers: a modelling approach based on a finite strain theory. Int J Plast 63:138–151. https://doi.org/10.1016/j.ijplas.2014.01.012

    Article  CAS  Google Scholar 

  29. Neuhaus C, Lion A, Johlitz M (2015) Influence of thermo-oxidative ageing on fatigue-lifetime of NR. Constit Models Rubber IX. CRC Press, Leiden, The Netherlands, pp 429–432

  30. Neuhaus C, Lion A, Johlitz M, Heuler P, Barkhoff M, Duisen F (2017) Fatigue behaviour of an elastomer under consideration of ageing effects. Int J Fatigue 104:72–80. https://doi.org/10.1016/j.ijfatigue.2017.07.010

    Article  CAS  Google Scholar 

  31. Lacoste J, Clermont S (2016) Environmental ageing of Elastomers—the duality of crosslinking and chain scissions. Kautsch Gummi Kunstst 69(7/8):17–23

    CAS  Google Scholar 

  32. Zhang J, Xue F, Wang Y, Zhang X, Han S (2018) Strain energy-based rubber fatigue life prediction under the influence of temperature. R Soc Open Sci 5(10):180951. https://doi.org/10.1098/rsos.180951

    Article  CAS  Google Scholar 

  33. Lee YH, Cho M, Nam J-D, Lee Y (2018) Effect of ZnO particle sizes on thermal aging behavior of natural rubber vulcanizates. Polym Degrad Stab 148:50–55. https://doi.org/10.1016/j.polymdegradstab.2018.01.004

    Article  CAS  Google Scholar 

  34. Zhang Z, Sun J, Lai YL, Wang YP, Liu X, Shi S, Chen X (2018) Effects of thermal aging on uniaxial ratcheting behavior of vulcanised natural rubber. Polym Test 70:102–110. https://doi.org/10.1016/j.polymertesting.2018.06.030

    Article  CAS  Google Scholar 

  35. Ke C, Wang H, Xi C, Shu H (2002) Study of carboxylic acid rare earth montmorillonite strength and heating stability in rubber. Chinese Rare Earths 23(5):39–42

    Google Scholar 

  36. Qiu GM, Zhang M, Zhou LX, Nakakitan SS, Inoue SI, Kamotook H (2001) Thermal oxidation resistance of rare earth-containing composite elastomer. J Rare Earths 19(3):192–197

    Google Scholar 

  37. Zhang M, Qiu GM, Zhou LX, Chen HY, Inoue S, Hiroshi O (2002) Fatigue resistance of filled NR with PMMA—wrapped and rare earth—doped alumina—Siloxane Gel. J Rare Earths 20(4):278–281

    Google Scholar 

  38. Li M, Shi ZX, Liu ZG, Hu YH, Wang MT, Li HQ (2007) Study on cerium oxide modified natural rubber. J Rare Earths 25:138–141

    Google Scholar 

  39. Li SK, Wang H, Wang YP, Wang C, Niu H, Yang J (2013) Uniaxial ratchetting behaviour of cerium oxide filled vulcanized natural rubber. Polym Test 32(3):468–474. https://doi.org/10.1016/j.polymertesting.2013.01.007

    Article  CAS  Google Scholar 

  40. Wang YP, Liu YZ, Zhang Z, Wang C, Shi SW, Chen X (2017) Mechanical properties of cerium oxide-modified vulcanised natural rubber at elevated temperature. Plast Rubber Compos. https://doi.org/10.1080/14658011.2017.1343521

    Article  Google Scholar 

  41. Duan WW, Wang YP, Ji CR, Zhang Z, Chen X, Liu JJ, Pan Z, Qiao Y (2020) Microstructure of uniaxially fatigued thermally aged vulcanised natural rubber filled with cerium oxide. J Rubber Res 23(4):323–331. https://doi.org/10.1007/s42464-020-00060-w

    Article  CAS  Google Scholar 

  42. Bao LQ, Phan VHG, Khuyen NQ (2018) Investigating effects of nano cerium oxide reinforcement on mechanical properties of composite based on natural rubber. Aip Conf Proc 1954:030011. https://doi.org/10.1063/1.5033391

    Article  CAS  Google Scholar 

  43. Saintier N, Cailletaud G, Piques R (2006) Crack initiation and propagation under multiaxial fatigue in a natural rubber. Int J Fatigue 28(1):61–72

    Article  CAS  Google Scholar 

  44. Milani G, Milani F (2017) Parabola-Hyperbola P-H kinetic model for NR sulphur vulcanization. Polym Test 58:104–115. https://doi.org/10.1016/j.polymertesting.2016.12.019

    Article  CAS  Google Scholar 

  45. Milani G, Leroy E, Milani F, Deterre R (2013) Mechanistic modeling of reversion phenomenon in sulphur cured natural rubber vulcanization kinetics. Polym Test 32(6):1052–1063. https://doi.org/10.1016/j.polymertesting.2013.06.002

    Article  CAS  Google Scholar 

  46. Milani G, Hanel T, Donetti R, Milani F (2015) A closed form solution for the vulcanization prediction of NR cured with sulphur and different accelerators. J Math Chem 53(4):975–997. https://doi.org/10.1007/s10910-014-0456-4

    Article  CAS  Google Scholar 

  47. Liu ZG, Mei L, Hu YH, Hai F, Wang MT, Jiang ZY (2014) Dispersion and mechanical properties of cerium oxide filled into rubber compsites. Rubber Chem Technol 87(2):340–347. https://doi.org/10.5254/rct.13.86993

    Article  CAS  Google Scholar 

  48. Raos G (2003) Application of the Christensen-lo model to the reinforcement of elastomers by fractal fillers. Macromol Theory Simul 12(1):17–23. https://doi.org/10.1002/mats.200390002

    Article  CAS  Google Scholar 

  49. Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter, Friedrich (2001) Structure-property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Polymer 42(1):167–183

    Article  CAS  Google Scholar 

  50. Saujanya C, Ashamol PS, Radhakrishnan S (2001) Control of nanoparticle size of fillers by polymer blend technique. Polymer 42(5):2255–2258. https://doi.org/10.1016/S0032-3861(00)00474-2

    Article  CAS  Google Scholar 

  51. Mele P, Marceau S, Brown D, de Puydt Y, Alberola ND (2002) Reinforcement effects in fractal-structure-filled rubber. Polymer 43(20):5577–5586

    Article  CAS  Google Scholar 

  52. Ahagon A, Kida M, Kaidou H (1990) Aging of tire parts during service. I. Types of aging in heavy-duty tires. Rubber Chem Technol 63(5):683–697. https://doi.org/10.5254/1.3538282

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (No. 11562015).

Funding

This work was supported by the National Natural Science Foundation of China [grant numbers 11562015].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Y., Ji, C., Wang, Y. et al. Uniaxial fatigue behavior of thermal-aged cerium oxide-modified vulcanized natural rubber. J Rubber Res 24, 745–757 (2021). https://doi.org/10.1007/s42464-021-00131-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42464-021-00131-6

Keywords

Navigation