Skip to main content
Log in

Review on direct contact condensation of vapor bubbles in a subcooled liquid

  • Review Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

Abstract

Condensation of vapor bubbles in a subcooled liquid is known to influence heat transfer and pressure oscillation in subcooled boiling and direct contact condensation. This study reviews the published literature concerning interfacial heat transfer and bubble dynamics in the process of bubble condensation. The correlations for bubble condensation are analyzed and evaluated with a database covering a wide range of Reynolds, Jacob, and Prandtl numbers. Then, the investigations addressing bubble dynamics are reviewed, which focus on the bubble condensation patterns, motion, collapse, and the pressure oscillations induced by bubble condensation, as well as the effect of noncondensable gas and field. Despite the extensive experiments of bubble condensation available in the literature, it is shown that there is still a shortage of investigation focused on the variation of thermal boundary layer and turbulence formed near the bubble at the micro-scale, which could help to develop the prediction method of bubble condensation in the future. The transportation of noncondensable gas inside the mixture bubble and effect of capillary waves formed on the bubble surface on the actual vapor-liquid contact area and thermal boundary are also suggested to be further investigated to gain the thorough understanding of the bubble condensation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyama, M. 1973. Bubble collapse in subcooled boiling. Bull JSME, 16: 570–575.

    Article  Google Scholar 

  • Al Issa, S., Macián-Juan, R. 2017. CFD validation of new Nu-Re correlations for the condensation of large steam bubbles directly injected into a flow in a vertical pipe and effects of bubbles forces upon momentum transfer. Int J Multiphase Flow, 94: 173–188.

    Article  Google Scholar 

  • Al Issa, S., Weisensee, P., Macián-Juan, R. 2014. Experimental investigation of steam bubble condensation in vertical large diameter geometry under atmospheric pressure and different flow conditions. Int J Heat Mass Tran, 70: 918–929.

    Article  Google Scholar 

  • Beard, K. V., Pruppacher, H. R. 1969. A determination of the terminal velocity and drag of small water drops by means of a wind tunnel. J Atmos Sci, 26: 1066–1072.

    Article  Google Scholar 

  • Boziuk, T. R., Smith, M. K., Glezer, A. 2019a. Acoustic enhancement of direct-contact condensation using capillary waves. Int J Heat Mass Tran, 138: 357–372.

    Article  Google Scholar 

  • Boziuk, T. R., Smith, M. K., Glezer, A. 2019b. Enhanced two-phase heat transfer by direct-contact condensation using directional acoustic actuation. In: Proceedings of the 25th International Workshop on Thermal Investigations of ICs and Systems, 1–6.

  • Brucker, G. G., Sparrow, E. M. 1977. Direct contact condensation of steam bubbles in water at high pressure. Int J Heat Mass Tran, 20: 371–381.

    Article  Google Scholar 

  • Butler, C., Cid, E., Billet, A. M. 2016. Modelling of mass transfer in Taylor flow: Investigation with the PLIF-I technique. Chem Eng Res Des, 115: 292–302.

    Article  Google Scholar 

  • Cao, Y., Kawara, Z., Yokomine, T., Kunugi, T. 2016a. Experimental and numerical study on nucleate bubble deformation in subcooled flow boiling. Int J Multiphase Flow, 82: 93–105.

    Article  Google Scholar 

  • Cao, Y., Kawara, Z., Yokomine, T., Kunugi, T. 2016b. Visualization study on bubble dynamical behavior in subcooled flow boiling under various subcooling degree and flowrates. Int J Heat Mass Tran, 93: 839–852.

    Article  Google Scholar 

  • Chen, Y. M., Mayinger, F. 1992. Measurement of heat transfer at phase interface of condensing bubble. Int J Multiphase Flow, 18: 877–890.

    Article  MATH  Google Scholar 

  • Cho, S., Chun, S. Y., Baek, W. P., Kim, Y. 2004. Effect of multiple holes on the performance of sparger during direct contact condensation of steam. Exp Therm Fluid Sci, 28: 629–638.

    Article  Google Scholar 

  • Dahikar, S. K., Sathe, M. J., Joshi, J. B. 2010. Investigation of flow and temperature patterns in direct contact condensation using PIV, PLIF and CFD. Chem Eng Sci, 65: 4606–4620.

    Article  Google Scholar 

  • Datta, P., Chakravarty, A., Ghosh, K., Mukhopadhyay, A., Sen, S. 2017. Modeling aspects of vapor bubble condensation in subcooled liquid using the VOF approach. Numer Heat Tr A: Appl, 72: 236–254.

    Article  Google Scholar 

  • Douglas, Z. W., Boziuk, T. R., Smith, M. K., Glezer, A. 2012. Acoustically enhanced boiling heat transfer. Phys Fluids, 24: 052105.

    Article  Google Scholar 

  • Faraday, M. 1831. On the forms and states assumed by fluids in contact with vibrating elastic surfaces. Philos Trans R Soc Lond, 121: 299–340.

    Google Scholar 

  • Florschuetz, L. W., Chao, B. T. 1965. On the mechanics of vapor bubble collapse. J Heat Transf, 87: 209–220.

    Article  Google Scholar 

  • Francois, J., Dietrich, N., Guiraud, P., Cockx, A. 2011. Direct measurement of mass transfer around a single bubble by micro-PLIFI. Chem Eng Sci, 66: 3328–3338.

    Article  Google Scholar 

  • Fukuda, S. 1982. Pressure variations due to vapor condensation in liquid, (II) phenomena at large vapor mass flow flux. Journal of the Atomic Energy Society of Japan, 24: 466–474.

    Google Scholar 

  • Gallego-Marcos, I., Kudinov, P., Villanueva, W., Puustinen, M., Räsänen, A., Tielinen, K., Kotro, E. 2019. Effective momentum induced by steam condensation in the oscillatory bubble regime. Nucl Eng Des, 350: 259–274.

    Article  Google Scholar 

  • Hao, Y., Prosperetti, A. 2000. The collapse of vapor bubbles in a spatially non-uniform flow. Int J Heat Mass Tran, 43: 3539–3550.

    Article  MATH  Google Scholar 

  • Hattori, Y., Ueno, I. 2009. Microbubble formation in abrupt condensation of vapor bubble exposed to subcooled pool. In: Proceedings of the ASME 2009 2nd Micro/Nanoscale Heat and Mass Transfer International Conference, Paper No. MNHMT2009-18371, 691–695.

  • Higeta, K., Mori, Y. H., Komotori, K. 1979. Condensation of a single vapor bubble rising in another immiscible liquid. AIChE Symp Ser, 75: 256–265.

    Google Scholar 

  • Hoffmann, A., Schleicher, E., Keller, L., Alonso, J. L., Pitz-Paal, R. 2018. Application of a single wire-mesh sensor in a parabolic trough facility with direct steam generation. Sol Energy, 159: 1016–1030.

    Article  Google Scholar 

  • Hong, S. J., Park, G. C., Cho, S., Song, C. H. 2012. Condensation dynamics of submerged steam jet in subcooled water. Int J Multiphase Flow, 39: 66–77.

    Article  Google Scholar 

  • Hu, Y., Wang, H., Song, M., Huang, J. 2019. Marangoni effect on microbubbles emission boiling generation during pool boiling of self-rewetting fluid. Int J Heat Mass Tran, 134: 10–16.

    Article  Google Scholar 

  • Hughmark, G. A. 1967. Mass and heat transfer from rigid spheres. AIChE J, 13: 1219–1221.

    Article  Google Scholar 

  • Inaba, N., Watanabe, N., Aritomi, M. 2013. Interfacial heat transfer of condensation bubble with consideration of bubble number distribution in subcooled flow boiling. J Therm Sci Tech, 8: 74–90.

    Article  Google Scholar 

  • Inada, S., Miyasaka, Y., Sakumoto, S., Izumi, R. 1981. A study on boiling curves in subcooled pool boiling (2nd report, an effect of contamination of surface on boiling heat transfer and collapse vapor slug). Trans JSME, 47: 2021–2029.

    Article  Google Scholar 

  • Isenberg, J., Sideman, S. 1970. Direct contact heat transfer with change of phase: Bubble condensation in immiscible liquid. Int J Heat Mass Tran, 13: 997–1011.

    Article  Google Scholar 

  • Jain, D. S., Rao, S. S., Srivastava, A. 2016. Rainbow schlieren deflectometry technique for nanofluid-based heat transfer measurements under natural convection regime. Int J Heat Mass Tran, 98: 697–711.

    Article  Google Scholar 

  • Jeon, S. S., Kim, S. J., Park, G. C. 2011. Numerical study of condensing bubble in subcooled boiling flow using volume of fluid model. Chem Eng Sci, 66: 5899–5909.

    Article  Google Scholar 

  • Jo, B., Erkan, N., Okamoto, K. 2020. Richardson number criteria for direct-contact-condensation-induced thermal stratification using visualization. Prog Nucl Energy, 118: 103095.

    Article  Google Scholar 

  • Jo, H., Jo, D. 2017. Experimental studies of condensing vapor bubbles in subcooled pool water using visual and acoustic analysis methods. Ann Nucl Energy, 110: 171–185.

    Article  Google Scholar 

  • Kalman, H. 2003. Condensation of bubbles in miscible liquids. Int J Heat Mass Tran, 46: 3451–3463.

    Article  Google Scholar 

  • Kalman, H., Mori, Y. H. 2002. Experimental analysis of a single vapor bubble condensing in subcooled liquid. Chem Eng J, 85: 197–206.

    Article  Google Scholar 

  • Kalman, H., Ullmann, A. 1999. Experimental analysis of bubble shapes during condensation in miscible and immiscible liquids. J Fluid Eng, 121: 496–502.

    Article  Google Scholar 

  • Kandlikar, S. G. 2017. Enhanced macroconvection mechanism with separate liquid-vapor pathways to improve pool boiling performance. J Heat Transfer, 139: 051501.

    Article  Google Scholar 

  • Khosravifar, P., Zonouzi, S. A., Aminfar, H., Mohammadpourfard, M. 2021. Numerical investigation of the condensation of a rising bubble inside a subcooled liquid under magnetic field. Int J Therm Sci, 160: 106674.

    Article  Google Scholar 

  • Kim, S., Park, G. 2011. Interfacial heat transfer of condensing bubble in subcooled boiling flow at low pressure. Int J Heat Mass Tran, 54: 2962–2974.

    Article  MATH  Google Scholar 

  • Kumagai, S., Kawabata, K., Yoshikawa, H., Shimada, R. 2000. Pressure fluctuation associated with bubble motion in microbubble emission boiling from a vertical surface. JSME Int J B: Fluid T, 43: 206–212.

    Article  Google Scholar 

  • Leighton, T. G., Walton, A. J. 1987. An experimental study of the sound emitted from gas bubbles in a liquid. Eur J Phys, 8: 98–104.

    Article  Google Scholar 

  • Lerner, Y., Kalman, H., Letan, R. 1987. Condensation of an accelerating-decelerating bubble: Experimental and phenomenological analysis. J Heat Transfer, 109: 509–517.

    Article  Google Scholar 

  • Lerner, Y., Letan, R. 1990. Dynamics of condensing bubbles at intermediate frequencies of injection. J Heat Transfer, 112: 825–829.

    Article  Google Scholar 

  • Li, S. Q., Wang, P., Lu, T. 2015. Numerical simulation of direct contact condensation of subsonic steam injected in a water pool using VOF method and LES turbulence model. Prog Nucl Energy, 78: 201–215.

    Article  Google Scholar 

  • Li, W., Meng, Z., Sun, Z., Fan, G., Wang, J. 2020a. Investigation on steam direct contact condensation injected vertically at low mass flux, part II: Steam-air mixture experiment. Int J Heat Mass Tran, 155: 119807.

    Article  Google Scholar 

  • Li, W., Wang, J., Zhou, Y., Sun, Z., Meng, Z. 2019. Investigation on steam contact condensation injected vertically at low mass flux: Part I pure steam experiment. Int J Heat Mass Tran, 131: 301–312.

    Article  Google Scholar 

  • Li, X., Tang, J. G., Sun, L. C., Li, J., Bao, J. J., Liu, H. L. 2020b. Enhancement of subcooled boiling in confined space using ultrasonic waves. Chem Eng Sci, 223: 115751.

    Article  Google Scholar 

  • Liu, H. L., Tang, J. G., Sun, L. C., Mo, Z. Y., Xie, G. 2020. An assessment and analysis of phase change models for the simulation of vapor bubble condensation. Int J Heat Mass Tran, 157: 119924.

    Article  Google Scholar 

  • Lucic, A., Emans, M., Mayinger, F., Zenger, C. 2004. Interferometric and numerical study of the temperature field in the boundary layer and heat transfer in subcooled flow boiling. Int J Heat Fluid Flow, 25: 180–195.

    Article  Google Scholar 

  • Lucic, A., Mayinger, F. 2010. Transport phenomena in subcooled flow boiling. Heat Mass Transf, 46: 1159–1166.

    Article  Google Scholar 

  • Magnaudet, J., Legendre, D. 1998. The viscous drag force on a spherical bubble with a time-dependent radius. Phys Fluids, 10: 550–554.

    Article  Google Scholar 

  • Mazed, D., Frano, R. L., Aquaro, D., del Serra, D., Sekachev, I., Olcese, M. 2018. Experimental investigation of steam condensation in water tank at sub-atmospheric pressure. Nucl Eng Des, 335: 241–254.

    Article  Google Scholar 

  • Moalem, D., Sideman, S., Orell, A., Hetsroni, G. 1973. Direct contact heat transfer with change of phase: Condensation of a bubble train. Int J Heat Mass Tran, 16: 2305–2319.

    Article  Google Scholar 

  • Moore, D. W. 1965. The velocity of rise of distorted gas bubbles in a liquid of small viscosity. J Fluid Mech, 23: 749–766.

    Article  Google Scholar 

  • Narayan, S., Singh, T., Singh, S., Srivastava, A. 2019. Experiments on the effects of varying subcooled conditions on the dynamics of single vapor bubble and heat transfer rates in nucleate pool boiling regime. Int J Heat Mass Tran, 134: 85–100.

    Article  Google Scholar 

  • Nebuchinov, A. S., Lozhkin, Y. A., Bilsky, A. V., Markovich, D. M. 2017. Combination of PIV and PLIF methods to study convective heat transfer in an impinging jet. Exp Therm Fluid Sci, 80: 139–146.

    Article  Google Scholar 

  • Nguyen, T. T., Tsuzuki, N., Murakawa, H., Duong, N. H., Kikura, H. 2016. Measurement of the condensation rate of vapor bubbles rising upward in subcooled water by using two ultrasonic frequencies. Int J Heat Mass Tran, 99: 159–169.

    Article  Google Scholar 

  • Pan, L., Tan, Z., Chen, D., Xue, L. 2012. Numerical investigation of vapor bubble condensation characteristics of subcooled flow boiling in vertical rectangular channel. Nucl Eng Des, 248: 126–136.

    Article  Google Scholar 

  • Plesset, M. S. 1966. A discussion on deformation of solids by the impact of liquids, and its relation to rain damage in aircraft and missiles, to blade erosion in steam turbines, and to cavitation erosion — Shockwaves from cavity collapse. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 110: 241–244.

    Google Scholar 

  • Prosperetti, A. 2017. Vapor bubbles. Annu Rev Fluid Mech, 49: 221–248.

    Article  MathSciNet  MATH  Google Scholar 

  • Prosperetti, A., Hao, Y. 2002. Vapor bubbles in flow and acoustic fields. Annals of the New York Academy of Sciences, 974: 328–347.

    Article  MATH  Google Scholar 

  • Qiu, B., Yang, Q., Meng, F., Zhang, D., Chong, D., Liu, J., Yan, J. 2020. Experimental investigation on the interface shape of bubble condensation for vertical upward steam jet at low mass flux. Int J Heat Mass Tran, 157: 119909.

    Article  Google Scholar 

  • Qu, X. H., Tian, M. C., Zhang, G. M., Leng, X. L. 2015. Experimental and numerical investigations on the air-steam mixture bubble condensation characteristics in stagnant cool water. Nucl Eng Des, 285: 188–196.

    Article  Google Scholar 

  • Ranz, W., Marshall, W. 1952. Evaporation from drops. Chem Eng Prog, 48: 141–146.

    Google Scholar 

  • Schulz, J. M., Junne, H., Böhm, L., Kraume, M. 2020. Measuring local heat transfer by application of Rainbow Schlieren Deflectometry in case of different symmetric conditions. Exp Therm Fluid Sci, 110: 109887.

    Article  Google Scholar 

  • Simpson, M. E., Chan, C. K. 1982. Hydrodynamics of a subsonic vapor jet in subcooled liquid. J Heat Transfer, 104: 271–278.

    Article  Google Scholar 

  • Sinha, G. K., Mahimkar, S., Srivastava, A. 2019. Schlieren-based simultaneous mapping of bubble dynamics and temperature gradients in nucleate flow boiling regime: Effect of flow rates and degree of subcooling. Exp Therm Fluid Sci, 104: 238–257.

    Article  Google Scholar 

  • Soedarmo, A. A., Rodrigues, H. T., Pereyra, E., Sarica, C. 2019. A new objective and distribution-based method to characterize pseudo-slug flow from wire-mesh-sensors (WMS) data. Exp Therm Fluid Sci, 109: 109855.

    Article  Google Scholar 

  • Song, S., Yue, X., Zhao, Q., Chong, D., Chen, W., Yan, J. 2020. Numerical study on mechanism of condensation oscillation of unstable steam jet. Chem Eng Sci, 211: 115303.

    Article  Google Scholar 

  • Suzuki, K., Kokubu, T., Nakano, M., Kawamura, H., Ueno, I., Shida, H., Ogawa, O. 2005. Enhancement of heat transfer in subcooled flow boiling with microbubble emission. Exp Therm Fluid Sci, 29: 827–832.

    Article  Google Scholar 

  • Suzuki, K., Yuki, K., Hong, C. 2011. Subcooled boiling with microbubble emission (on mechanism of MEB generation). In: Proceedings of the 22nd International Symposium on Transport Phenomena.

  • Takeda, Y. 1986. Velocity profile measurement by ultrasound Doppler shift method. Int J Heat Fluid Flow, 7: 313–318.

    Article  Google Scholar 

  • Tang, J. G., Sun, L. C., Du, M., Liu, H. T., Mo, Z. Y., Bao, J. J. 2019a. Experimental investigation of transition process from nucleate boiling to microbubble emission boiling under transient heating modes. AIChE J, 65: e16555.

    Article  Google Scholar 

  • Tang, J. G., Sun, L. C., Wu, D., Du, M., Xie, G., Yang, K. 2019b. Effects of ultrasound on subcooled pool boiling on a small plain heating surface. Chem Eng Sci, 201: 274–287.

    Article  Google Scholar 

  • Tang, J. G., Xie, G., Bao, J. J., Mo, Z. Y., Liu, H. T., Du, M. 2018. Experimental study of sound emission in subcooled pool boiling on a small heating surface. Chem Eng Sci, 188: 179–191.

    Article  Google Scholar 

  • Tang, J., Yan, C., Sun, L. 2015a. A study visualizing the collapse of vapor bubbles in a subcooled pool. Int J Heat Mass Tran, 88: 597–608.

    Article  Google Scholar 

  • Tang, J., Yan, C., Sun, L. 2015b. Feature of acoustic sound signals involved in vapor bubble condensation and its application in identification of condensation regimes. Chem Eng Sci, 137: 384–397.

    Article  Google Scholar 

  • Tang, J., Yan, C., Sun, L. 2015c. Effects of noncondensable gas and ultrasonic vibration on vapor bubble condensing and collapsing. Exp Therm Fluid Sci, 61: 210–220.

    Article  Google Scholar 

  • Tang, J., Yan, C., Sun, L. 2016. Enhanced vapor bubble condensation and collapse with ultrasonic vibration. Exp Therm Fluid Sci, 70: 115–124.

    Article  Google Scholar 

  • Tang, J., Yan, C., Sun, L., Li, Y., Wang K. Y. 2015d. Effect of liquid subcooling on acoustic characteristics during the condensation process of vapor bubbles in a subcooled pool. Nucl Eng Des, 293: 492–502.

    Article  Google Scholar 

  • Tange, M., Takagi, S., Watanabe, M., Shoji, M. 2004. Microbubble emission boiling in a microchannel and minichannel. Therm Sci Eng, 12: 23–29.

    Google Scholar 

  • Tompkins, C., Prasser, H. M., Corradini, M. 2018. Wire-mesh sensors: A review of methods and uncertainty in multiphase flows relative to other measurement techniques. Nucl Eng Des, 337: 205–220.

    Article  Google Scholar 

  • Ueno, I., Ando, J., Koiwa, Y., Saiki, T., Kaneko, T. 2015. Interfacial instability of a condensing vapor bubble in a subcooled liquid. Eur Phys J Spec Top, 224: 415–424.

    Article  Google Scholar 

  • Ueno, I., Saiki, T., Osawa, T., Hong, C. 2013. Condensation and collapse of vapor bubble injected to subcooled pool. In: Proceedings of the 11th International Conference on Nanochannels, Microchannels, and Minichannels, Paper No. ICNMM2013-73190, V001T04A011.

  • Ullmann, A., Letan, R. 1989. Effect of noncondensibles on condensation and evaporation of bubbles. J Heat Transfer, 111: 1060–1067.

    Article  Google Scholar 

  • Ünal, H. C. 1976. Maximum bubble diameter, maximum bubble-growth time and bubble growth rate during the subcooled nucleate flow boiling of water up to 17.7 MN/m2. Int J Heat Mass Tran, 19: 643–649.

    Article  Google Scholar 

  • Wanchoo, R. K., Sharma, S. K., Raina, G. K. 1997. Drag coefficient and velocity of rise of a single collapsing two-phase bubble. AIChE J, 43: 1955–1963.

    Article  Google Scholar 

  • Warrier, G. R., Vijay, N. B., Dhir, K. 2002. Interfacial heat transfer during subcooled flow boiling. Int J Heat Mass Tran, 45: 3947–3959.

    Article  Google Scholar 

  • Xu, Q., Ye, S., Liu, W., Chen, Y., Chen, Q., Guo, L. 2019. Intelligent identification of steam jet condensation regime in water pipe flow system by wavelet multiresolution analysis of pressure oscillation and artificial neural network. Appl Therm Eng, 147: 1047–1058.

    Article  Google Scholar 

  • Yang, B., Prosperetti, A. 2008. Vapour bubble collapse in isothermal and non-isothermal liquids. J Fluid Mech, 601: 253–279.

    Article  MATH  Google Scholar 

  • Yang, Q., Qiu, B., Chen, W., Chong, D., Liu, J., Yan, J. 2020. Experimental investigation on the condensation regime and pressure oscillation characteristics of vertical upward steam jet condensation with low mass flux. Exp Therm Fluid Sci, 111: 109983.

    Article  Google Scholar 

  • Yang, S. R., Seo, J., Hassan, Y. A. 2019. Thermal hydraulic characteristics of unstable bubbling of direct contact condensation of steam in subcooled water. Int J Heat Mass Tran, 138: 580–596.

    Article  Google Scholar 

  • Yeoh, G. H. 2019. Thermal hydraulic considerations of nuclear reactor systems: Past, present and future challenges. Exp Comput Multiphase Flow, 1: 3–27

    Article  Google Scholar 

  • Yoo, J., Estrada-Perez, C. E., Hassan, Y. A. 2018. Development of a mechanistic model for sliding bubbles growth prediction in subcooled boiling flow. Appl Therm Eng, 138: 657–667.

    Article  Google Scholar 

  • Yuan, D. W., Pan, L. M., Chen, D. Q., Wang, X. J. 2009. Condensation heat transfer coefficient at vapour-liquid interface of subcooled flow boiling in vertical narrow rectangular channel. Nucl Power Eng, 30: 30–34 (in Chinese).

    Google Scholar 

  • Zeitoun, O., Shoukri, M., Chatoorgoon, V. 1995. Interfacial heat transfer between steam bubbles and subcooled water in vertical upward flow. Int J Multiphase Flow, 117: 402–407.

    MATH  Google Scholar 

  • Zeng, Q., Cai, J., Yin, H., Yang, X., Watanabe, T. 2015. Numerical simulation of single bubble condensation in subcooled flow using Open FOAM. Prog Nucl Eng, 83: 336–346.

    Article  Google Scholar 

  • Zhang, Y., Feng, L., Liu, L., Fu, X., Lu, D., Yang, Y., Ouyang, B. 2019. Experimental research on heat transfer characteristics of the unstable multi-hole steam jets and development of the lumped condensation model. Int J Heat Mass Tran, 139: 46–57.

    Article  Google Scholar 

  • Zhao, Q., Hibiki, T. 2018. Review: Condensation regime maps of steam submerged jet condensation. Prog Nucl Energy, 107: 31–47.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial supports of the National Natural Science Foundation of China (Grant Nos. 52076144 and 51706149) and the China Postdoctoral Science Foundation (Grant Nos. 2019T120840 and 2018M643474).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Licheng Sun or Hongtao Liu.

Additional information

Declaration of competing interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Sun, L., Liu, H. et al. Review on direct contact condensation of vapor bubbles in a subcooled liquid. Exp. Comput. Multiph. Flow 4, 91–112 (2022). https://doi.org/10.1007/s42757-020-0100-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-020-0100-4

Keywords

Navigation