Skip to main content
Log in

Influence of Binder on Impedance of Lithium Batteries: A Mini-review

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

As an integral component of electrodes, binder is one of the key factors for improving of the performance and prolonging the service life of lithium batteries. To predict the service life of lithium batteries, observing the impedance evolution of batteries during the cycling process has been considered as a promising strategy. Electrochemical impedance spectroscopy as an effective measurement has been applied in numerous studies to explore the impedance behavior of lithium batteries. Therefore, this paper reviews the influencing factors of the impedance variation during charging and discharging processes and the influence of various binders on the impedance performance of lithium-ion batteries. Moreover, an outlook is proposed for the modification of binders to improve the performance of lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Liu W, Song M, Kong B, Cui Y (2017) Flexible and stretchable energy storage: recent advances and future perspectives. Adv Mater 29(1):1603436. https://doi.org/10.1002/adma.201603436

    Article  Google Scholar 

  2. Gu S, Cui Y, Wen K, Chen S, Zhao J (2020) 3-cyano-5-fluorobenzenzboronic acid as an electrolyte additive for enhancing the cycling stability of Li1.2Mn0.54Ni0.13Co0.13O2 cathode at high voltage. J Alloys Compd 829:154491. https://doi.org/10.1016/j.jallcom.2020.154491

    Article  Google Scholar 

  3. Wu Z, Deng L, Li J, Huang Q, Lu Y, Liu J, Zhang T, Huang L, Sun S (2017) Multiple hydrogel alginate binders for Si anodes of lithium-ion batteries. Electrochim Acta 245:371–378. https://doi.org/10.1016/j.electacta.2017.05.094

    Article  Google Scholar 

  4. Ma S, Lin H, Yang L, Tong Q, Pan F, Weng J, Zheng S (2019) High thermal stability and low impedance polypropylene separator coated with aluminum phosphate. Electrochim Acta 320:134528. https://doi.org/10.1016/j.electacta.2019.07.039

    Article  Google Scholar 

  5. Heins TP, Schluter N, Ernst S, Schroder U (2020) On the interpretation of impedance spectra of large-format lithium-ion batteries and its application in aging studies. Energ Technol 8(2):1900279. https://doi.org/10.1002/ente.201900279

    Article  Google Scholar 

  6. Chandrasekaran G, Karthikeyan PR, Kumar NS, Kumarasamy V (2021) Test scheduling of system-on-chip using dragonfly and ant lion optimization algorithms. J Intell Fuzzy Syst 40(3):4905–4917. https://doi.org/10.3233/JIFS-201691

    Article  Google Scholar 

  7. Chandrasekaran G, Periyasamy S, Rajamanickam KP (2020) Minimization of test time in system on chip using artificial intelligence-based test scheduling techniques. Neural Comput Appl 32:5303–5312. https://doi.org/10.1007/s00521-019-04039-6

    Article  Google Scholar 

  8. Togasaki N, Yokoshima T, Oguma Y, Osaka T (2020) Prediction of overcharge-induced serious capacity fading in nickel cobalt aluminum oxide lithium-ion batteries using electrochemical impedance spectroscopy. J Power Sour 461:228168. https://doi.org/10.1016/j.jpowsour.2020.228168

    Article  Google Scholar 

  9. Barai A, Uddin K, Widanage WD, Mcgordon A, Jennings PA (2018) A study of the influence of measurement timescale on internal resistance characterisation methodologies for lithium-ion cells. Sci Rep 8(1):1–13. https://doi.org/10.1038/s41598-017-18424-5

    Article  Google Scholar 

  10. Ogihara N, Itou Y, Sasaki T, Takeuchi Y (2015) Impedance spectroscopy characterization of porous electrodes under different electrode thickness using a symmetric cell for high-performance lithium-ion batteries. J Phys Chem C 119(9):4612–4619. https://doi.org/10.1021/jp512564f

    Article  Google Scholar 

  11. Cho S, Chen C, Mukherjee PP (2015) Influence of microstructure on impedance response in intercalation electrodes. J Electrochem Soc 162(70):A1202–A1214

    Article  Google Scholar 

  12. Chen C, Mukherjee PP (2015) Probing the morphological influence on solid electrolyte interphase and impedance response in intercalation electrodes. Phys Chem Chem Phys 17(15):9812–9827. https://doi.org/10.1039/C4CP05758A

    Article  Google Scholar 

  13. Juarezrobles D, Chen C, Barsukov Y, Mukherjee PP (2017) Impedance evolution characteristics in lithium-ion batteries. J Electrochem Soc 164(4):A837–A847

    Article  Google Scholar 

  14. Maheshwari A, Heck M, Santarelli M (2018) Cycle aging studies of lithium nickel manganese cobalt oxide-based batteries using electrochemical impedance spectroscopy. Electrochim Acta 273:335–348. https://doi.org/10.1016/j.electacta.2018.04.045

    Article  Google Scholar 

  15. Zhu X, Macia LF, Jaguemont J, Hoog JD, Nikolian A, Omar N, Hubin A (2018) Electrochemical impedance study of commercial LiNi0.80Co0.15Al0.05O2 electrodes as a function of state of charge and aging. Electrochim Acta 287:10–20. https://doi.org/10.1016/j.electacta.2018.08.054

    Article  Google Scholar 

  16. Zuo Y, Liu R, Zhang X, Nadimicherla R, Huang J, Lu Y, Liu S, Wu D, Fu R (2019) A new supramolecular binder strongly enhancing the electrochemistry performance for lithium-sulfur batteries. Chem Commun 55(92):13924–13927. https://doi.org/10.1039/C9CC07345K

    Article  Google Scholar 

  17. Li Z, Zhang Y, Liu T, Gao X, Li S, Ling M, Liang C, Zheng J, Lin Z (2020) Silicon anode with high initial coulombic efficiency by modulated trifunctional binder for high-areal-capacity lithium-ion batteries. Adv Energy Mater 10(20):1903110. https://doi.org/10.1002/aenm.201903110

    Article  Google Scholar 

  18. Li Z, Ji J, Wu Q, Wei D, Li S, Liu T, He Y, Lin Z, Ling M, Liang C (2019) A new battery process technology inspired by partially carbonized polymer binders. Nano Energy 67:104234. https://doi.org/10.1016/j.nanoen.2019.104234

    Article  Google Scholar 

  19. Zhang J, Wang N, Zhang W, Fang S, Yu Z, Shi B, Yang J (2020) A cycling robust network binder for high performance Si-based negative electrodes for lithium-ion batteries. J Colloid Interface Sci 578:452–460. https://doi.org/10.1016/j.jcis.2020.06.008

    Article  Google Scholar 

  20. Yuan J, Kong Q, Huang Z, Song Y, Li M, Fang L, Zhu B, Li H (2021) A well-designed polymer as a three-in-one multifunctional binder for high-performance lithium-sulfur battery. J Mater Chem A 9:2970–2979. https://doi.org/10.1039/D0TA09489G

    Article  Google Scholar 

  21. Hwang C, Lee J, Jeong J, Lee E, Kim J, Kim S, Yang C, Song HK (2021) The rational design of a redox-active mixed ion/electron conductor as a multi-functional binder for lithium-ion batteries. J Mater Chem A 9:4751–4757. https://doi.org/10.1039/D0TA08913C

    Article  Google Scholar 

  22. Phanikumar VVN, Rao BVA, Gobi KV, Gopalan R, Prakash R (2020) A sustainable tamarind kernel powder based aqueous binder for graphite anode in lithium-ion batteries. ChemistrySelect 5:1199–1208. https://doi.org/10.1002/slct.201903374

    Article  Google Scholar 

  23. Wang H, Wang Y, Zheng P, Yang Y, Chen Y, Cao Y, Deng Y, Wang C (2020) Self-healing double-cross-linked supramolecular binders of a polyacrylamide-grafted soy protein isolate for Li-S batteries. ACS Sustain Chem Eng 8(34):12799–12808. https://doi.org/10.1021/acssuschemeng.0c02477

    Article  Google Scholar 

  24. Tsai CY, Liu Y (2021) 2,2-Dimethyl-1,3-dioxane-4,6-dione functionalized poly (ethylene oxide)-based polyurethanes as multi-functional binders for silicon anodes of lithium ion batteries. Electrochim Acta 379:138180. https://doi.org/10.1016/j.electacta.2021.138180

    Article  Google Scholar 

  25. Guo R, Zhang S, Wang J, Ying H, Han W (2020) One-pot synthesis of copolymer micelles cross-linked binder with multiple lithium-ion diffusion pathways for lithium-sulfur batteries. Chemsuschem 13(4):819–826. https://doi.org/10.1002/cssc.201902772

    Article  Google Scholar 

  26. Chen H, Wu Z, Su Z, Chen S, Yan C, Al-Mamun M, Tang Y, Zhang S (2021) A mechanically robust self-healing binder for silicon anode in lithium ion batteries. Nano Energy 81:105654. https://doi.org/10.1016/j.nanoen.2020.105654

    Article  Google Scholar 

  27. Verdier N, Khakani SE, Lepage D, Prébé A, Aymé-Perrot D, Dollé M, Rochefort D (2019) Polyacrylonitrile-based rubber (HNBR) as a new potential elastomeric binder for lithium-ion batteries electrodes. J Power Sources 440:227111. https://doi.org/10.1016/j.jpowsour.2019.227111

    Article  Google Scholar 

  28. Font F, Protas B, Richardson G, Foster JM (2018) Binder migration during drying of lithium-ion batteries electrodes: modelling and comparison to experiment. J Power Sour 393:177–185. https://doi.org/10.1016/j.jpowsour.2018.04.097

    Article  Google Scholar 

  29. Tian M, Wu P (2019) Nature plant polyphenol coating silicon submicroparticle conjugated with polyacrylic acid for achieving a high-performance anode of lithium-ion batteries. ACS Appl Energy Mater 2(7):5066–5073. https://doi.org/10.1021/acsaem.9b00734

    Article  Google Scholar 

  30. Zhang J, Ren T, Nayaka GP, Dong P, Duan J, Li X, Zhang Y, Wang D (2019) Design of polydopamine-encapsulation multiporous MnO cross-linked with polyacrylic acid binder for superior lithium ion batteries anode. J Alloy Compd 783:341–348. https://doi.org/10.1016/j.jallcom.2018.12.356

    Article  Google Scholar 

  31. Hwang J, Kim HM, Sun Y (2018) High performance potassium-sulfur batteries based on a sulfurized polyacrylonitrile cathode and polyacrylic acid binder. J Mater Chem A 6(30):14587–14593. https://doi.org/10.1039/C8TA03135E

    Article  Google Scholar 

  32. Wu F, Li W, Chen L, Lu Y, Su Y, Bao W, Wang J, Chen S, Bao L (2017) Polyacrylonitrile-polyvinylidene fluoride as high-performance composite binder for layered Li-rich oxides. J Power Sour 359:226–233. https://doi.org/10.1016/j.jpowsour.2017.05.063

    Article  Google Scholar 

  33. Eliseeva SN, Shkreba EV, Kamenskii MA, Tolstopjatova EG, Holze R, Kondratiev VV (2019) Effects of conductive binder on the electrochemical performance of lithium titanate anodes. Solid State Ionics 33:18–29. https://doi.org/10.1016/j.ssi.2019.01.011

    Article  Google Scholar 

  34. Pan J, Xu G, Ding B, Chang Z, Wang A, Dou H, Zhang X (2016) PAA/PEDOT:PSS as a multifunctional, water-soluble binder to improve the capacity and stability of lithium-sulfur batteries. RSC Adv 6(47):40650–40655. https://doi.org/10.1039/C6RA04230A

    Article  Google Scholar 

  35. Cho YM, Kim J, Elabd A, Choi S, Park KH, Kwon T, Lee J, Char K, Coskun A, Choi JW (2019) A pyrene-poly (acrylic acid)-polyrotaxane supramolecular binder network for high-performance silicon negative electrodes. Adv Mater 31(51):1905048. https://doi.org/10.1002/adma.201905048

    Article  Google Scholar 

  36. Park Y, Lee S, Kim S, Jang BY, Kim JS, Oh SM, Kim J, Choi N, Lee KT, Kim B (2013) A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries. RSC Adv 3(31):12625–12630. https://doi.org/10.1039/C3RA42447B

    Article  Google Scholar 

  37. Wang H, Sencadas V, Gao G, Gao H, Du A, Liu H, Guo Z (2016) Strong affinity of polysulfide intermediates to multi-functional binder for practical application in lithium-sulfur batteries. Nano Energy 26:722–728. https://doi.org/10.1016/j.nanoen.2016.06.036

    Article  Google Scholar 

  38. Tang R, Ma L, Zhang Y, Zheng X, Shi Y, Zeng X, Wang X, Wei L (2020) A flexible and conductive binder with strong adhesion for high performance silicon-based lithium-ion batteries anode. ChemElectroChem 7(9):1992–2000. https://doi.org/10.1002/celc.201902152

    Article  Google Scholar 

  39. Wei L, Chen C, Hou Z, Wei H (2016) Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries. Sci Rep 6(1):19583. https://doi.org/10.1038/srep19583

    Article  Google Scholar 

  40. Goren A, Costa CM, Silva MM, Lancerosmendez S (2016) Influence of fluoropolymer binders on the electrochemical performance of C-LiFePO4 based cathodes. Solid State Ionics 295:57–64. https://doi.org/10.1016/j.ssi.2016.07.012

    Article  Google Scholar 

  41. Wang W, Yue X, Meng J, Wang X, Zhou Y, Wang Q, Fu Z (2019) Comparative study of water-based LA133 and CMC/SBR binders for sulfur cathode in advanced lithium-sulfur batteries. J Phys Chem C 123(1):250–257. https://doi.org/10.1021/acs.jpcc.8b10736

    Article  Google Scholar 

  42. Guo R, Zhang S, Ying H, Yang W, Wang J, Han W (2019) Preparation of an amorphous cross-linked binder for silicon anodes. Chemsuschem 12(21):4838–4845. https://doi.org/10.1002/cssc.201902079

    Article  Google Scholar 

  43. Xu G, Yan Q, Kushima A, Zhang X, Pan J, Li J (2017) Conductive graphene oxide-polyacrylic acid (GOPAA) binder for lithium-sulfur batteries. Nano Energy 31:568–574. https://doi.org/10.1016/j.nanoen.2016.12.002

    Article  Google Scholar 

  44. Gao Y, Qiu X, Wang X, Gu A, Zhang L, Chen X, Li J, Yu Z (2019) Chitosan-g-poly (acrylic acid) copolymer and its sodium salt as stabilized aqueous binders for silicon anodes in lithium-ion batteries. ACS Sustain Chem Eng 7(19):16274–16283. https://doi.org/10.1021/acssuschemeng.9b03307

    Article  Google Scholar 

  45. Yim T, Choi SJ, Park J, Cho W, Jo YN, Kim T, Kim Y (2015) The effect of an elastic functional group in a rigid binder framework of silicon-graphite composites on their electrochemical performance. Phys Chem Chem Phys 17(4):2388–2393. https://doi.org/10.1039/C4CP04723K

    Article  Google Scholar 

  46. Tong J, Han C, Hao X, Qin X, Li B (2020) Conductive polyacrylic acid-polyaniline as a multifunctional binder for stable organic quinone electrodes of lithium-ion batteries. ACS Appl Mater Interfaces 12(35):39630–39638. https://doi.org/10.1021/acsami.0c10347

    Article  Google Scholar 

  47. Wang S, Duan Q, Lei J, Yu DYW (2020) Slime-inspired polyacrylic acid-borax crosslinked binder for high-capacity bulk silicon anodes in lithium-ion batteries. J Power Sour 468:228365. https://doi.org/10.1016/j.jpowsour.2020.228365

    Article  Google Scholar 

  48. Shi Z, Jiang S, Robertson LA, Zhao Y, Sarnello E, Li T, Chen W, Zhang Z, Zhang L (2020) Restorable neutralization of poly (acrylic acid) binders toward balanced processing properties and cycling performance for silicon anodes in lithium-ion batteries. ACS Appl Mater Interfaces 12(52):57932–57940. https://doi.org/10.1021/acsami.0c18559

    Article  Google Scholar 

  49. Jiao X, Yin J, Xu X, Wang J, Liu Y, Xiong S, Zhang Q, Song J (2021) Highly energy-dissipative, fast self-healing binder for stable Si anode in lithium-ion batteries. Adv Func Mater 31(3):2005699. https://doi.org/10.1002/adfm.202005699

    Article  Google Scholar 

  50. Lawes S, Sun Q, Lushington A, Xiao B, Liu Y, Sun X (2017) Inkjet-printed silicon as high performance anodes for Li-ion batteries. Nano Energy 36:313–321. https://doi.org/10.1016/j.nanoen.2017.04.041

    Article  Google Scholar 

  51. Yan L, Gao X, Thomas JP, Ngai J, Altounian H, Leung KT, Meng Y, Li Y (2018) Ionically cross-linked PEDOT:PSS as a multi-functional conductive binder for high-performance lithium-sulfur batteries. Sustain Energy Fuels 2(7):1574–1581. https://doi.org/10.1039/C8SE00167G

    Article  Google Scholar 

  52. Liu X, Iqbal A, Ali N, Qi R, Qian X (2020) Ion-crosslinking promoted high performance Si/PEDOT:PSS electrodes: the importance of cations’ ionic potential and softness parameters. ACS Appl Mater Interfaces 12(17):19431–19438. https://doi.org/10.1021/acsami.0c00755

    Article  Google Scholar 

  53. Wang L, Liu T, Peng X, Zeng W, Jin Z, Tian W, Gao B, Zhou Y, Chu PK, Huo K (2018) Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries. Adv Func Mater 28(3):1704858. https://doi.org/10.1002/adfm.201704858

    Article  Google Scholar 

  54. Fei J, Sun Q, Cui Y, Li J, Huang J (2017) Sodium carboxyl methyl cellulose and polyacrylic acid binder with enhanced electrochemical properties for ZnMoO4·0.8H2O anode in lithium ion batteries. J Electroanal Chem 804:158–164. https://doi.org/10.1016/j.jelechem.2017.09.061

    Article  Google Scholar 

  55. Peled E, Goor M, Schektman I, Mukra T, Shoval Y, Golodnitsky D (2017) The effect of binders on the performance and degradation of the lithium/sulfur batteries assembled in the discharged state. J Electrochem Soc 164(1):A5001–A5007

    Article  Google Scholar 

  56. Chen C, Mistry A, Mukherjee PP (2017) Probing impedance and microstructure evolution in lithium-sulfur batteries electrodes. J Phys Chem C 121(39):21206–21216. https://doi.org/10.1021/acs.jpcc.7b07245

    Article  Google Scholar 

  57. Zhang L, Jiao X, Feng Z, Li B, Feng Y, Song J (2021) A nature-inspired binder with three-dimensional cross-linked networks for silicon-based anodes in lithium-ion batteries. J Power Sour 484:229198. https://doi.org/10.1016/j.jpowsour.2020.229198

    Article  Google Scholar 

  58. He X, Han R, Jiang P, Chen Y, Liu W (2020) Molecularly engineered conductive polymer binder enables stable lithium storage of Si. Ind Eng Chem Res 59(7):2680–2688. https://doi.org/10.1021/acs.iecr.9b05838

    Article  Google Scholar 

  59. Li D, Danilov DL, Xie J, Raijmakers L, Gao L, Yang Y, Notten PH (2016) Degradation mechanisms of C6/LiFePO4 batteries: experimental analyses of calendar aging. Electrochim Acta 190:1124–1133. https://doi.org/10.1016/j.electacta.2015.12.161

    Article  Google Scholar 

  60. Keil P, Schuster SF, Wilhelm J, Travi J, Hauser A, Karl RC, Jossen A (2016) Calendar aging of lithium-ion batteries. J Electrochem Soc 163(9):A1872–A1880. https://doi.org/10.1149/2.0411609jes

    Article  Google Scholar 

  61. Schmitt J, Maheshwari A, Heck M, Lux S, Vetter M (2017) Impedance change and capacity fade of lithium nickel manganese cobalt oxide-based batteries during calendar aging. J Power Sour 353:183–194. https://doi.org/10.1016/j.jpowsour.2017.03.090

    Article  Google Scholar 

  62. Yim T, Choi SJ, Jo YN, Kim T, Kim KJ, Jeong G, Kim Y (2014) Effect of binder properties on electrochemical performance for silicon-graphite anode: method and application of binder screening. Electrochim Acta 136:112–120. https://doi.org/10.1016/j.electacta.2014.05.062

    Article  Google Scholar 

  63. Liu Z, Yao L, Hu J, Qiu Z, Yan Y (2021) Fluorinated polyimide with sulfonyl group as a novel binder for high-performance lithium-ion batteries. Ionics 27:1579–1588. https://doi.org/10.1007/s11581-021-03934-0

    Article  Google Scholar 

  64. Lee SY, Choi Y, Hong KS, Lee JK, Kim J, Bae J, Jeong ED (2018) Influence of EDTA in poly (acrylic acid) binder for enhancing electrochemical performance and thermal stability of silicon anode. Appl Surf Sci 447:442–451. https://doi.org/10.1016/j.apsusc.2018.04.004

    Article  Google Scholar 

  65. He D, Li P, Wang W, Wan Q, Zhang J, Xi K, Ma X, Liu Z, Zhang L, Qu X (2019) Collaborative design of hollow nanocubes, in situ cross-linked binder, and amorphous Void@SiOx@C as a three-pronged strategy for ultrastable lithium storage. Small 16(5):1905736. https://doi.org/10.1002/smll.201905736

    Article  Google Scholar 

  66. Wei L, Hou Z (2017) High performance polymer binders inspired by chemical finishing of textiles for silicon anodes in lithium ion batteries. J Mater Chem A 5(42):22156–22162. https://doi.org/10.1039/C7TA05195F

    Article  Google Scholar 

  67. Zheng M, Fu X, Wang Y, Reeve J, Scudiero L, Zhong W (2018) Poly (vinylidene fluoride)-based blends as new binders for lithium-ion batteries. ChemElectroChem 5(16):2288–2294. https://doi.org/10.1002/celc.201800553

    Article  Google Scholar 

  68. Qian J, Wiener CG, Zhu Y, Vogt BD (2018) Swelling and plasticization of polymeric binders by Li-containing carbonate electrolytes using quartz crystal microbalance with dissipation. Polymer 143:237–244. https://doi.org/10.1016/j.polymer.2018.04.021

    Article  Google Scholar 

  69. Luo Z, Xu Y, Gong C, Zheng Y, Zhou Z, Yu L (2021) An ultraviolet curable silicon/graphite electrode binder for long-cycling lithium ion batteries. J Power Sour 485:229348. https://doi.org/10.1016/j.jpowsour.2020.229348

    Article  Google Scholar 

  70. Gupta A, Badam R, Nag A, Kaneko T, Matsumi N (2021) Bis-imino-acenaphthenequinone-paraphenylene-type condensation copolymer binder for ultralong cyclable lithium-ion rechargeable batteries. ACS Appl Energy Mater 4(3):2231–2240. https://doi.org/10.1021/acsaem.0c02742

    Article  Google Scholar 

  71. Jin B, Li Y, Qian J, Zhan X, Zhang Q (2020) Environmentally friendly binders for lithium-sulfur batteries. ChemElectroChem 7(20):4158–4176. https://doi.org/10.1002/celc.202000993

    Article  Google Scholar 

  72. Wang Y, Gozen A, Chen L, Zhong W (2017) Gum-like nanocomposites as conformable, conductive, and adhesive electrode matrix for energy storage devices. Adv Energy Mater 7(6):1601767. https://doi.org/10.1002/aenm.201601767

    Article  Google Scholar 

  73. Gendensuren B, Oh ES (2018) Dual-crosslinked network binder of alginate with polyacrylamide for silicon/graphite anodes of lithium ion batteries. J Power Sour 384:379–386. https://doi.org/10.1016/j.jpowsour.2018.03.009

    Article  Google Scholar 

  74. Tian M, Qi Y, Oh ES (2021) Application of a polyacrylate latex to a lithium iron phosphate cathode as a binder material. Energies 14(7):1902. https://doi.org/10.3390/en14071902

    Article  Google Scholar 

  75. Ding Y, Zhong X, Yuan C, Duan L, Zhang L, Wang Z, Wang C, Shi F (2021) Sodium alginate binders for bivalency aqueous batteries. ACS Appl Mater Interfaces 13(17):20681–20688. https://doi.org/10.1021/acsami.1c02995

    Article  Google Scholar 

  76. Ma Z, Lyu Y, Yang H, Li Q, Guo B, Nie A (2018) Systematic investigation of the binder’s role in the electrochemical performance of tin sulfide electrodes in SIBs. J Power Sour 401:195–203. https://doi.org/10.1016/j.jpowsour.2018.08.081

    Article  Google Scholar 

  77. Kim EJ, Yue X, Irvine JTS, Armstrong AR (2018) Improved electrochemical performance of LiCoPO4 using eco-friendly aqueous binders. J Power Sour 403:11–19. https://doi.org/10.1016/j.jpowsour.2018.09.073

    Article  Google Scholar 

  78. Sun S, He D, Li P, Liu Y, Wan Q, Tan Q, Liu Z, An F, Gong G, Qu X (2020) Improved adhesion of cross-linked binder and SiO2-coating enhances structural and cyclic stability of silicon electrodes for lithium-ion batteries. J Power Sour 454:227907. https://doi.org/10.1016/j.jpowsour.2020.227907

    Article  Google Scholar 

  79. Lu L, Lou H, Xiao Y, Zhang G, Wang C, Deng Y (2018) Synthesis of triblock copolymer polydopamine-polyacrylic-polyoxyethylene with excellent performance as a binder for silicon anode lithium-ion batteries. RSC Adv 8(9):4604–4609. https://doi.org/10.1039/C7RA13524F

    Article  Google Scholar 

  80. He J, Zhang L (2018) Polyvinyl alcohol grafted poly (acrylic acid) as water-soluble binder with enhanced adhesion capability and electrochemical performances for Si anode. J Alloy Compd 763:228–240. https://doi.org/10.1016/j.jallcom.2018.05.286

    Article  Google Scholar 

  81. Sun J, Ren X, Li Z, Tian W, Zheng Y, Wang L, Liang G (2019) Effect of poly (acrylic acid)/poly (vinyl alcohol) blending binder on electrochemical performance for lithium iron phosphate cathodes. J Alloy Compd 783:379–386. https://doi.org/10.1016/j.jallcom.2018.12.197

    Article  Google Scholar 

  82. Liu D, Zhao Y, Tan R, Tian L, Liu Y, Chen H, Pan F (2017) Novel conductive binder for high-performance silicon anodes in lithium ion batteries. Nano Energy 36:206–212. https://doi.org/10.1016/j.nanoen.2017.04.043

    Article  Google Scholar 

  83. Higgins TM, Park SH, King PJ, Zhang C, McEvoy N, Berner NC, Daly D, Shmeliov A, Khan U, Duesberg G, Nicolosi V, Coleman JN (2016) A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion batteries negative electrodes. ACS Nano 10(3):3702–3713. https://doi.org/10.1021/acsnano.6b00218

    Article  Google Scholar 

  84. McGraw M, Kolla P, Yao B, Cook R, Quiao Q, Wu J, Smirnova A (2016) One-step solid-state in-situ thermal polymerization of silicon-PEDOT nanocomposites for the application in lithium-ion batteries anodes. Polymer 99:488–495. https://doi.org/10.1016/j.polymer.2016.05.044

    Article  Google Scholar 

  85. Zeng W, Wang L, Peng X, Liu T, Jiang Y, Qin F, Hu L, Chu PK, Huo K, Zhou Y (2018) Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries. Adv Energy Mater 8(11):1702314. https://doi.org/10.1002/aenm.201702314

    Article  Google Scholar 

  86. Liu X, Zai J, Iqbal A, Chen M, Ali N, Qi R, Qian X (2020) Glycerol-crosslinked PEDOT:PSS as bifunctional binder for Si anodes: improved interfacial compatibility and conductivity. J Colloid Interface Sci 565:270–277. https://doi.org/10.1016/j.jcis.2020.01.028

    Article  Google Scholar 

  87. Apraksin RV, Eliseeva SN, Tolstopjatova EG, Rumyantsev AM, Zhdanov VV, Kondratiev VV (2016) High-rate performance of LiFe0.4Mn0.6PO4 cathode materials with poly(3,4-ethylenedioxythiopene):poly(styrene sulfonate)/carboxymethylcellulose. Mater Lett 176:248–252. https://doi.org/10.1016/j.matlet.2016.04.106

    Article  Google Scholar 

  88. Vorobeva KA, Eliseeva SN, Apraksin RV, Kamenskii MA, Tolstopjatova EG, Kondratiev VV (2018) Improved electrochemical properties of cathode material LiMn2O4 with conducting polymer binder. J Alloy Compd 766:33–44. https://doi.org/10.1016/j.jallcom.2018.06.324

    Article  Google Scholar 

  89. Park E, Kim J, Chung DJ, Park MS, Kim H, Kim JH (2016) Si/SiOx-conductive polymer core-shell nanospheres with an improved conducting path preservation for lithium-ion batteries. Chemsuschem 9(19):2754–2758. https://doi.org/10.1002/cssc.201600798

    Article  Google Scholar 

  90. Salem N, Lavrisa M, Abulebdeh Y (2016) Ionically-functionalized poly (thiophene) conductive polymers as binders for silicon and graphite anodes for Li-ion batteries. Energ Technol 4(2):331–340. https://doi.org/10.1002/ente.201500250

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingzheng Weng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Ye, C., Peng, L. et al. Influence of Binder on Impedance of Lithium Batteries: A Mini-review. J. Electr. Eng. Technol. 17, 1281–1291 (2022). https://doi.org/10.1007/s42835-021-00936-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42835-021-00936-w

Keywords

Navigation