Skip to main content
Log in

Development of manufacturing technology on WC–Co hardmetals

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

Hardmetals are tungsten carbide (WC)-based composites, which are made of WC as a hard phase and transition metals such as Co, Fe, or/and Ni as ductile binder matrices. Their properties can be mainly tailored through the grain sizes of the sintered carbides and the amount of metallic binder. As successful tool materials, hardmetals are widely applied in metal cutting, wear applications, chipless forming, stoneworking, wood, and plastic working. In 2017, about two-thirds of tungsten consumption (including recycled materials) were produced for hardmetals in the world. This paper briefly introduces the development of manufacturing technology on WC–Co hardmetals from three aspects: powder preparation, bulk densification, and performance characterization. Two special WC–Co hardmetals are also described: cobalt-enrichment zone (CEZ) hardmetals, and binderless hardmetals. Furthermore, the development prospects for manufacturing techniques of hardmetals are also presented in the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Reproduced with permission from Ref. [57] Copyright 2016 Elsevier

Fig. 6
Fig. 7
Fig. 8
Fig. 9

Reproduced with permission from Ref. [108] Copyright 2018 China Academic Journal Electronic Publishing House

Fig. 10

Reproduced with permission from Ref. [108] Copyright 2018 China Academic Journal Electronic Publishing House

Similar content being viewed by others

Change history

References

  1. Exner HE. Physical and chemical nature of cemented carbides. Int Met Rev. 1979;24(1):149.

    Article  CAS  Google Scholar 

  2. Schubert WD, Lassner E. Cemented carbides—a success story. https://www.itia.info/assets/files/Newsletter_2010_06.pdf. Accessed 13 Sept 2019.

  3. García J, Ciprés VC, Blomqvist A, Kaplan B. Cemented carbide microstructures: a review. Int J Refract Met Hard Mater. 2019;80:40.

    Article  CAS  Google Scholar 

  4. Zeiler B. Tungsten and cobalt, the two key elements of the hardmetal industry. In: 11th international conference on the science of hard materials. Khao Lak. 2019.

  5. Sarin VK, Mari D, Llanes L. Comprehensive hard materials. Kidlington: Elsevier; 2014. p. 32.

    Google Scholar 

  6. Vaishali J, Ramesh S, Sudarshana S, Shivashankar A. Reactive sintering of W–C–Co powder. In: 11th international conference on the science of hard materials, Khao Lak. 2019.

  7. Armstrong RW. The hardness and strength properties of WC–Co composites. Materials. 2011;4(7):1287.

    Article  CAS  Google Scholar 

  8. Fukatsu T, Kobori K, Ueki M. Micro-grained cemented carbide with high strength. Int J Refract Met Hard Mater. 1991;10(2):57.

    Article  CAS  Google Scholar 

  9. Bock A, Zeiler B. Production and characterization of ultrafine WC powders. Int J Refract Met Hard Mater. 2002;20(1):23.

    Article  CAS  Google Scholar 

  10. Tükör Z, Halwax E, Schubert WD, Bicher A, Bock A, Zeiler B. Structural analysis of submicron and ultrafine WC powders based on Rietveld refinements. In: 17th international plansee seminar, Reutte. 2009.

  11. Miyake M, Hara A, Sho T. Direct production of WC from WO3 by using two rotary carburization furnaces. J Jpn Soc Powder Powder Metall. 1979;26(3):90.

    Article  CAS  Google Scholar 

  12. Asada N, Yamamoto Y, Shimatani K, Honkawa S, Miyake M. Particle size of fine grain WC by the ‘continuous direct carburizing process’. Met Powder Rep. 1990;45:60.

    Article  Google Scholar 

  13. Wang KF, Sun GD, Wu YD, Zhang GH. Fabrication of ultrafine and high-purity tungsten carbide powders via a carbothermic reduction–carburization process. J Alloys Compd. 2019;784:362.

    Article  CAS  Google Scholar 

  14. Spriggs GE. A history of fine grained hardmetal. Int J Refract Met Hard Mater. 1995;13(5):241.

    Article  CAS  Google Scholar 

  15. Farag S, Konyashin I, Ries B. The influence of grain growth inhibitors on the microstructure and properties of submicron, ultrafine and nano-structured hardmetals—a review. Int J Refract Met Hard Mater. 2018;77:12.

    Article  CAS  Google Scholar 

  16. Adorjan A, Schubert WD, Schön A, Bock A, Zeiler B. WC grain growth during the early stages of sintering. Int J Refract Met Hard Mater. 2006;24:365.

    Article  CAS  Google Scholar 

  17. Huang SG, Liu RL, Li L, Van der Biest O, Vleugels J. NbC as grain growth inhibitor and carbide in WC–Co hardmetals. Int J Refract Met Hard Mater. 2008;26:389.

    Article  CAS  Google Scholar 

  18. Brookes KJA. Fine-structured hardmetals and grain-growth inhibitors. Met Powder Rep. 2016;71(2):92.

    Article  Google Scholar 

  19. Pötschke J, Richter V, Gestrich T, Säuberlich T, Meese-Marktscheffel JA. Grain growth inhibition in ultrafine hardmetals. Int J Refract Met Hard Mater. 2017;66:95.

    Article  CAS  Google Scholar 

  20. Pötschke J, Gestrich T, Richter V. Grain growth inhibition of hardmetals during initial heat-up. Int J Refract Met Hard Mater. 2018;72:117.

    Article  CAS  Google Scholar 

  21. Richter V, Pötschke J, Holke R, Michaelis A. Nanoscaled hardmetals—fiction or reality? In: 18th international Plansee seminar, Reutte. 2013.

  22. Liu X, Song X, Wang H, Liu X, Tang F, Lu H. Complexions in WC–Co cemented carbides. Acta Mater. 2018;149:164.

    Article  CAS  Google Scholar 

  23. Meingast A, Coronel E, Blomqvist A, Norgren S, Wahnström G, Lattemann M. High resolution STEM investigation of interface layers in hardmetals. Int J Refract Met Hard Mater. 2018;72:135.

    Article  CAS  Google Scholar 

  24. McCandlish LE, Kear BH, Kim BK. Processing and properties of nanostructured WC–Co. Nanostruct Mater. 1992;1(2):119.

    Article  CAS  Google Scholar 

  25. Kear BH, McCandlish LE. Chemical processing and properties of nanostructured WC–Co materials. Nanostruct Mater. 1993;3(1–6):19.

    Article  CAS  Google Scholar 

  26. Ouyang Y, Wu Y, Peng Z. Fluidization synthesis of WC–Co composite powder and its application. China Tungsten Ind. 1999;14:210.

    Google Scholar 

  27. Yi Z, Shao G, Duan X, Sun P, Shi X, Xiong Z, Guo J. Preparation of WC–Co powder by direct reduction and carbonization. China Part. 2005;3(5):286.

    Article  CAS  Google Scholar 

  28. Liu W, Song X, Zhang J, Yin F, Zhang G. A novel route to prepare ultrafine-grained WC–Co cemented carbides. J Alloys Compd. 2008;458(1–2):366.

    Article  CAS  Google Scholar 

  29. Liu W, Song X, Zhang J, Zhang G, Liu X. Preparation of ultrafine WC–Co composite powder by in situ reduction and carbonization reactions. Int J Refract Met Hard Mater. 2009;27(1):115.

    Article  CAS  Google Scholar 

  30. Liu W, Song X, Wang K, Zhang J, Liu X. A novel rapid route for synthesizing WC–Co bulk by in situ reactions in spark plasma sintering. Mater Sci Eng A. 2009;499(1–2):476.

    Article  CAS  Google Scholar 

  31. Wei C, Song X, Zhao S, Zhang L, Liu W. In-situ synthesis of WC–Co composite powder and densification by sinter-HIP. Int J Refract Met Hard Mater. 2010;28(5):567.

    Article  CAS  Google Scholar 

  32. Fievet F. New spherical monodisperse and non-agglomerated cobalt powders. In: international conference on advances in hardmaterials production, Bonn. 1992.

  33. Pasquazzi A, Weissenbacher R, Oehlers M. Improvement of the compressibility of cobalt powders for the cemented carbide industry. Int J Refract Met Hard Mater. 2017;62(Part B):118.

    Article  CAS  Google Scholar 

  34. Neikov O, Naboychenko S, Murashova I. Production of cobalt and cobalt-alloy powders. In: Handbook of non-ferrous metal powders. 2nd ed. Amsterdam: Elsevier; 2019. p. 669.

  35. Wu CH, Chen SS, Nie HB, Lin GA, Wu QS. Continuous dynamically controlled low-temperature combustion synthesis of ultrafine Co3O4 powders: experiment and theoretical analysis. Int J SHS. 2012;21(4):217.

    CAS  Google Scholar 

  36. Wu C, Xiao M, Chen S, Xie H. Application of fluidization technology in productions of cemented carbides. Int J Refract Met Hard Mater. 2014;46:188.

    Article  CAS  Google Scholar 

  37. Brookes KJA. Gühring’s ‘elite’ hardmetals plant. Met Powder Rep. 1991;46:46.

    Article  Google Scholar 

  38. Friedrichs K. Transition from HSS tools to solid carbide tools in the field of shaft tools and the development of new types of carbides. In: 15th international Plansee seminar, Reutte. 2001.

  39. Brookes K. Leading Europe in extruded carbide. Met Powder Rep. 2002;57(1):26.

    Article  Google Scholar 

  40. Formisano A, Caraviello A, Carrino L, Durante M, Langella A. Rheological characterization and finite element modeling of an extrusion process of a WC–Co compound. Int J Refract Met Hard Mater. 2015;50:93.

    Article  CAS  Google Scholar 

  41. Laoui T, Froyen L, Kruth JP. Effect of mechanical alloying on selective laser sintering of WC-9Co powder. Powder Metall. 1999;42(3):203.

    CAS  Google Scholar 

  42. Pötschke J, Berger C, Richter H, Scheithauer U, Weingarten S. Additive manufacturing of hardmetals. In: Euro PM2017 congress & exhibition, Milan. 2017.

  43. Brookes K. 3D-printing style additive manufacturing for commercial hardmetals. Met Powder Rep. 2015;70(3):137.

    Article  Google Scholar 

  44. Li CW, Chang KC, Yeh AC. On the microstructure and properties of an advanced cemented carbide system processed by selective laser melting. J Alloys Compd. 2019;782:440.

    Article  CAS  Google Scholar 

  45. Zhang X, Guo Z, Chen C, Yang W. Additive manufacturing of WC-20Co components by 3D gel-printing. Int J Refract Met Hard Mater. 2018;70:215.

    Article  CAS  Google Scholar 

  46. Enneti R, Prough K, Wolfe T, Klein A, Studley N, Trasorras J. Sintering of WC-12% Co processed by binder jet 3D printing (BJ3DP) technology. Int J Refract Met Hard Mater. 2018;71:28.

    Article  CAS  Google Scholar 

  47. Lengauer W, Duretek I, Fürst M, Schwarz V, Gonzalez-Gutierrez J, Schuschnigg S, Kukla C, Kitzmantel M, Neubauer E, Lieberwirth C, Morrison V. Fabrication and properties of extrusion-based 3D-printed hardmetal and cermet components. Int J Refract Met Hard Mater. 2019;82:141.

    Article  CAS  Google Scholar 

  48. Yang MJ, German RM. Nanophase and superfine cemented carbides processed by powder injection molding. Int J Refract Met Hard Mater. 1998;16(2):107.

    Article  CAS  Google Scholar 

  49. Rödiger K, van den Berg H, Dreyer K, Kassel D, Orths S. Near-net-shaping in the hardmetal industry. Int J Refract Met Hard Mater. 2000;18(2–3):111.

    Article  Google Scholar 

  50. Zhu B, Qu X, Tao Y. Powder injection molding of WC-8%Co tungsten cemented carbide. Int J Refract Met Hard Mater. 2002;20(5–6):89.

    Google Scholar 

  51. Brookes K. MIM marches on into hardmetal tool manufacture. Met Powder Rep. 2005;60:14.

    Article  Google Scholar 

  52. Micski A, Andersson KM, Jansson CÅ, Olofsson K, Samuelson P. Simulation points way towards economic hardmetal moulding. Met Powder Rep. 2008;63(8):56.

    Article  Google Scholar 

  53. Fayyaz A, Muhamad N, Sulong AB. Microstructure and physical and mechanical properties of micro cemented carbide injection moulded components. Powder Tech. 2018;326:151.

    Article  CAS  Google Scholar 

  54. Xie XC, Lin CG, Jia CC, Cao RJ. Effects of process parameters on quality of ultrafine WC/12Co injection molded compacts. Int J Refract Met Hard Mater. 2015;48:305.

    Article  CAS  Google Scholar 

  55. Fais A. A faster FAST: electro-sinter-forging. Met Powder Rep. 2017;73(2):80.

    Article  Google Scholar 

  56. Upadhyaya A, Sarathy D, Wagner G. Advances in sintering of hard metals. Mater Des. 2001;22:499.

    Article  CAS  Google Scholar 

  57. Oliver C, Álvarez E, García J. Kinetics of densification and grain growth in ultrafine WC–Co composites. Int J Refract Met Hard Mater. 2016;59:121.

    Article  CAS  Google Scholar 

  58. Gestrich T, Kaiser A, Pötschke J, Meinl J, Höhn S. Thermal behaviour of cermets and hardmetals during debinding and sintering. Int J Refract Met Hard Mater. 2018;73:210.

    Article  CAS  Google Scholar 

  59. Ferstl H, Wilson D, Rough S. Quantifying the convective drying behaviour of hardmetal paste extrudates. Powder Tech. 2019;351:212.

    Article  CAS  Google Scholar 

  60. Freytag J, Exner HE. The influence of tungsten and carbon additions on the sintering and the magnetic properties of WC-12Co hardmetals. In: international powder metallurgy conference, Chicago. 1977. p. 511.

  61. Gille G, Szesny B, Leitner G. A new 0.4 μm WC powder as well as powder-related properties and sintering behaviour of 0.6 to 30 μm WC–Co hardmetals. J Adv Mater. 1999;31:9.

    CAS  Google Scholar 

  62. Wang H, Webb T, Bitler J. Different effects of Cr3C2 and VC on the sintering behavior of WC–Co materials. Int J Refract Met Hard Mater. 2015;53:117.

    Article  CAS  Google Scholar 

  63. Gille G, Bredthauer J, Gries B, Mende B, Heinrich W. Advanced and new grades of WC and binder powder—their properties and application. Int J Refract Met Hard Mater. 2000;18:87.

    Article  CAS  Google Scholar 

  64. Göthelid M, Haglund S, Ågren J. Influence of O and Co on the early stages of sintering of WC–Co: a surface study by AES and STM. Acta Mater. 2000;48:4357.

    Article  Google Scholar 

  65. Macedo H, Silva A, Melo D. The spreading of cobalt, nickel and iron on tungsten carbide and the first stage of hard metal sintering. Mater Lett. 2003;57:3924.

    Article  CAS  Google Scholar 

  66. Laptev A. Theory and technology of sintering, thermal and chemicothermal treatment. Powder Metall Met Ceram. 2007;46(​7–8):317.

    Article  CAS  Google Scholar 

  67. Froschauer L, Fulrath R. Direct observation of liquid-phase sintering in the system tungsten carbide-cobalt. J Mater Sci. 1976;11:142.

    Article  CAS  Google Scholar 

  68. Haglund S, Ågren J, Uhrenius B. Solid state sintering of cemented carbides: an experimental study. Z Metallkd. 1998;89:316.

    CAS  Google Scholar 

  69. Silva A, Schubert WD, Lux B. The role of the binder phase in the WC–Co sintering. Mater Res. 2001;4:59.

    Article  Google Scholar 

  70. Gille G, Szesny B, Dreyer K, Berg H, Schmidt J, Gestrich T, Leitner G. Submicron and ultrafine grained hardmetals for microdrills and metal cutting inserts. Int J Refract Met Hard Mater. 2002;20:3.

    Article  CAS  Google Scholar 

  71. Nie H, Zeng Q, Zheng J, Wen X, Yu Y. The preparation, preparation mechanism and properties of extra coarse-grained WC–Co hardmetals. Met Powder Rep. 2017;72:188.

    Article  Google Scholar 

  72. Kumar A, Watabe M, Kurokawa K. The sintering kinetics of ultrafine tungsten carbide powders. Ceram Int. 2011;37:2643.

    Article  CAS  Google Scholar 

  73. Bounhoure V, Lay S, Coindeau S, Norgren S, Pauty E, Missiaen J. Effect of Cr addition on solid state sintering of WC–Co alloys. Int J Refract Met Hard Mater. 2015;52:21.

    Article  CAS  Google Scholar 

  74. Konyashin I, Zaitsev A, Sidorenko D, Levashov E, Levashov E, Ries B, Konischev S, Sorokin M, Mazilkin A, Herrmann M, Kaiser A. Wettability of tungsten carbide by liquid binders in WC–Co cemented carbides: is it complete for all carbon contents? Int J Refract Met Hard Mater. 2017;62:134.

    Article  CAS  Google Scholar 

  75. Konyashin I, Ries B, Lachmann F, Fry A. Gradient WC–Co hardmetals: theory and practice. Int J Refract Met Hard Mater. 2013;36:10.

    Article  CAS  Google Scholar 

  76. Janisch D, Lengauer W, Rödiger K, Dreyer K, Berg H. Cobalt capping: why is sintered hardmetal sometimes covered with binder? Int J Refract Met Hard Mater. 2010;28:466.

    Article  CAS  Google Scholar 

  77. Guo J, Fan P, Wang X, Fang Z. Formation of Co-capping during sintering of straight WC-10wt% Co. Int J Refract Met Hard Mater. 2010;28:317.

    Article  CAS  Google Scholar 

  78. Sachet E, Schubert WD, Mühlbauer G, Yukimura J, Kubo Y. On the formation and in situ observation of thin surface layers of cobalt on sintered cemented carbides. Int J Refract Met Hard Mater. 2012;31:96.

    Article  CAS  Google Scholar 

  79. Konyashin I, Hlawatschek S, Ries B, Lachmann F, Vukovic M. Cobalt capping on WC–Co hardmetals. Part I: a mechanism explaining the presence or absence of cobalt layers on hardmetal articles during sintering. Int J Refract Met Hard Mater. 2014;42:142.

    Article  CAS  Google Scholar 

  80. García J, Englund S, Haglöf F. Controlling cobalt capping in sintering process of cermets. Int J Refract Met Hard Mater. 2017;62:126.

    Article  CAS  Google Scholar 

  81. Raether F, Klimera A, Baber J. In situ measurement and simulation of temperature and stress gradients during sintering of large ceramic components. Ceram Int. 2008;34(2):385.

    Article  CAS  Google Scholar 

  82. Baber J, Klimera A, Raether F. In situ measurement of dimensional changes and temperature fields during sintering with a novel thermooptical measuring device. J Eur Ceram Soc. 2007;27:701.

    Article  CAS  Google Scholar 

  83. Ponomarev S, Shatov A, Mikhailov A, Firstov S. Carbon distribution in WC based cemented carbides. Int J Refract Met Hard Mater. 2014;49:42.

    Article  CAS  Google Scholar 

  84. Persson T, Schwind M. Correlation of WC grain size distribution to hardness and coercivity. In: 18th international Plansee seminar, Reutte. 2013.

  85. Fang Z, Easan J. Nondestructive evaluation of WC–Co composites using magnetic properties. Int J Powder Met. 1993;29:259.

    CAS  Google Scholar 

  86. Liu X, Wang H, Song X, Moscatelli R. Elastic modulus of nanocrystalline cemented carbide. Trans Nonferr Met Soc China. 2018;28(5):966.

    Article  CAS  Google Scholar 

  87. Roa JJ, Jiménez-Piqué E, Tarragó JM, Sandoval DA, Mateo A, Fair J, Llanes L. Hall–Petch strengthening of the constrained metallic binder in WC–Co cemented carbides: experimental assessment by means of massive nanoindentation and statistical analysis. Mater Sci Eng A. 2016;676:487.

    Article  CAS  Google Scholar 

  88. Duszová A, Halgaš R, Bľanda M, Hvizdoš P, Lofaj F, Dusza J, Morgiel J. Nanoindentation of WC–Co hardmetals. J Eur Ceram Soc. 2013;33:2227.

    Article  CAS  Google Scholar 

  89. Csanádi T, Bľanda M, Chinh N, Hvizdoš P, Dusza J. Orientation-dependent hardness and nanoindentation-induced deformation mechanisms of WC crystals. Acta Mater. 2015;83:397.

    Article  CAS  Google Scholar 

  90. Roa J, Phani P, Oliver W, Llanes L. Mapping of mechanical properties at microstructural length scale in WC–Co cemented carbides assessment of hardness and elastic modulus by means of high speed massive nanoindentation and statistical analysis. Int J Refract Met Hard Mater. 2018;75:211.

    Article  CAS  Google Scholar 

  91. Tarragó J, Roa J, Jiménez-Piqué E, Keown E, Fair J, Llanes L. Mechanical deformation of WC–Co composite micropillars under uniaxial compression. Int J Refract Met Hard Mater. 2016;54:70.

    Article  CAS  Google Scholar 

  92. Sandoval D, Rinaldi A, Tarragó J, Roa J, Fair J, Llanes L. Scale effect in mechanical characterization of WC–Co composites. Int J Refract Met Hard Mater. 2018;72:157.

    Article  CAS  Google Scholar 

  93. Sandoval D, Rinaldi A, Notargiacomo A, Ther O, Tarrés E, Roa J, Llanes L. Influence of specimen size and microstructure on uniaxial compression of WC–Co micropillars. Ceram Int. 2019;45:15934.

    Article  CAS  Google Scholar 

  94. Trueba M, Aramburu A, Rodríguez N, Iparraguirre I, Elizalde M, Ocaña I, Martínez-Esnaola J. “In-situ” mechanical characterisation of WC–Co hardmetals using microbeam testing. Int J Refract Met Hard Mater. 2014;43:236.

    Article  CAS  Google Scholar 

  95. Elizalde M, Ocaña I, Alkorta J, Sánchez-Moreno J. Mechanical strength assessment of single WC–WC interfaces present in WC–Co hardmetals through micro-beam bending experiments. Int J Refract Met Hard Mater. 2018;72:39.

    Article  CAS  Google Scholar 

  96. Glühmann J, Schneeweiß M, Berg H, Kassel D, Rödiger K, Dreyer K, Lengauer W. Functionally graded WC–Ti(C, N)–(Ta, Nb)C–Co hardmetals: metallurgy and performance. Int J Refract Met Hard Mater. 2013;36:38.

    Article  CAS  Google Scholar 

  97. Janisch D, Garel M, Eder A, Lengauer W, Dreyer K, Berg H. Sintering, characterisation, and analysis of functional gradient hardmetals. Int J Refract Met Hard Mater. 2008;26:179.

    Article  CAS  Google Scholar 

  98. Königshofer R, Eder A, Lengauer W, Dreyer K, Kassel D, Daub H-W, Berg H. Growth of the graded zone and its impact on cutting performance in high-pressure nitrogen modified functionally gradient hardmetals. J Alloys Compd. 2004;366:228.

    Article  CAS  Google Scholar 

  99. Tang J, Xiong J, Guo Z, Yang T, Zheng Q. Microstructure and properties of CVD coated on gradient cemented carbide with different WC grain size. Int J Refract Met Hard Mater. 2016;61:128.

    Article  CAS  Google Scholar 

  100. Frykholm R, Jansson B, Andrén H-O. The influence of carbon content on formation of carbo-nitride free surface layers in cemented carbides. Int J Refract Met Hard Mater. 2002;20:345.

    Article  CAS  Google Scholar 

  101. Shi L, Yang J, Huang J, Zhou T, Zhang Y. Microstructure evolution and formation mechanism of graded cemented carbide with cubic-carbide-free layer prepared with TiN or Ti(C, N) free powder mixture. Int J Refract Met Hard Mater. 2017;66:198.

    Article  CAS  Google Scholar 

  102. Ekroth M, Frykholm R, Lindholm M, Andrén H-O, Ågren J. Gradient zones in WC–Ti(C, N)–Co-based cemented carbides: experimental study and computer simulations. Acta Mater. 2000;48:2177.

    Article  CAS  Google Scholar 

  103. Garcia J, Lindwall G, Prat O, Frisk K. Kinetics of formation of graded layers on cemented carbides: experimental investigations and DICTRA simulations. Int J Refract Met Hard Mater. 2011;29:256.

    Article  CAS  Google Scholar 

  104. Chen W, Xie W, Zhang L, Chen L, Wang S. Diffusion-controlled growth of fcc-free surface layers on cemented carbides: experimental measurements coupled with computer simulation. Int J Refract Met Hard Mater. 2013;41:531.

    Article  CAS  Google Scholar 

  105. Zhang W, Du Y, Peng Y, Xie W, Wen G, Wang S. Experimental investigation and simulation of the effect of Ti and N contents on the formation of fcc-free surface layers in WC–Ti(C, N)–Co cemented carbides. Int J Refract Met Hard Mater. 2013;41:638.

    Article  CAS  Google Scholar 

  106. Kenemitsu Y, Nishimura T, Yoshino H, Takao K, Masumoto Y. Effect of hot isostatic pressing on binderless cemented carbide. Int J Refract Met Hard Mater. 1982;1:66.

    Google Scholar 

  107. Shushi I. Ultrafine particle binderless cemented carbide. Met Powder Rep. 1992;47:32.

    Google Scholar 

  108. Zhang T, Nie H, Li W, Zheng W, Cai X. Research progress and application of binderless cemented carbides. China Tungsten Ind. 2018;33:22.

    Google Scholar 

  109. Poetschke J, Richter V, Michaelis A. Fundamentals of sintering nanoscaled binderless hardmetals. Int J Refract Met Hard Mater. 2015;49:124.

    Article  CAS  Google Scholar 

  110. Brookes K. Plansee Seminar 2017: opening session—global hardmetal trends. Met Powder Rep. 2017;72:301.

    Article  Google Scholar 

  111. Liu L. Reflections on the high quality development of tungsten industry in China. China Tungsten Ind. 2019;34:10.

    Google Scholar 

  112. Ginting A, Skeina R, Cuaca D, Herdianto, Pieter, Masyithah Z. The characteristics of CVD- and PVD-coated carbide tools in hard turning of AISI 4340. Measurement. 2018;129:548.

    Article  Google Scholar 

  113. Fieandt L, Johansson K, Larsson T, Boman M, Lindahl E. On the growth, orientation and hardness of chemical vapor deposited Ti(C, N). Thin Solid Films. 2018;645:19.

    Article  CAS  Google Scholar 

  114. Selinder T, Coronel E, Wallin E, Helmersson U. α -Alumina coatings on WC/Co substrates by physical vapor deposition. Int J Refract Met Hard Mater. 2009;27:507.

    Article  CAS  Google Scholar 

  115. Connelly R, Pattanaik A, Sarin V. Development of moderate temperature CVD Al2O3 coatings. Int J Refract Met Hard Mater. 2005;23:317.

    Article  CAS  Google Scholar 

  116. Reineck I, Sjöstrand M, Karner J, Pedrazzini M. Diamond coated cutting tools. Int J Refract Met Hard Mater. 1996;14:187.

    Article  CAS  Google Scholar 

  117. Lux B, Colombier C, Altena H, Stjernberg K. Preparation of alumina coatings by chemical vapour deposition. Thin Solid Films. 1986;138:49.

    Article  CAS  Google Scholar 

  118. Mehrotra Pankaj K. Reduction of environmental impact in hardmetal technologies. Met Powder Rep. 2017;72:267.

    Article  Google Scholar 

  119. Li M, Xi X, Nie Z, Ma L, Liu Q. Recovery of tungsten from WC–Co hard metal scraps using molten salts electrolysis. J Mater Res Technol. 2019;8:1440.

    Article  CAS  Google Scholar 

  120. European Powder Metallurgy Association (EPMA). Vision 2025—future developments for the European PM Industry. https://www.epma.com/epma-free-publications/product/vision-2025-high-res. Accessed 19 June 2019.

Download references

Acknowledgements

The work was financially supported by the Major Special Projects of Fujian Science and Technology Plan (Grant No. 2017HZ0001-1). The authors are grateful to Prof. Yang Mingchuan of SLU for his WC–Co composite powder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Nie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, H., Zhang, T. Development of manufacturing technology on WC–Co hardmetals. Tungsten 1, 198–212 (2019). https://doi.org/10.1007/s42864-019-00025-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-019-00025-6

Keywords

Navigation