Skip to main content
Log in

Recent progress on high-entropy materials for electrocatalytic water splitting applications

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

Advanced materials for electrocatalytic water splitting applications have been sought-after considering both environmental and economic requirements. However, the traditional materials design concept limits the exploration of high-performance catalysts. The born of a materials design concept based on multiple elements, high-entropy materials, provides a promising path to break the shackles of compositional design in materials science. A number of high-entropy materials were reported to show remarkable properties for electrocatalytic water splitting applications. High-entropy materials were widely confirmed to be one kind of the best electrocatalysts for water splitting applications. Due to the synergy of multiple metal components, they show excellent catalytic activity. Several nontraditional methods were developed and reported to prepare high-performance high-entropy materials. This review article presents the recent progress on high-entropy materials for electrocatalytic water splitting applications. Moreover, it presents the research interests and future prospects in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from Ref. [7]. Copyright 2020, Elsevier

Fig. 4

Copyright 2018, American Association for the Advancement of Science. c Digital images of the samples before and during CTS synthesis. Representative microstructures of the obtained HEA-Co25Mo45 NPs loaded onto carbon nanofibers. Reproduced with permission Ref. [80]. Copyright 2019, Springer Nature

Fig. 5
Fig. 6

Reproduced with permission from Ref. [97]. Copyright 2019, Wiley-VCH. b Well-crystallized PdFeCoNiCu NPs with nano sized distributions. Reproduced with permission from Ref. [101]. Copyright 2021, RSC. c TEM images of the dealloyed senary NP-HEA at different magnifications with the energy disperse spectroscopy (EDS) mapping. Reproduced with permission from Ref. [99]. Copyright 2021, RSC. d Structural characterization of high entropy metal sulfide (HEMS) (CrMnFeCoNi)Sx NPs. Reproduced with permission from Ref. [102]. Copyright 2021, Wiley-VCH

Fig. 7

Reproduced with permission from Ref. [103]. Copyright 2020, Wiley-VCH

Fig. 8

Reproduced with permission from Ref. [104]. Copyright 2019, Wiley-VCH. b Microstructure and electrocatalytic performance of nano-sized Pt18Ni26Fe15Co14Cu27/C and Pt/C for HER in 1 mol·L−1 KOH electrolyte. Reproduced with permission from Ref. [105]. Copyright 2020, Springer Nature

Fig. 9

Reproduced with permission from Ref. [107]. Copyright 2021, Wiley-VCH. b Electrocatalytic performance of the HEI for HER in 1 mol·L−1 KOH solutions. Reproduced with permission from Ref. [108]. Copyright 2020, Wiley-VCH. c Electrocatalytic performance of the CoCeNiFeZnCuOx nanoplates in 1 mol·L−1 KOH solutions and the theoretical calculation of OER. Reproduced with permission from Ref. [111]. Copyright 2020, ACS. d Electrochemical performance of K1–xNax(MgMnFeCoNi)F3 compared with IrO2. Reproduced with permission from Ref. [112]. Copyright 2020, ACS

Similar content being viewed by others

Change history

References

  1. Han N, Yang KR, Lu Z, Li Y, Xu W, Gao T, Cai Z, Zhang Y, Batista VS, Liu W, Sun X. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat Commun. 2018;924:9.

    Google Scholar 

  2. Sultan S, Tiwari J, Singh A, Zhumagali S, Ha M, Myung CW, Thangavel P, Kim KS. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv Energy Mater. 2019;9:1900624.

    Article  CAS  Google Scholar 

  3. Xiong BY, Chen LS, Shi JL. Anion-containing noble-metal-free bifunctional electrocatalysts for overall water splitting. ACS Catal. 2018;8:3688.

    Article  CAS  Google Scholar 

  4. Feng JX, Wu JQ, Tong YX, Li GR. Efficient hydrogen evolution on cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption. J Am Chem Soc. 2018;140:610.

    Article  CAS  Google Scholar 

  5. Zhang K, Ma M, Li P, Wang DW, Park JH. Water splitting progress in tandem devices: Moving photolysis beyond electrolysis. Adv Energy Mater. 2016;6:1600602.

    Article  CAS  Google Scholar 

  6. Duan HH, Li DG, Tang Y, He Y, Ji SF, Wang RY, Lv HF, Lopes PP, Paulikas AP, Li HY, Mao SX, Wang CM, Markovic NM, Li J, Stamenkovic VR, Li YD. High-performance Rh2P electrocatalyst for efficient water splitting. J Am Chem Soc. 2017;139(15):5494.

    Article  CAS  Google Scholar 

  7. Hu CL, Zhang L, Gong JL. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ Sci. 2019;12:2620.

    Article  CAS  Google Scholar 

  8. Chen PZ, Zhou TP, Zhang MX, Tong Y, Zhong CG, Zhang N, Zhang LD, Wu CZ, Xie Y. 3D nitrogen-anion-decorated nickel sulfides for highly efficient overall water splitting. Adv Mater. 2017;29(30):1701584.

    Article  CAS  Google Scholar 

  9. Li LG, Wang PT, Shao Q, Huang XQ. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem Soc Rev. 2020;49:3072.

    Article  CAS  Google Scholar 

  10. He YH, Liu SW, Priest C, Shi QR, Wu G. Atomically dispersed metal–nitrogen–carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chem Soc Rev. 2020;49:3484.

    Article  CAS  Google Scholar 

  11. Shi HH, Liang HF, Ming FW, Wang ZC. Efficient overall water-splitting electrocatalysis using lepidocrocite VOOH hollow nanospheres. Angew Chem Int Ed. 2017;56:573.

    Article  CAS  Google Scholar 

  12. Zhou HQ, Yu F, Sun JY, He R, Chen S, Chu CW, Ren ZF. Highly active catalyst derived from a 3D foam of Fe(PO3)2/Ni2P for extremely efficient water oxidation. P Natl Acad Sci USA. 2017;114(22):5607.

    Article  CAS  Google Scholar 

  13. Yang YQ, Zhang K, Lin HL, Li X, Chan HC, Yang LC, Gao QS. MoS2–Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 2017;7(4):2357.

    Article  CAS  Google Scholar 

  14. Ji XX, Lin YH, Zeng J, Ren ZH, Lin ZJ, Mu YB, Qiu YJ, Yu J. Graphene/MoS2/FeCoNi(OH)x and graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting. Nat Commun. 2021;2:1380.

    Article  CAS  Google Scholar 

  15. Yang J, Wang X, Li B, Ma L, Shi L, Xiong YJ, Xu HX. Novel Iron/Cobalt-containing polypyrrole hydrogel-derived trifunctional electrocatalyst for self-powered overall water splitting. Adv Funct Mater. 2017;27(17):1606497.

    Article  CAS  Google Scholar 

  16. Wang QL, Xu CQ, Liu W, Hung SF, Yang HB, Gao JJ, Cai WZ, Chen HM, Li J, Liu B. Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting. Nat Commun. 2020;11:4246.

    Article  CAS  Google Scholar 

  17. Vrubel H, Hu X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew Chem Int Ed. 2012;51:12703.

    Article  CAS  Google Scholar 

  18. Yang ZJ, Shang L, Xiong XY, Shi R, Waterhouse GIN, Zhang TR. Hollow PtFe alloy nanoparticles derived from Pt-Fe3O4 dimers through a silica-protection reduction strategy as efficient oxygen reduction electrocatalysts. Chem Eur J. 2020;26:4090.

    Article  CAS  Google Scholar 

  19. Shang L, Zhao YX, Kong XY, Shi R, Waterhouse GIN, Wen LP, Zhang TR. Underwater superaerophobic Ni nanoparticle-decorated nickel–molybdenum nitride nanowire arrays for hydrogen evolution in neutral media. Nano Energy. 2020;78:105375.

    Article  CAS  Google Scholar 

  20. Wang W, Lei B, Guo SJ. Engineering multimetallic nanocrystals for highly efficient oxygen reduction catalysts. Adv Energy Mater. 2016;6:1600236.

    Article  CAS  Google Scholar 

  21. Cantor B, Chang ITH, Knight P, Vincent AJB. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A. 2004;375:213.

    Article  CAS  Google Scholar 

  22. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299.

    Article  CAS  Google Scholar 

  23. George EP, Curtin WA, Tasan CC. High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater. 2020;188:435.

    Article  CAS  Google Scholar 

  24. Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448.

    Article  CAS  Google Scholar 

  25. Lu YP, Gao XZ, Jiang L, Chen ZN, Wang TM, Jie JC, Kang HJ, Zhang YB, Guo S, Ruan HH, Zhao YH, Cao ZQ, Li TJ. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 2017;124:143.

    Article  CAS  Google Scholar 

  26. Lu CY, Niu LL, Chen NJ, Jin K, Yang TN, Xiu PY, Zhang YW, Gao F, Bei HB, Shi S, He MR, Robertson Ian M, Weber WJ, Wang LM. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat Commun. 2016;7:13564.

    Article  CAS  Google Scholar 

  27. Xin Y, Li SH, Qian YY, Zhu WK, Yuan HB, Jiang PY, Guo RH, Wang LB. High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities. ACS Catal. 2020;10:11280.

    Article  CAS  Google Scholar 

  28. Huo WY, Fang F, Zhou H, Xie ZH, Shang JK, Jiang JQ. Remarkable strength of CoCrFeNi high-entropy alloy wires at cryogenic and elevated temperatures. Scr Mater. 2017;141:125.

    Article  CAS  Google Scholar 

  29. Greeley J, Mavrikakis M. Alloy catalysts designed from first principles. Nat Mater. 2004;3:810.

    Article  CAS  Google Scholar 

  30. Greeley J, Jaramillo T, Bonde J, Chorkendorff IB, Nørskov JK. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater. 2006;5:909.

    Article  CAS  Google Scholar 

  31. She ZW, Kibsgaard J, Dickens CF, Chorkendorff IB, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: Insights into materials design. Science. 2017;355(6321):eaad4998.

    Article  Google Scholar 

  32. Trotochaud L, Boettcher SW. Precise oxygen evolution catalysts: Status and opportunities. Scr Mater. 2014;74:25.

    Article  CAS  Google Scholar 

  33. Liu M, Zhang Z, Okejiri F, Yang S, Zhou S, Dai S. Entropy-maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions. Adv Mater Interfaces. 2019;6:1900015.

    Article  CAS  Google Scholar 

  34. Glasscott MW, Pendergast AD, Goines S, Bishop AR, Hoang AT, Renault C, Dick JE. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nat Commun. 2009;10:2650.

    Article  CAS  Google Scholar 

  35. Rost CM, Sachet E, Borman T, Moballegh A, Dickey EC, Hou D, Jones JL, Curtarolo S, Maria JP. Entropy-stabilized oxides. Nat Commun. 2015;6:8485.

    Article  CAS  Google Scholar 

  36. Sarker P, Harrington T, Toher C, Oses C, Samiee M, Maria JP, Brenner DW, Vecchio KS, Curtarolo S. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat Commun. 2018;9:4980.

    Article  CAS  Google Scholar 

  37. Gild J, Zhang YY, Harrington T, Jiang SC, Hu T, Quinn MC, Mellor WM, Zhou NX, Vecchio K, Luo J. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci Rep. 2016;6:37946.

    Article  CAS  Google Scholar 

  38. Jin T, Sang XH, Unocic RR, Kinch RT, Liu XF, Hu J, Liu HL, Dai S. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Adv Mater. 2018;30:1707512.

    Article  CAS  Google Scholar 

  39. Zhang RZ, Gucci F, Zhu HY, Chen K, Reece MJ. Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorg Chem. 2018;57:13027.

    Article  CAS  Google Scholar 

  40. Gild J, Braun J, Kaufmann K, Marin E, Harrington T, Hopkins P, Vecchio K, Luo J. A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. J Materiomics. 2019;5:337.

    Article  Google Scholar 

  41. Chen XQ, Wu YQ. High-entropy transparent fluoride laser ceramics. J Am Ceram Soc. 2020;103:750.

    Article  CAS  Google Scholar 

  42. Zhao XH, Xue ZM, Chen WJ, Wang YQ, Mu TC. Eutectic synthesis of high-entropy metal phosphides for electrocatalytic water splitting. Chem Sus Chem. 2020;13:2038.

    Article  CAS  Google Scholar 

  43. Nguyen TX, Su YH, Lin CC, Ruan J, Ting JM. A new high entropy glycerate for high performance oxygen evolution reaction. Adv Sci. 2021;8(6):2002446.

    Article  CAS  Google Scholar 

  44. Yeh JW. Alloy design strategies and future trends in high-entropy alloys. JOM. 2013;65:1759.

    Article  CAS  Google Scholar 

  45. Li ZZ, Zhao ST, Ritchie RO, Meyers MA. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog Mater Sci. 2019;102:296.

    Article  CAS  Google Scholar 

  46. Huo WY, Zhou H, Fang F, Zhou XF, Xie ZH, Jiang JQ. Microstructure and properties of novel CoCrFeNiTax eutectic high-entropy alloys. J Alloy Comp. 2018;735:897.

    Article  CAS  Google Scholar 

  47. Wang X, Guo W, Fu YZ. High-entropy alloys: emerging materials for advanced functional applications. J Mater Chem A. 2021;9:6631.

    Google Scholar 

  48. Chen J, Zhou XY, Wang WL, Liu B, Lv YK, Yang W, Xu DP, Liu Y. A review on fundamental of high entropy alloys with promising higher temperature properties. J Alloy Comp. 2018;760:15.

    Article  CAS  Google Scholar 

  49. Tsai MH. Physical properties of high entropy alloys. Entropy. 2013;15:5338.

    Article  CAS  Google Scholar 

  50. Nutor RK, Cao QP, Wang XD, Zhang DX, Fang YZ, Zhang Y, Jiang YZ. Phase selection, lattice distortions, and mechanical properties in high-entropy alloys. Adv Eng Mater. 2020;22:2000466.

    Article  CAS  Google Scholar 

  51. Tsai MH, Yeh JW. High-entropy alloys: a critical review. Mater Res Lett. 2014;2:107.

    Article  CAS  Google Scholar 

  52. Santodonato LJ, Zhang Y, Feygenson M, Parish CM, Gao MC, Weber RJK, Neuefeind JV, Tang Z, Liaw PK. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat Commun. 2015;6:5964.

    Article  CAS  Google Scholar 

  53. Zou Y, Maiti S, Steurer W, Spolenak R. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 2014;65:85.

    Article  CAS  Google Scholar 

  54. Tsai KY, Tsai MH, Yeh JW. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater. 2013;61:4887.

    Article  CAS  Google Scholar 

  55. Tsai MH, Yeh JW, Gan JY. Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon. Thin Sol Film. 2008;516:5527.

    Article  CAS  Google Scholar 

  56. Tsai MH, Wang CW, Tsai CW, Shen WJ, Yeh JW, Gan JY, Wu WW. Thermal stability and performance of NbSiTa-TiZr high-entropy alloy barrier for copper metallization. J Electrochem Soc. 2011;158:H1161.

    Article  CAS  Google Scholar 

  57. Yeh JW. Recent progress in high-entropy alloys. Ann Chim Sci Mater. 2006;31:633.

    Article  CAS  Google Scholar 

  58. Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1.

    Article  CAS  Google Scholar 

  59. Chang XJ, Zeng MQ, Liu KL, Fu L. Phase engineering of high-entropy alloys. Adv Mater. 2020;32(14):1907226.

    Article  CAS  Google Scholar 

  60. Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK. Refractory high-entropy alloys. Intermetallics. 2010;18:1758.

    Article  CAS  Google Scholar 

  61. Tracy CL, Park S, Rittman DR, Zinkle SJ, Bei HB, Lang M, Ewing RC, Mao WL. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nat Commun. 2017;8:15634.

    Article  CAS  Google Scholar 

  62. Wang L, Zhang F, Nie Z, Wang L, Wang F, Wang B, Zhou S, Xue Y, Cheng B, Lou H, Chen X, Ren Y, Brown DE, Prakapenka V, Greenberg E, Zeng Z, Zeng QS. Abundant polymorphic transitions in the Al0.6CoCrFeNi high-entropy alloy. Mater Today Phys. 2019;8:1.

    Article  Google Scholar 

  63. Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W. High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM. 2014;66:1984.

    Article  CAS  Google Scholar 

  64. Otto F, Yang Y, Bei H, George EP. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 2013;61:2628.

    Article  CAS  Google Scholar 

  65. Liang YJ, Wang L, Wen Y, Cheng B, Wu Q, Cao T, Xiao Q, Xue Y, Sha G, Wang Y, Ren Y, Li X, Wang L, Wang F, Cai H. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys. Nat Commun. 2018;9:4063.

    Article  CAS  Google Scholar 

  66. Jiang S, Wang H, Wu Y, Liu X, Chen H, Yao M, Gault F, Ponge D, Raabe D, Hirata A, Chen M, Wang Y, Lu Z. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature. 2017;544:460.

    Article  CAS  Google Scholar 

  67. Huo J, Huo L, Men H, Wang H, Inoue A, Wang J, Chang C, Li RW. The magnetocaloric effect of Gd-Tb-Dy-Al-M (M = Fe, Co and Ni) high-entropy bulk metallic glasses. Intermetallics. 2015;58:31.

    Article  CAS  Google Scholar 

  68. Li C, Li Q, Li M, Chang C, Li H, Dong Y, Sun Y. New ferromagnetic (Fe1/3Co1/3Ni1/3)80(P1/2B1/2)20 high entropy bulk metallic glass with superior magnetic and mechanical properties. J Alloy Compd. 2019;791:947.

    Article  CAS  Google Scholar 

  69. Nishiyama N, Takenaka K, Miura H, Saidoh N, Zeng Y, Inoue A. The world’s biggest glassy alloy ever made. Intermetallics. 2012;30:19.

    Article  CAS  Google Scholar 

  70. Oses C, Toher C, Curtarolo S. High-entropy ceramics. Nat Rev Mater. 2020;5:295.

    Article  CAS  Google Scholar 

  71. Bérardan D, Franger S, Dragoe D, Meena AK, Dragoe N. Colossal dielectric constant in high entropy oxides. Phys Stat Solid RRL. 2016;10:328.

    Article  CAS  Google Scholar 

  72. Braun JL, Rost CM, Lim M, Giri A, Olson DH, Kotsonis GN, Stan G, Brenner DW, Maria JP, Hopkins PE. Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides. Adv Mater. 2018;30:1805004.

    Article  CAS  Google Scholar 

  73. Shen WJ, Tsai MH, Tsai KY, Juan CC, Tsai CW, Yeh JW, Chang YS. Superior oxidation resistance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride. J Electrochem Soc. 2013;160:C531.

    Article  CAS  Google Scholar 

  74. Gild J, Samiee M, Braun JL, Harrington T, Vega H, Hopkins PE, Vecchio K, Luo J. High-entropy fluorite oxides. J Eur Ceram Soc. 2018;38:3578.

    Article  CAS  Google Scholar 

  75. Jiang S, Hu T, Gild J, Zhou N, Nie J, Qin M, Harrington T, Vecchio K, Luo J. A new class of high-entropy perovskite oxides. Scr Mater. 2018;142:116.

    Article  CAS  Google Scholar 

  76. Dąbrowa JS, Mikuła A, Knapik A, Mroczka K, Tejchman W, Danielewski M, Martin M. Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure. Mater Lett. 2018;216:32.

    Article  CAS  Google Scholar 

  77. Hsieh MH, Tsai MH, Shen WJ, Yeh JW. Structure and properties of two Al–Cr–Nb–Si–Ti high-entropy nitride coatings. Surf Coat Technol. 2013;221:118.

    Article  CAS  Google Scholar 

  78. Braic V, Vladescu A, Balaceanu M, Luculescu CR, Braic M. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surf Coat Technol. 2012;211:117.

    Article  CAS  Google Scholar 

  79. Yao Y, Huang Z, Xie P, Lacey SD, Jacob RJ, Xie H, Chen F, Nie A, Pu T, Rehwoldt M. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science. 2018;359:1489.

    Article  CAS  Google Scholar 

  80. Xie P, Yao Y, Huang Z, Liu Z, Zhang J, Li T, Wang G, Shahbazian-Yassar R, Hu L, Wang C. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat Commun. 2019;10:4011.

    Article  CAS  Google Scholar 

  81. Gao S, Hao S, Huang Z, Yuan Y, Han S, Lei L, Zhang X, Shahbazian-Yassar R, Lu J. Synthesis of high-entropy alloy nanoparticles on supports by the fast-moving bed pyrolysis. Nat Commun. 2020;11:2016.

    Article  CAS  Google Scholar 

  82. Xu W, Chen H, Jie K, Yang Z, Li T, Dai S. Entropy-driven mechanochemical synthesis of polymetallic zeolitic imidazolate frameworks for CO2 fixation. Angew Chem Int Ed. 2019;58:5018.

    Article  CAS  Google Scholar 

  83. Varalakshmi S, Kamaraj M, Murty BS. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J Alloy Comp. 2008;460:253.

    Article  CAS  Google Scholar 

  84. Ji X, Banks C, Holloway A, Jurkschat K, Thorogood C, Wildgoose G, Compton R. Palladium sub-nanoparticle decorated “bamboo” multi-walled carbon nanotubes exhibit electrochemical metastability: voltammetric sensing in otherwise inaccessible pH ranges. Electroanal. 2006;18:2481.

    Article  CAS  Google Scholar 

  85. Glasscott MW, Pendergast AD, Goines S, Bishop AR, Hoang AT, Renault C, Dick JE. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nat Commun. 2019;10:2650.

    Article  CAS  Google Scholar 

  86. Soarea V, Burada M, Constantin L, Mitricăa D, Bădili V, Carageaa A, Târcole M. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films. Appl Surf Sci. 2015;358:533.

    Article  CAS  Google Scholar 

  87. Praveen S, Kim HS. High-entropy alloys: potential candidates for high-temperature applications—an overview. Adv Eng Mater. 2018;20:1700645.

    Article  CAS  Google Scholar 

  88. Sha CH, Zhou ZF, Xie ZH, Munroe P. Extremely hard, α-Mn type high entropy alloy coatings. Scr Mater. 2020;178:477.

    Article  CAS  Google Scholar 

  89. Loffler T, Meyer H, Savan A, Wilde P, Garzón Manjón A, Chen YT, Ventosa E, Scheu C, Ludwig A, Schuhmann W. Discovery of a multinary noble metal-free oxygen reduction catalyst. Adv Energy Mater. 2018;8:1802269.

    Article  CAS  Google Scholar 

  90. Rybakov KI, Olevsky EA, Krikun EV, Green DJ. Microwave sintering: fundamentals and modeling. J Am Ceram Soc. 2013;96:1003.

    Article  CAS  Google Scholar 

  91. Poli G, Sola R, Veronesi P. Microwave-assisted combustion synthesis of NiAl intermetallics in a single mode applicator: modeling and optimisation. Mater Sci Eng A. 2006;441:149.

    Article  CAS  Google Scholar 

  92. Nair RB, Arora HS, Mandal P, Das S, Grewal HS. High-performance microwave-derived multi-principal element alloy coatings for tribological application. Adv Eng Mater. 2018;20:1800163.

    Article  CAS  Google Scholar 

  93. Veronesi P, Rosa R, Colombini E, Leonelli C. Microwave-assisted preparation of high entropy alloys. Technologies. 2015;3:182.

    Article  Google Scholar 

  94. Lin Z, Yue J, Liang L, Tang B, Liu B, Ren L, Li Y, Jiang L. Rapid synthesis of metallic and alloy micro/nanoparticles by laser ablation towards water. Appl Surf Sci. 2020;504:144461.

    Article  CAS  Google Scholar 

  95. Waag F, Li Y, Ziefuss AR, Bertin E, Kamp M, Duppel V, Marzun G, Kienle L, Barcikowski S, Goekce B. Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles. RSC Adv. 2019;9:18547.

    Article  CAS  Google Scholar 

  96. Bondesgaard M, Broge MLN, Mamakhel A, Bremholm M, Iversen BB. General solvothermal synthesis method for complete solubility range bimetallic and high-entropy alloy nanocatalysts. Adv Funct Mater. 2019;29:1905933.

    Article  CAS  Google Scholar 

  97. Liu M, Zhang Z, Okejiri F, Yang S, Zhou S, Dai S. Entropy-maximized synthesis of multimetallic nanoparticle catalysts via an ultrasonication-assisted wet chemistry method under a ambient conditions. Adv Mater Interfaces. 2019;6:1900015.

    Article  CAS  Google Scholar 

  98. Niu B, Zhang F, Ping H, Li N, Zhou J, Lei L, Xie J, Zhang J, Wang W, Fu Z. Sol–gel autocombustion synthesis of nanocrystalline high-entropy alloys. Sci Rep. 2017;7:1.

    Article  CAS  Google Scholar 

  99. Zhang D, Shi Y, Zhao H, Qi WJ, Chen XL, Zhan TR, Li SX, Yang B, Sun MZ, Lai JP, Huang BL, Wang L. The facile oil-phase synthesis of a multi-site synergistic high-entropy alloy to promote the alkaline hydrogen evolution reaction. J Mater Chem A. 2021;9:889.

    Article  Google Scholar 

  100. Qiu HJ, Fang G, Wen Y, Liu P, Xie G, Liu X, Sun S. Nanoporous high-entropy alloys for highly stable and efficient catalysts. J Mater Chem A. 2019;7:6499.

    Article  CAS  Google Scholar 

  101. Li TY, Yao YG, Huang ZN, Xie PF, Liu ZY, Yang MH, Gao JL, Zeng KZ, Brozena AH, Pastel G, Jiao ML, Dong Q, Dai JQ, Li SK, Zong H, Chi MF, Luo J, Mo YF, Wang GF, Wang C, Yassar RS, Hu LB. Denary oxide nanoparticles as highly stable catalysts for methane combustion. Nat Catal. 2021;4:62.

    Article  CAS  Google Scholar 

  102. Cui MJ, Yang CP, Li BY, Dong Q, Wu ML, Hwang S, Xie H, Wang XZ, Wang GF, Hu LB. High-entropy metal sulfide nanoparticles promise high-performance oxygen evolution reaction. Adv Energy Mater. 2021;11:2002887.

    Article  CAS  Google Scholar 

  103. Wang XZ, Dong Q, Qiao HY, Huang ZN, Saray MT, Zhong G, Lin ZW, Cui MJ, Brozena A, Hong M, Xia QQ, Gao GL, Chen G, Yassar RS, Wang DW, Hu LB. Continuous synthesis of hollow high-entropy nanoparticles for energy and catalysis applications. Adv Mater. 2020;32:2002853.

    Article  CAS  Google Scholar 

  104. Jin ZY, Lv J, Jia HL, Liu WH, Li HL, Chen ZH, Lin X, Xie GQ, Liu XJ, Sun SH, Qiu HJ. Nanoporous Al-Ni-Co-Ir-Mo High-entropy alloy for record-high water splitting activity in acidic environments. Small. 2019;15:1904180.

    Article  CAS  Google Scholar 

  105. Li HD, Han Y, Zhao H, Qi WJ, Zhang D, Yu YD, Cai WW, Li SX, Lai JP, Huang BL, Wang L. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat Commun. 2020;11:5437.

    Article  CAS  Google Scholar 

  106. Anantharaj S, Aravindan V. Developments and perspectives in 3d transition-metal-based electrocatalysts for neutral and near-neutral water electrolysis. Adv Energy Mater. 2020;10:1902666.

    Article  CAS  Google Scholar 

  107. Yao RQ, Zhou YT, Shi H, Wan WB, Zhang QH, Gu L, Zhu YF, Wen Z, Lang XY, Jiang Q. Nanoporous surface high-entropy alloys as highly efficient multisite electrocatalysts for nonacidic hydrogen evolution reaction. Adv Funct Mater. 2021;31:2009613.

    Article  CAS  Google Scholar 

  108. Jia Z, Yang T, Sun LG, Zhao YL, Li WP, Luan JH, Lyu FC, Zhang LC, Kruzic JJ, Kai JJ, Huang JC, Lu J, Liu TC. A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution. Adv Mater. 2020;32:2000385.

    Article  CAS  Google Scholar 

  109. Qiu HJ, Fang G, Gao JJ, Wen YR, Lv J, Li HL, Xie JQ, Liu XJ, Sun SH. Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction. ACS Mater Lett. 2019;1:526.

    Article  CAS  Google Scholar 

  110. Dai W, Lu T, Pan Y. Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy. J Power Sources. 2019;430:104.

    Article  CAS  Google Scholar 

  111. Huang WJ, Zhang JM, Liu DB, Xu WJ, Wang Y, Yao JD, Tan HT, Dinh KN, Wu C, Kuang M, Fang W, Dangol R, Song L, Zhou K, Liu CT, Xu JW, Liu B, Yan QY. Tuning the electronic structures of multimetal oxide nanoplates to realize favorable adsorption energies of oxygenated intermediates. ACS Nano. 2020;14:17640.

    Article  CAS  Google Scholar 

  112. Wang T, Chen H, Yang ZZ, Liang JY, Dai S. High-entropy perovskite fluorides: a new platform for oxygen evolution catalysis. J Am Chem Soc. 2020;142:4550.

    Article  CAS  Google Scholar 

  113. Wang W, Xu XM, Zhou W, Shao ZP. Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Adv Sci. 2017;4:1600371.

    Article  CAS  Google Scholar 

  114. Zhao XH, Xue ZM, Chen WJ, Bai XY, Shi RF, Mu TC. Ambient fast, large-scale synthesis of entropy-stabilized metal–organic framework nanosheets for electrocatalytic oxygen evolution. J Mater Chem A. 2019;7:26238.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the 333 Projects of Jiangsu Province, China (Grant No. BRA2018045), the Industry-University Research Cooperation Project of Jiangsu Province, China (Grant No. BY2018194) and Metasequoia Faculty Research Funding of Nanjing Forestry University (Grant No. 163040160). Zong-Han Xie acknowledges the support provided by the Australian Research Council Discovery Projects.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Yi Huo or Feng Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, WY., Wang, SQ., Zhu, WH. et al. Recent progress on high-entropy materials for electrocatalytic water splitting applications. Tungsten 3, 161–180 (2021). https://doi.org/10.1007/s42864-021-00084-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-021-00084-8

Keywords

Navigation