Skip to main content
Log in

A New Spectral Method Using Nonstandard Singular Basis Functions for Time-Fractional Differential Equations

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

In this paper, we introduce new non-polynomial basis functions for spectral approximation of time-fractional partial differential equations (PDEs). Different from many other approaches, the nonstandard singular basis functions are defined from some generalised Birkhoff interpolation problems through explicit inversion of some prototypical fractional initial value problem (FIVP) with a smooth source term. As such, the singularity of the new basis can be tailored to that of the singular solutions to a class of time-fractional PDEs, leading to spectrally accurate approximation. It also provides the acceptable solution to more general singular problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Babuška, I., Banerjee, U.: Stable generalized finite element method (SGFEM). Comput. Methods Appl. Mech. Eng. 201, 91–111 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borwein, P., Erdélyi, T., Zhang, J.: Müntz systems and orthogonal Müntz-Legendre polynomial. Comput. Math. Appl. 342, 523–542 (1994)

    MATH  Google Scholar 

  3. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  4. Cao, Y., Herdman, T., Xu, Y.: A hybrid collocation method for Volterra integral equations with weakly singular kernels. SIAM J. Numer. Anal. 41, 364–381 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, S., Shen, J.: Enriched spectral methods and applications to problems with weakly singular solutions. J. Sci. Comput. 77, 1468–1489 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, S., Shen, J., Wang, L.L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603–1638 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Costabile, F., Napoli, A.: A class of Birkhoff-Lagrange-collocation methods for high order boundary value problems. Appl. Numer. Comput. 116, 129–140 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Diethelm, K.: The analysis of fractional differential equations. Lecture Notes in Math, vol. 2004. Springer, Berlin (2010)

  9. Ervin, V.J., Heuer, N., Roop, J.P.: Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal. 45(2), 572–591 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ervin, V.J., Roop, J.P.: Variational solution of fractional advection dispersion equations on bounded domains in \(\mathbb{R}^d\). Numer. Methods Partial Differ. Equ. 23(2), 256–281 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Esmaeili, S., Garrappa, R.: Exponential quadrature rules for linear fractional differential equations. Mediterr. J. Math. 12, 219–244 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garrappa, R., Moret, I., Popolizio, M.: Solving the time-fractional Schrödinger equation by Krylov projection methods. J. Comput. Phys. 293, 115–134 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gottlieb, D., Orszag, S.: Numerical Analysis of Spectral Methods: Theory and Applications. Pa, SIAM, Philadelphia (1977)

  14. Guo, B.Y., Shen, J., Wang, L.L.: Generalized Jacobi polynomials/functions and their applications. Appl. Numer. Math. 59(5), 1011–1028 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, B.Y., Shen, J., Wang, L.L.: Optimal spectral-Galerkin methods using generalized Jacobi polynomials. J. Sci. Comput. 27, 305–322 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hong, Y., Jung, C.Y.: Enriched spectral method for stiff convection-dominated equations. J. Sci. Comput. 74(3), 1325–1346 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hou, D.M., Xu, C.J.: A fractional spectral method with applications to some singular problems. Adv. Comput. Math. 43(5), 911–944 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, C., Stynes, M.: A spectral collocation method for a weakly singular Volterra integral equation of the second kind. Adv. Comput. Math. 42(5), 1015–1030 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, C., Jiao, Y.J., Wang, L.L., Zhang, Z.M.: Optimal fractional integration preconditioning and error analysis of fractional collocation method using nodal generalized Jacobi functions. SIAM J. Numer. Anal. 54(6), 3357–3387 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang, C., Wang, L.L.: An accurate spectral method for the transverse magnetic mode of Maxwell equations in Cole-Cole dispersive media. Adv. Comput. Math. (2018). https://doi.org/10.1007/s10444-018-9636-2

  21. Jiao, Y.J., Wang, L.L., Huang, C.: Well-conditioned fractional collocation methods using fractional Birkhoff interpolation basis. J. Comput. Phys. 305, 1–28 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jin, B.T., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51(1), 445–466 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kharazmi, E., Zayernouri, M., Karniadakis, G.E.: A Petrov-Galerkin spectral element method for fractional elliptic problems. Comput. Methods Appl. Mech. Eng. 324, 512–536 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kharazmi, E., Zayernouri, M., Karniadakis, G.E.: Petrov-Galerkin and spectral collocation methods for distributed order differential equations. SIAM J. Sci. Comput. 39(3), A1003–A1037 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, X.J., Xu, C.J.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, X.J., Xu, C.J.: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8(5), 1016–1051 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Li, C.P., Zeng, F.H., Liu, F.W.: Spectral approximations to the fractional integral and derivative. Fract. Calc. Appl. Anal. 15, 383–406 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lorentz, G.G., Jetter, K., Riemenschneider, S.D.: Birkhoff Interpolation, volume 19 of Encyclopedia of Mathematics and its Applications. Addison-Wesley Publishing Co., Reading (1983)

    Google Scholar 

  30. Mao, Z.P., Chen, S., Shen, J.: Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106, 165–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mao, Z.P., Shen, J.: Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients. J. Comput. Phys. 307, 243–261 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. McCoid, C., and Trummer, M: Preconditioning of spectral methods via Birkhoff interpolation. Numer. Algor., https://doi.org/10.1007/s11075-017-0450-6,online since (Dec. 12, 2017)

  33. Meerschaert, M.M., Scheffler, H.P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211(1), 249–261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Milovanović, G.V.: Müntz orthogonal polynomials and their numerical evaluation. In W. Gautschi, G. Opfer, and G.H. Golub, editors, Applications and Computation of Orthogonal Polynomials, pages 179–194. Birkhäuser Basel, (1999)

  36. Mokhtarya, P., Ghoreishi, F., Srivastava, H.M.: The Müntz-Legendre Tau method for fractional differential equations. Appl. Math. Model. 40, 671–684 (2016)

    Article  MathSciNet  Google Scholar 

  37. Podlubny, I.: Fractional Differential Equations, volume 198 of Mathematics in Science and Engineering. Academic Press Inc., San Diego, CA. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (1999)

  38. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shen, J.: Efficient spectral-Galerkin method. I. Direct solvers of second- and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15, 1489–1505 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shen, J., Sheng, C.T., Wang, Z.Q.: Generalized Jacobi spectral-Galerkin method for nonlinear Volterra integral equations with weakly singular kernels. J. Math. Study 48(4), 315–329 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shen, J., Tang, T., Wang, L.L.: Spectral methods: algorithms, analysis and applications. Series in computational mathematics, vol. 41. Springer, Berlin (2011)

    Book  Google Scholar 

  42. Shen, J., Wang, L.L.: Fourierization of the Legendre-Galerkin method and a new space-time spectral method. Appl. Numer. Math. 57, 710–720 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shen, J., Wang, Y.W.: Müntz-Galerkin methods and applications to mixed Dirichlet-Neumann boundary value problems. SIAM J. Sci. Comput. 38(4), A2357–A2381 (2016)

    Article  MATH  Google Scholar 

  44. Shi, Y.G.: Theory of Birkhoff Interpolation. Nova Science Pub Incorporated, New York (2003)

    MATH  Google Scholar 

  45. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Szegö, G.: Orthogonal polynomials, 4th edn. Amer. Math. Soc, Providence, RI (1975)

  47. Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220(2), 813–823 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, L.L., Samson, M., Zhao, X.D.: A well-conditioned collocation method using pseudospectral integration matrix. SIAM J. Sci. Comput. 36, A907–A929 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang, L.L., Zhang, J., Zhang, Z.: On \(hp\)-convergence of prolate spheroidal wave functions and a new well-conditioned prolate-collocation scheme. J. Comput. Phys. 268, 377–398 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Xiang, S.H.: On interpolation approximation: convergence rates for polynomial interpolation for functions of limited regularity. SIAM J. Numer. Anal. 54(4), 2081–2113 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zayernouri, M., Ainsworth, M., Karniadakis, G.E.: A unified Petrov-Galerkin spectral method for fractional PDEs. Comput. Methods Appl. Mech. Eng. 283, 1545–1569 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zayernouri, M., Karniadakis, G.E.: Exponentially accurate spectral and spectral element methods for fractional ODEs. J. Comput. Phys. 257(part A), 460–480 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J. Comput. Phys. 293, 312–338 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zayernouri, M., Karniadakis, G.E.: Fractional Sturm-Liouville eigen-problems: theory and numerical approximation. J. Comput. Phys. 252, 495–517 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zeng, F.H., Mao, Z.P., Karniadakis, G.E.: A generalized spectral collocation method with tunable accuracy for fractional differential equations with end-point singularities. SIAM J. Sci. Comput. 39(1), A360–A383 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhang, C., Liu, W.J., Wang, L.L.: A new collocation scheme using non-polynomial basis functions. J. Sci. Comput. 70(2), 793–818 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhang, C., Wang, L.L., Gu, D.Q., Liu, W.J.: On approximate inverse of Hermite and Laguerre collocation differentiation matrices and new collocation schemes in unbounded domains. J. Comput. Appl. Math. 344, 553–571 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhang, Z.Q., Zeng, F.H., Karniadakis, G.E.: Optimal error estimates of spectral Petrov-Galerkin and collocation methods for initial value problems of fractional differential equations. SIAM J. Numer. Anal. 53(4), 2074–2096 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Lian Wang.

Additional information

W. Liu: The research of this author is partially supported by the China Postdoctoral Science Foundation Funded Project (No. 2017M620113), the National Natural Science Foundation of China (Nos. 11801120, 71773024 and 11771107), the Fundamental Research Funds for the Central Universities (Grant No.HIT.NSRIF.2019058) and the Natural Science Foundation of Heilongjiang Province of China (No. G2018006).

L. Wang: The research of this author is partially supported by Singapore MOE AcRF Tier 2 Grants (MOE2017-T2-2-014 and MOE2018-T2-1-059).

S. Xiang: This work of this author is partially supported by National Science Foundation of China (No. 11371376) and the Innovation-Driven Project and Mathematics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Wang, LL. & Xiang, S. A New Spectral Method Using Nonstandard Singular Basis Functions for Time-Fractional Differential Equations. Commun. Appl. Math. Comput. 1, 207–230 (2019). https://doi.org/10.1007/s42967-019-00012-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-019-00012-1

Keywords

Mathematics Subject Classification

Navigation