Skip to main content

Advertisement

Log in

Effects of Phthalate Esters on Human Myometrial and Fibroid Cells: Cell Culture and NOD-SCID Mouse Data

  • General Gynecology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Evidence is growing that phthalate esters play an important role in the pathogenesis of estrogen-dependent gynecologic diseases, especially uterine fibroids. We aimed to investigate whether in vitro treatment with di-(2-ethylhexyl)-phthalate (DEHP) affects angiogenesis, proliferation, and apoptosis in uterine fibroids. To ascertain this, we evaluated vascular endothelial growth factor (VEGF) expression and AKT/ERT phosphorylation and compared the fibroid volume between nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice fed with and without DEHP. VEGF expression was measured using enzyme-linked immunosorbent assay, and AKT/ERK phosphorylation was analyzed by western blot analysis in human myometrial and fibroid cells. The volume of the fibroid tissues implanted to NOD/SCID mice was measured, and the expression of collagen type I protein, Ki-67, proliferating cell nuclear antigen, and B cell lymphoma 2 were analyzed using immunohistochemistry. We could see significant increases in VEGF expression and AKT phosphorylation in human myometrial and fibroid cells treated with DEHP. The volume of the fibroid tissues was significantly increased in NOD/SCID mice fed with DEHP, which was accompanied by increased expression of collagen type I and AKT phosphorylation. Taken together, these results suggest that exposure to phthalate esters may influence uterine fibroid pathogenesis by increasing VEGF and collagen expression and upregulating AKT phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baird DD, Dunson DB, Hill MC, Cousins D, Schectman JM. High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence. Am J Obstet Gynecol. 2003;188:100–7. https://doi.org/10.1067/mob.2003.99.

    Article  PubMed  Google Scholar 

  2. Falcone T, Walters MD. Hysterectomy for benign disease. Obstet Gynecol. 2008;111:753–67. https://doi.org/10.1097/AOG.0b013e318165f18c.

    Article  PubMed  Google Scholar 

  3. Katz TA, Yang Q, Treviño LS, Walker CL, Al-Hendy A. Endocrine-disrupting chemicals and uterine fibroids. Fertil Steril. 2016;106:967–77. https://doi.org/10.1016/j.fertnstert.2016.08.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vélez MP, Arbuckle TE, Fraser WD. Female exposure to phenols and phthalates and time to pregnancy: the Maternal-Infant Research on Environmental Chemicals (MIREC) Study. Fertil Steril. 2015;103:1011–1020.e2. https://doi.org/10.1016/j.fertnstert.2015.01.005.

    Article  CAS  PubMed  Google Scholar 

  5. Brehm E, Flaws JA. Transgenerational effects of endocrine-disrupting chemicals on male and female reproduction. Endocrinology. 2019;160:1421–35. https://doi.org/10.1210/en.2019-00034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bernard L, Décaudin B, Lecoeur M, Richard D, Bourdeaux D, Cueff R, et al. Analytical methods for the determination of DEHP plasticizer alternatives present in medical devices: a review. Talanta. 2014;129:39–54. https://doi.org/10.1016/j.talanta.2014.04.069.

    Article  CAS  PubMed  Google Scholar 

  7. Qian X, Li J, Xu S, Wan Y, Li Y, Jiang Y, et al. Prenatal exposure to phthalates and neurocognitive development in children at two years of age. Environ Int. 2019;131:105023. https://doi.org/10.1016/j.envint.2019.105023.

    Article  CAS  PubMed  Google Scholar 

  8. Rattan S, Zhou C, Chiang C, Mahalingam S, Brehm E, Flaws JA. Exposure to endocrine disruptors during adulthood: consequences for female fertility. J Endocrinol. 2017;233:R109–29. https://doi.org/10.1530/JOE-17-0023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Piazza MJ, Urbanetz AA. Environmental toxins and the impact of other endocrine disrupting chemicals in women’s reproductive health. JBRA Assist Reprod. 2019;23:154–64. https://doi.org/10.5935/1518-0557.20190016.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wolff MS, Teitelbaum SL, Mcgovern K, Windham GC, Pinney SM, Galvez M, et al. Phthalate exposure and pubertal development in a longitudinal study of US girls. Hum Reprod. 2014;29:1558–66. https://doi.org/10.1093/humrep/deu081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cobellis L, Latini G, Defelice C, Razzi S, Paris I, Ruggieri F, et al. High plasma concentrations of di-(2-ethylhexyl)-phthalate in women with endometriosis. Hum Reprod. 2003;18:1512–15. https://doi.org/10.1093/humrep/deg254.

  12. Reddy BS, Rozati R, Reddy S, Kodampur S, Reddy P, Reddy R. High plasma concentrations of polychlorinated biphenyls and phthalate esters in women with endometriosis: a prospective case control study. Fertil Steril. 2006;85:775–9. https://doi.org/10.1016/j.fertnstert.2005.08.037.

    Article  CAS  PubMed  Google Scholar 

  13. Kim SH, Chun S, Jang JY, Chae HD, Kim CH, Kang BM. Increased plasma levels of phthalate esters in women with advanced-stage endometriosis: a prospective case-control study. Fertil Steril. 2011;95:357–9. https://doi.org/10.1016/j.fertnstert.2010.07.1059.

    Article  CAS  PubMed  Google Scholar 

  14. Kim YH, Kim SH, Lee HW, Chae HD, Kim CH, Kang BM. Increased viability of endometrial cells by in vitro treatment with di-(2-ethylhexyl) phthalate. Fertil Steril. 2010;94:2413–6. https://doi.org/10.1016/j.fertnstert.2010.04.027.

    Article  CAS  PubMed  Google Scholar 

  15. Kim SH, Cho S, Ihm HJ, Oh YS, Heo S-H, Chun S, et al. Possible role of phthalate in the pathogenesis of endometriosis: in vitro, animal, and human data. J Clin Endocrinol Metab. 2015;100:E1502–11. https://doi.org/10.1210/jc.2015-2478.

    Article  PubMed  Google Scholar 

  16. Bulun SE. Uterine fibroids. N Engl J Med. 2013;369:1344–55. https://doi.org/10.1056/NEJMra1209993.

    Article  CAS  PubMed  Google Scholar 

  17. Parker WH. Etiology, symptomatology, and diagnosis of uterine myomas. Fertil Steril. 2007;87:725–36. https://doi.org/10.1016/j.fertnstert.2007.01.093.

    Article  PubMed  Google Scholar 

  18. Leppert PC, Baginski T, Prupas C, Catherino WH, Pletcher S, Segars JH. Comparative ultrastructure of collagen fibrils in uterine leiomyomas and normal myometrium. Fertil Steril. 2004;82:1182–7. https://doi.org/10.1016/J.FERTNSTERT.2004.04.030.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ohara N. Sex steroidal modulation of collagen metabolism in uterine leiomyomas. Clin Exp Obstet Gynecol. 2009;36:10–1 http://www.ncbi.nlm.nih.gov/pubmed/19400409. Accessed January 15, 2019.

    CAS  PubMed  Google Scholar 

  20. Borahay MA, Asoglu MR, Mas A, Adam S, Kilic GS, Al-Hendy A. Estrogen receptors and signaling in fibroids: role in pathobiology and therapeutic implications. Reprod Sci. 2017;24:1235–44. https://doi.org/10.1177/1933719116678686.

    Article  CAS  PubMed  Google Scholar 

  21. Tal R, Segars JH. The role of angiogenic factors in fibroid pathogenesis: potential implications for future therapy. Hum Reprod Update. 2014;20:194–216. https://doi.org/10.1093/humupd/dmt042.

    Article  CAS  PubMed  Google Scholar 

  22. Kim JH, Kim SH, Oh YS, Ihm HJ, Chae HD, Kim CH, et al. In vitro effects of phthalate esters in human myometrial and leiomyoma cells and increased urinary level of phthalate metabolite in women with uterine leiomyoma. Fertil Steril. 2017;107:1061–1069.e1. https://doi.org/10.1016/j.fertnstert.2017.01.015.

    Article  CAS  PubMed  Google Scholar 

  23. Chou Y-Y, Huang P-C, Lee C-C, Wu M-H, Lin S-J. Phthalate exposure in girls during early puberty. J Pediatr Endocrinol Metab. 2009;22:69–77 http://www.ncbi.nlm.nih.gov/pubmed/19344077. Accessed December 9, 2018.

    Article  CAS  Google Scholar 

  24. Colón I, Caro D, Bourdony CJ, Rosario O. Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development. Environ Health Perspect. 2000;108:895–900. https://doi.org/10.1289/ehp.108-2556932.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Reddy B, Rozati R, Reddy B, Raman N. General gynaecology: association of phthalate esters with endometriosis in Indian women. BJOG Int J Obstet Gynaecol. 2006;113:515–20. https://doi.org/10.1111/j.1471-0528.2006.00925.x.

    Article  CAS  Google Scholar 

  26. López-Carrillo L, Hernández-Ramírez RU, Calafat AM, Torres-Sánchez L, Galván-Portillo M, Needham LL, et al. Exposure to phthalates and breast cancer risk in Northern Mexico. Environ Health Perspect. 2010;118:539–44. https://doi.org/10.1289/ehp.0901091.

    Article  CAS  PubMed  Google Scholar 

  27. Ahern TP, Broe A, Lash TL, Cronin-Fenton DP, Ulrichsen SP, Christiansen PM, et al. Phthalate exposure and breast cancer incidence: a Danish Nationwide Cohort Study. J Clin Oncol. 2019:JCO.18.02202. https://doi.org/10.1200/JCO.18.02202.

  28. Durmaz E, Ozmert EN, Erkekoglu P, Giray B, Derman O, Hincal F, et al. Plasma phthalate levels in pubertal gynecomastia. Pediatrics. 2010;125:e122–9. https://doi.org/10.1542/peds.2009-0724.

    Article  PubMed  Google Scholar 

  29. Lewicka A, Osuch B, Cendrowski K, ŻEgarska J, Stelmachów J. Expression of vascular endothelial growth factor mRNA in human leiomyomas. Gynecol Endocrinol. 2010;26:451–5. https://doi.org/10.3109/09513591003632159.

    Article  CAS  PubMed  Google Scholar 

  30. McWilliams MM, Chennathukuzhi VM. Recent advances in uterine fibroid etiology. Semin Reprod Med. 2017;35:181–9. https://doi.org/10.1055/s-0037-1599090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hyder SM, Huang J-C, Nawaz Z, Boettger-Tong H, Mäkelä S, Chiappetta C, et al. Regulation of vascular endothelial growth factor expression by estrogens and progestins. Environ Health Perspect. 2000;108:785–90. https://doi.org/10.1289/ehp.00108s5785.

    Article  CAS  PubMed  Google Scholar 

  32. Sefton EC, Qiang W, Serna V, Kurita T, Wei J-J, Chakravarti D, et al. MK-2206, an AKT inhibitor, promotes caspase-independent cell death and inhibits leiomyoma growth. Endocrinology. 2013;154:4046–57. https://doi.org/10.1210/en.2013-1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nierth-Simpson EN, Martin MM, Chiang TC, Melnik LI, Rhodes LV, Muir SE, et al. Human uterine smooth muscle and leiomyoma cells differ in their rapid 17/J-estradiol signaling: implications for proliferation. Endocrinology. 2009;150:2436–45. https://doi.org/10.1210/en.2008-0224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zota AR, Geller RJ, Calafat AM, Marfori CQ, Baccarelli AA, Moawad GN. Phthalates exposure and uterine fibroid burden among women undergoing surgical treatment for fibroids: a preliminary study. Fertil Steril. 2019;111:112–21. https://doi.org/10.1016/j.fertnstert.2018.09.009.

    Article  CAS  PubMed  Google Scholar 

  35. Pocar P, Fiandanese N, Secchi C, Berrini A, Fischer B, Schmidt JS, et al. Exposure to di(2-ethyl-hexyl) phthalate (DEHP) in utero and during lactation causes long-term pituitary-gonadal axis disruption in male and female mouse offspring. Endocrinology. 2012;153:937–48. https://doi.org/10.1210/en.2011-1450.

  36. Gray LE, Laskey J, Ostby J. Chronic di-n-butyl phthalate exposure in rats reduces fertility and alters ovarian function during pregnancy in female Long Evans hooded rats. Toxicol Sci. 2006;93:189–95. https://doi.org/10.1093/toxsci/kfl035.

    Article  CAS  PubMed  Google Scholar 

  37. Zota AR, Geller RJ, VanNoy BN, Marfori CQ, Tabbara S, Hu LY, et al. Phthalate exposures and microRNA expression in uterine fibroids: the FORGE Study. Epigenet Insights. 2020;13. https://doi.org/10.1177/2516865720904057.

Download references

Funding

This research was supported by the Asan Institute for Life Sciences, Seoul, South Korea (grant 2018-323).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S.H.K.; methodology, Y.S.O., S.H.H., and K.H.K; software, Y.S.O; validation, Y.S.O., S.H.H., and K.H.K; formal analysis, Y.S.O., S.H.H., and K.H.K; investigation, H.J.K.; resources, D.Y.K.; data curation, H.J.K and Y.S.O.; writing (original draft preparation), H.J.K.; writing (review and editing), H.J.K. and S.H.K.; visualization, H.J.K.; supervision, S.H.K., S.R.L, and H.D.C.; project administration, S.H.K., S.R.L, and H.D.C. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sung Hoon Kim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Standards and Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Animal Studies

All institutional and national guidelines for the care and use of laboratory animals were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.J., Kim, S.H., Oh, Y.S. et al. Effects of Phthalate Esters on Human Myometrial and Fibroid Cells: Cell Culture and NOD-SCID Mouse Data. Reprod. Sci. 28, 479–487 (2021). https://doi.org/10.1007/s43032-020-00341-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00341-0

Keywords

Navigation