Skip to main content

Advertisement

Log in

Influence of slag on mechanical and durability properties of fly ash-based geopolymer concrete

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

A geopolymer binder is measured as an alternative and elective material to customary Portland binders. Utilization of Fly ash (FA) as a primary binding material limits the waste creation of thermal power stations and reduces environmental impacts. This paper presents the strength performance of geopolymer concrete (GC) with different proportions of FA and ground granulated blast furnace slag. The potential of GC against acid resistance, porosity, water absorption, and sorptivity is presented in this paper. Apart from this, rapid chloride penetration test was performed to assess the chloride resistance of GC. XRD and SEM analysis was done on selected samples of GC to categorize microstructural performance. The results depicted that mixes M5 and M10 have attained higher compressive strengths, i.e., 49.0 and 57.6 MPa, while the acid durability loss factor values are less by 28% and 19%, respectively compared to other mixes of GC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R.M. Andrew, Global CO2 emissions from cement production, Center for International Climate Research. Hydrol. Earth Sci. Syst. 2, 2069 (2017)

    Google Scholar 

  2. M. Schneider, M. Romer, M. Tschudin, H. Bolio, Sustainable cement production-present and future. Cem. Concr. Res. 41, 642–650 (2011)

    Article  CAS  Google Scholar 

  3. N.B. Singh, Review—FA-based geopolymer binder: a future construction material. Material 8(7), 299 (2018)

    Google Scholar 

  4. A. Palomo, M.W. Grutzeck, M.T. Blanco, Alkali-activated FAes A cement for the future. Cem. Concr. Res. 29, 1323–1329 (1999)

    Article  CAS  Google Scholar 

  5. A. Mehata, R. Siddique, An overview of geopolymers derived from industrial by-products. Constr. Build. Mater. 127, 183–198 (2016)

    Article  Google Scholar 

  6. M.C.G. Juenger, F. Winnefeld, J.L. Provis, J.H. Ideker, Advances in alternative cementitious binders. Cem. Concr. Res. 41(12), 1232–1243 (2010). https://doi.org/10.1016/j.cemconres.2010.11.012

    Article  CAS  Google Scholar 

  7. C. Shi, A.F. Jiménez, A. Palomo, New cements for the 21st century: the pursuit of an alternative to Portland cement. Cem. Concr. Res. 41, 750–763 (2011)

    Article  CAS  Google Scholar 

  8. P. Duxson, A. Fernández-Jiménez, J.L. Provis, G.C. Lukey, A. Palomo, J.S.J. van Deventer, Geopolymer technology: the current state of the art. J. Mater. Sci. 42(9), 2917–2933 (2007). https://doi.org/10.1007/s10853-006-0637-z

    Article  CAS  Google Scholar 

  9. J.W. Phair, J.S.J. Van Deventer, J.D. Smith, Mechanism of polysialation in the incorporation of zirconia into FA based geopolymers. Ind. Eng. Chem. Res. 39(8), 2925–2934 (2000). https://doi.org/10.1021/ie990929w

    Article  CAS  Google Scholar 

  10. D. Hardjito, S.E. Wallah, D.M.J. Sumajouw, B.V. Rangan, On the development of FA-based geopolymer concrete. ACI Mater. J. 101(6), 467–472 (2004)

    CAS  Google Scholar 

  11. A. Palomo, M.W. Grutzeck, M.T. Blanco, Alkali-activated FAes, a cement for the future. Cem. Concr. Res. 29(8), 1323–1329 (1999). https://doi.org/10.1016/s0008-8846(98)00243-9

    Article  CAS  Google Scholar 

  12. J. Davidovits, Geopolymers and geopolymeric materials. Therm. Anal. Calorim. 35(2), 429–441 (1989). https://doi.org/10.1007/BF01904446

    Article  CAS  Google Scholar 

  13. J. Davidovits, Geopolymer Chemistry and Application, 2nd edn. (Institut Géopolymère, Saint-Quentin, 2008)

    Google Scholar 

  14. K.H. Yang, J.K. Song, K.I. Song, Assessment of CO2 reduction of alkali-activated concrete. J. Clean. Prod. 39, 265–272 (2013). https://doi.org/10.1016/j.jclepro.2012.08.001

    Article  CAS  Google Scholar 

  15. F.U.A. Shaikh, Mechanical and durability properties of FA geopolymer concrete containing recycled coarse aggregates. Int. J. Sustain. Built Environ. 5, 277–287 (2016)

    Article  Google Scholar 

  16. E.I. Diaz, E.N. Allouche, S. Eklund, Factors affecting the suitability of FA as source material for geopolymers. Fuel 89, 992–996 (2010). https://doi.org/10.1016/j.fuel.2009.09.012

    Article  CAS  Google Scholar 

  17. C.K. Yip, G.C. Lukey, J.L. Provis, J.S.J. van Deventer, Effect of calcium silicate sources on geopolymerization. Cem. Concr. Res. 38, 554–564 (2008). https://doi.org/10.1016/j.cemconres.2007.11.001

    Article  CAS  Google Scholar 

  18. A. Palomo, P. Krivenko, I. Garcia-Lodeiro, E. Kavalerova, O. Maltseva, A. Fernández-Jiménez, A review on alkaline activation: new analytical perspectives. Mater. Constr. 64(315), e022 (2014). https://doi.org/10.3989/mc.2014.00314

    Article  CAS  Google Scholar 

  19. A. Fernandez-Jimenez, I. García-Lodeiro, A. Palomo, Durability of alkali-activated FA cementitious materials. J. Mater. Sci. 42(9), 3055–3065 (2007)

    Article  CAS  Google Scholar 

  20. Z. Bascarevic, M. Komljenovic, Z. Miladinovic, V. Nikolic, N. Marjanovic, Z. Zujovic, R. Petrovic, Effects of the concentrated NH4NO3 solution on mechanical properties and structure of the FA based geopolymers. Constr. Build. Mater. 41(3), 570–579 (2013)

    Article  Google Scholar 

  21. S.K. Bhattacharyya, M. Gupta, G. Ishwarya, B. Singh, Geopolymer concrete: a review of some recent developments. Constr. Build. Mater. 85, 78–90 (2015)

    Article  Google Scholar 

  22. M. Komljenovic, Z. Bascarevic, V. Bradic, Mechanical and micro structural properties of alkali-activated FA geopolymers. J. Hazard. Mater. 181(1–3), 35–42 (2010)

    Article  CAS  Google Scholar 

  23. P.K. Sarker, R. Haque, K.V. Ramgolam, Fracture behaviour of heat cured FA based geopolymer concrete. Mater. Des. 44, 580–586 (2013). https://doi.org/10.1016/j.matdes.2012.08.005

    Article  CAS  Google Scholar 

  24. G. Kovalchuk, A. Fernández-Jiménez, A. Palomo, Alkali-activated FA: effect of thermal curing conditions on mechanical and microstructural development—Part II. Fuel 86(3), 315–322 (2007)

    Article  CAS  Google Scholar 

  25. Z. Yunsheng, S. Wei, L. Zongjin, Composition design and microstructural 724 characterization of calcined kaolin-based geopolymer cement. Appl. Clay Sci. 47(3–4), 271–275 (2010)

    Article  Google Scholar 

  26. J.T. Gourley, G.B. Johnson, Developments in geopolymer precast concrete. In: Proceedings of the International Workshop on Geopolymers and Geopolymer Concrete, Perth, Australia (2005), pp. 11–16

  27. Y. Ding, S. Jalali, D. Moura, F. Pacheco-Torgal, Composition, strength and workability of alkali-activated metakaolin based mortars. Constr. Build. Mater. 25, 3732–3745 (2011)

    Article  Google Scholar 

  28. G. Gorhan, G. Kurklu, The influence of NaOH solution on the properties of FA based geopolymer mortars cured at different temperatures. Compos. Part B J. 58, 371–377 (2014)

    Article  CAS  Google Scholar 

  29. A. Fernández-Jiménez, A. Palomo, Characterisation of FAes. Potential reactivity as alkaline cements. Fuel 82(18), 2259–2265 (2003)

    Article  Google Scholar 

  30. P. Rovnaník, Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 24, 1176–1183 (2010)

    Article  Google Scholar 

  31. P. Ganapati Naidu, A.S.S.N. Prasad, P.V.V. Satayanarayana, A study on strength properties of geopolymer concrete with addition of GGBFS. Int. J. Eng. Res. Dev. 2(4), 19–28 (2012)

    Google Scholar 

  32. ASTM C 618, Standard Specification for Coal FA and Raw or Calcined Natural Pozzolan for Use in Concrete (ASTM International, West Conshohocken, 2008)

    Google Scholar 

  33. ASTM C989/C989M-18a, Standard Specification for Slag Cement for Use in Concrete and Mortars. ASTM International, West Conshohocken, PA (2018). https://www.astm.org

  34. IS 383:2016, Coarse and Fine Aggregate for Concrete—Specifications

  35. S.V. Patankar, Y.M. Ghugal, S.S. Jamkar, Mix design of FA based geopolymer concrete. Adv. Struct. Eng. (2015). https://doi.org/10.1007/978-81-322-2187-6_123

    Article  Google Scholar 

  36. IS, 10262-2016 Recommended Guidelines for Concrete Mix Design on for Coarse and Fine Aggregates from Natural Sources for Concrete. Bureau of Indian Standards, New Delhi

  37. P.K. Sarker, Bond strength of reinforcing steel embedded in geopolymer concrete. Mater. Struct. 44(5), 1021–1030 (2011). https://doi.org/10.1617/s11527-010-9683-8

    Article  CAS  Google Scholar 

  38. ASTM C143/C143M, Standard Test Method for Slump of Hydraulic-Cement Concrete (STM International, West Conshohocken, 1998)

    Google Scholar 

  39. BS 12390-3, Testing Hardened Concrete, Compressive Strength of Test Specimens (BSI, London, 2009)

    Google Scholar 

  40. ASTM C496/C496M-17, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. American Society for Testing and Materials

  41. ASTM C78/C78M-18, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). American Society for Testing and Materials

  42. ASTM C642-13, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete

  43. P. Chindaprasirt, S. Rukzon, Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and FA mortar. Constr. Build. Mater. 22, 1601–1606 (2008)

    Article  Google Scholar 

  44. S. Thokchom, P. Ghosh, S. Ghosh, Effect of water absorption, porosity and sorptivity on durability of geopolymer mortars. ARPN J. Eng. Appl. Sci. 4, 28–32 (2009)

    Google Scholar 

  45. ASTM C 267-01, Standard Test Methods for Chemical Resistance of Mortars, Grouts and Monolithic Surfacing and Polymer Concretes (2012)

  46. ASTM C 1585:2013, Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes

  47. ASTM C1202-19, Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration

  48. P.S. Deb, P. Nath, P.K. Sarker, The effects of ground granulated blast-furnace slag blending with FA and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater. Des. 62, 32–39 (2014). https://doi.org/10.1016/j.matdes.2014.05.001

    Article  CAS  Google Scholar 

  49. P. Nath, P.K. Sarker, Effect of GGBFS on setting, workability and early strength properties of FA geopolymer concrete cured in ambient condition. Const. Build. Mater. 66, 163–171 (2014). https://doi.org/10.1016/j.conbuildmat.2014.05.080

    Article  Google Scholar 

  50. N. Marjanovic, M. Komljenovic, Z. Baacarević, V. Nikolic, R. Petrovic, Physical–mechanical and microstructural properties of alkaliactivated fly ash–blast furnace slag blends. Ceram. Int. 41(1), 1421–1435 (2015)

    Article  CAS  Google Scholar 

  51. K. Somna, C. Jaturapitakkul, P. Kajitvichyanukul, P. Chindaprasirt, NaOHactivated ground FA geopolymer cured at ambient temperature. Fuel 90, 2118–2124 (2011)

    Article  CAS  Google Scholar 

  52. J. Temuujin, A. van Riessen, R. Williams, Influence of calcium compounds on the mechanical properties of FA geopolymer pastes. J. Hazard Mater. 167, 82–88 (2009)

    Article  CAS  Google Scholar 

  53. J. Davidovits , Chemistry of geopolymeric systems, terminology. In: Second International Conference on Geopolymer. Saint-Quentin (France) (1999), pp. 9–40

  54. D. Hardjito, Studies of FA-Based Geopolymer Concrete (Doctoral dissertation) (Curtin University, Perth, 2005)

    Google Scholar 

  55. E.I. Diaz-Loya, F.N. Allouch, S. Vaidya, Mechanical properties of fly-ashbased geopolymer concrete. ACI Mater. J. 108, 3 (2011). https://doi.org/10.14359/51682495

    Article  Google Scholar 

  56. P. Nath, P.K. Sarker, Use of OPC to improve setting and early strength properties of low calcium FA geopolymer concrete cured at room temperature. Cem. Concr. Compos. 55, 205–214 (2015). https://doi.org/10.1016/j.cemconcomp.2014.08.008

    Article  CAS  Google Scholar 

  57. S. Astutiningsih, Y. Liu, Geopolymersation of Australian slag with effective dissolution by the alkaline. In: Proceedings of the World Congress of Geopolymer 2005, St Quentin (2005), p. 69

  58. D. Dutta, S. Thokchom, P. Ghosh, S. Ghosh, Effect of silica fume additions on porosity of FA geopolymers. J. Eng. Appl. Sci. 5(10), 74 (2010)

    Google Scholar 

  59. I. Garcıa Lodeiro, A. Fernandez-Jimenez, A. Palomo, D.E. Macphee, Effect on fresh C–S–H gels of the simultaneous addition of alkali and aluminium. Cem. Concr. Res. 40(1), 27 (2010)

    Article  Google Scholar 

  60. C. Shi, Effect of mixing proportions of concrete on its electrical conductivity and the rapid chloride permeability test (ASTM C1202 or ASSHTO T277) Results. Cem. Concr. Res. 34, 537–545 (2004)

    Article  CAS  Google Scholar 

  61. H. Arup, B. Sorensen, J. Frederiksen, N. Thuaulow, The rapid chloride penetration test-an assessment, NACE corrosion-93, New Orleans, LA, March, pp.7–12

  62. A. Bouaissi, L. Li, M.M.A.B. Abdullah, Q.-B. Bui, Mechanical properties and microstructure analysis of FA-GGBFS-HMNS based geopolymer concrete. Constr. Build. Mater. 210, 198–209 (2019)

    Article  CAS  Google Scholar 

  63. S. Ahmari, X. Ren, V. Toufigh, L. Zhang, Production of geopolymeric binder from blended waste concrete powder and FA. Constr. Build. Mater. 35, 718–729 (2012)

    Article  Google Scholar 

  64. T. Yang, X. Yao, Z. Zhang, Geopolymer prepared with high-magnesium nickel slag: characterization of properties and microstructure. Constr. Build. Mater. 59, 188–194 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Centre of Excellence for Advanced Materials, Manufacturing, Processing, and Characterization for allowing to conduct microstructural analysis and also thanking the Vignan’s Foundation for Science, Technology and Research for providing the funding (Grant No. VFSTR/Reg/A4/30/2019-20/02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramamohana Reddy Bellum.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellum, R.R., Muniraj, K. & Madduru, S.R.C. Influence of slag on mechanical and durability properties of fly ash-based geopolymer concrete. J. Korean Ceram. Soc. 57, 530–545 (2020). https://doi.org/10.1007/s43207-020-00056-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-020-00056-7

Keywords

Navigation