Skip to main content

Advertisement

Log in

Mechanistic insight on the role of leukotriene receptors in ischemic–reperfusion injury

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Leukotrienes (LT) are a class of inflammatory mediators produced by the 5-lipoxygenase (5-LO) enzyme from arachidonic acid (AA). We discussed the various LT inhibitors and downstream pathway modulators, such as Mitogen-Activated Protein Kinases (MAPK), Phosphatidylinositol 3-Kinase/Protein Kinase B (PI3K/Akt), 5′-Adenosine Monophosphate-Activated Protein Kinase (AMPK), Protein Kinase C (PKC), Nitric Oxide (NO), Bradykinin, Early Growth Response-1 (Egr-1), Nuclear Factor-κB (NF-κB), and Tumor Necrosis Factor-Alpha (TNF-α), which in turn regulate various metabolic and physiological processes involving I/R injury. A systematic literature review of Bentham, Scopus, PubMed, Medline, and EMBASE (Elsevier) databases was carried out to understand the nature and mechanistic interventions of the leukotriene receptor modulations in ischemic injury. In the pathophysiology of I/R injuries, LT has been found to play an important role. I/R injury affects most of the vital organs and is characterized by inflammation, oxidative stress, cell death, and apoptosis leading to morbidity and mortality. sThis present review focuses on the various LT receptors, i.e., CysLT, LTC4, LTD4, and LTE4, involved in developing I/R injury in organs, such as the brain, spinal cord, heart, kidney, liver, and intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

5- LO/LOX:

5-Lipoxygenase

AA:

Arachidonic acid

AST:

Aspartate aminotransferase

AMPK:

5′-Adenosine monophosphate-activated protein kinase

ARF:

Acute renal failure

ASM:

Airway smooth muscle

BBB:

Blood–brain barrier

BLT1:

Leukotriene B4 receptors

Ca2 + :

Calcium ion

cPLA2:

Cytosolic phospholipase A2

CysLTs:

Cysteinyl leukotrienes

ERK:

Extracellular signal-related kinases

FLAP:

5-Lipoxygenase activating protein

GPCR:

G protein-coupled receptor

GPR 17:

G protein-coupled receptor 17

GSH:

Reduced glutathione

GTP:

Guanosine -5′-triphosphate

HETEs:

Hydroxyeicosotetraenoic acids

HPETE:

Hydroperoxyeicosatetraenoic acid

I/R:

Ischemic reperfusion

IRI:

Ischemic reperfusion injury

JNK:

Jun amino-terminal kinases

Kae:

Kaempferide

LT:

Leukotrienes

LTA4:

Leukotriene A4

LTB4:

Leukotriene B4

LTC4:

Leukotriene C4

LTC4S:

Leukotriene C4 synthase

LTD4:

Leukotriene D4

LTE4:

Leukotriene E4

LV:

Left ventricular

LXA4:

Lipoxin A4

MAPK:

Mitogen-activated protein kinases

MCAO:

Middle cerebral artery occlusion

MEK–ERK:

Mitogen-activated protein kinase–extracellular signal-related kinase

MGST:

Microsomal glutathione-S-transferase

MPO:

Myeloperoxidase

NaB:

Sodium butyrate

OGD:

Oxygen–glucose deprivation

OPCs:

Oligodendrocyte precursor cells

PI3K:

Phosphatidylinositol 3-Kinase

PKB:

Protein kinase B

PLA2:

Phospholipase A2

PMNL:

Polymorphonuclear leukocytes

ROS:

Reactive oxygen species

Sal A:

Salvianolic acid A

TNF-α:

Tumor necrosis factor-alpha

TXA2:

Thromboxane A2

UDP:

Uridine diphosphate

References

  1. Cowled P, Fitridge R. Mechanisms of vascular disease: Pathophysiology of reperfusion injury, 2011. https://doi.org/10.1017/UPO9781922064004.019.

  2. Wu MY, Yiang GT, Liao WT, Tsai APY, Cheng YL, Cheng PW, et al. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem. 2018;46:1650–67. https://doi.org/10.1159/000489241.

    Article  CAS  PubMed  Google Scholar 

  3. Kaur Grewal A, Singh TG, Singh N. Potential herbal drugs for ischemic stroke: a review. Plant Arch. 2020;20(1):3772–83.

    Google Scholar 

  4. Holgate ST, Peters-golden M, Panettieri RA, Henderson WR. Arbo AR Roles of cysteinyl leukotrienes in airway inflammation, smooth muscle function, and remodeling. J Allergy Clin Immunol. 2003;111:18–36. https://doi.org/10.1067/mai.2003.25.

    Article  CAS  Google Scholar 

  5. Feinmark SJ. The role of the endothelial cell in leukotriene biosynthesis. Am Rev Respir Dis. 1992;146:551–5. https://doi.org/10.1164/ajrccm/146.5_Pt_2.S51.

    Article  Google Scholar 

  6. Colazzo F, Gelosa P, Tremoli E, Sironi L, Castiglioni L. Role of the cysteinyl leukotrienes in the pathogenesis and progression of cardiovascular diseases. Mediators Inflamm. 2017. https://doi.org/10.1155/2017/2432958.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science. 1983;220:568–75. https://doi.org/10.1126/science.6301011.

    Article  CAS  PubMed  Google Scholar 

  8. Jo-Watanabe A, Okuno T, Yokomizo T. The role of leukotrienes as potential therapeutic targets in allergic disorders. Int J Mol Sci. 2019;20(14):3580. https://doi.org/10.3390/ijms20143580.

    Article  CAS  PubMed Central  Google Scholar 

  9. Kanaoka Y, Maekawa A, Austen KF. Identification of GPR99 protein as a potential third cysteinyl leukotriene receptor with a preference for leukotriene E4 ligand. J Biol Chem. 2013;288:10967–72. https://doi.org/10.1074/jbc.C113.453704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maekawa A, Kanaoka Y, Xing W, Austen KF. Functional recognition of a distinct receptor preferential for leukotriene E4 in mice lacking the cysteinyl leukotriene 1 and 2 receptors. Proc Natl Acad Sci USA. 2008;105:16695–700. https://doi.org/10.1073/pnas.0808993105.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Uozumi H, Kume K, Nagase T, Nakatani H, Ishii S, Tashiro F, et al. Role of cytosolic phospholipase A2 in allergic response and parturition. Nature. 1997;390:618–22. https://doi.org/10.1038/37622.

    Article  CAS  PubMed  Google Scholar 

  12. Henderson WR, Chi EY, Bollinger JG, Tien YT, Ye X, Castelli L, et al. Importance of group X-secreted phospholipase A2 in allergen-induced airway inflammation and remodeling in a mouse asthma model. J Exp Med. 2007;204:865–77. https://doi.org/10.1084/jem.20070029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Werz O, Klemm J, Samuelsson B, Rådmark O. 5-Lipoxygenase is phosphorylated by p38 kinase-dependent MAPKAP kinases. Proc Natl Acad Sci. 2000;97:5261–6. https://doi.org/10.1073/pnas.050588997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Werz O, Bürkert E, Fischer L, Szellas D, Dishart D, Samuelsson B, et al. Extracellular signal-regulated kinases phosphorylate 5-lipoxygenase and stimulate 5-lipoxygenase product formation in leukocytes. FASEB J. 2002;16:1441–3. https://doi.org/10.1096/fj.01-0909fje.

    Article  CAS  PubMed  Google Scholar 

  15. Hammarström S. Leukotrienes. Annu Rev Biochem. 1983;52:355–77. https://doi.org/10.1146/annurev.bi.52.070183.002035.

    Article  PubMed  Google Scholar 

  16. Sharma JN, Mohammed LA. The role of leukotrienes in the pathophysiology of inflammatory disorders: Is there a case for revisiting leukotrienes as therapeutic targets? Inflammopharmacology. 2006;14:10–6. https://doi.org/10.1007/s10787-006-1496-6.

    Article  CAS  PubMed  Google Scholar 

  17. Samuelsson B, Dahlen SE, Lindgren JA, Rouzer CA, Serhan CN. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science; 1987: 1171–1176. https://doi.org/10.1126/science.2820055.

  18. Lynch KR, O’Neill GP, Liu Q, Im DS, Sawyer N, Metters KM, et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature. 1999;399:789–93. https://doi.org/10.1038/21658.

    Article  CAS  PubMed  Google Scholar 

  19. Singh RK, Gupta S, Dastidar S, Ray A. Cysteinyl leukotrienes and their receptors: Molecular and functional characteristics. Pharmacology. 2010;85:336–49. https://doi.org/10.1159/000312669.

    Article  CAS  PubMed  Google Scholar 

  20. Im DS. New intercellular lipid mediators and their GPCRs: An update. Prostaglandins Other Lipid Mediat. 2009;89:53–6. https://doi.org/10.1016/j.prostaglandins.2009.01.002.

    Article  CAS  PubMed  Google Scholar 

  21. Claesson HE, Dahlén SE. Asthma and leukotrienes: Antileukotrienes as novel anti-asthmatic drugs. J Intern Med. 1999;245:205–27. https://doi.org/10.1046/j.1365-2796.1999.00418.x.

    Article  CAS  PubMed  Google Scholar 

  22. Schain F, Tryselius Y, Sjöberg J, Porwit A, Backman L, Malec M, et al. Evidence for a pathophysiological role of cysteinyl leukotrienes in classical Hodgkin lymphoma. Int J Cancer. 2008;123:2285–93. https://doi.org/10.1002/ijc.23781.

    Article  CAS  PubMed  Google Scholar 

  23. Bisgaard H, Lerche A, Kristensen JK. Leukotriene- and histamine-induced increases in vascular permeability and interstitial transport in the skin. J Invest Dermatol. 1985;5:427–9. https://doi.org/10.1111/1523-1747.ep12265527.

    Article  Google Scholar 

  24. Wedi KA. Pathophysiological role of leukotrienes in dermatological diseases: Potential therapeutic implications. BioDrugs. 2001;15:729–43. https://doi.org/10.2165/00063030-200115110-00004.

    Article  CAS  PubMed  Google Scholar 

  25. Capra V, Thompson MD, Sala A, Cole DE, Folco G, Rovati GE. Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases: Critical update and emerging trends. Med Res Rev. 2007;27(4):469–527. https://doi.org/10.1002/med.20071.

    Article  CAS  PubMed  Google Scholar 

  26. Hui Y, Yang G, Galczenski H, Figueroa DJ, Austin CP, Copeland NG, et al. The murine cysteinyl leukotriene 2 (CysLT2) receptor: cDNA and genomic cloning, alternative splicing, and in vitro characterization. J Biol Chem. 2001;276:47489–95. https://doi.org/10.1074/jbc.M107556200.

    Article  CAS  PubMed  Google Scholar 

  27. Toda A, Yokomizo T, Shimizu T. Leukotriene B4 receptors. Prostaglandins Other Lipid Mediat. 2002;68–69:575–85. https://doi.org/10.1016/S0090-6980(02)00056-4.

    Article  PubMed  Google Scholar 

  28. Tonnesen MG. Neutrophil-endothelial cell interactions: Mechanisms of neutrophil adherence to vascular endothelium. J Invest Dermatol. 1989;93(2):S53–8. https://doi.org/10.1038/jid.1989.9.

    Article  Google Scholar 

  29. Adams DH, Shaw S. Leucocyte-endothelial interactions and regulation of leucocyte migration. Lancet. 1994;343:831–6. https://doi.org/10.1016/S0140-6736(94)92029-X.

    Article  CAS  PubMed  Google Scholar 

  30. Fink M, O’Sullivan B, Menconi M, Wollert P, Wang H, Youssef M, Flesich J. A novel leukotriene B4-receptor antagonist in endotoxin shock: a prospective, controlled trial in a porcine model. Crit Care Med. 1993; 1825–1837. https://doi.org/10.1097/00003246-199312000-00008.

  31. Lundeen KA, Sun B, Karlsson L, Fourie AM. Leukotriene B 4 receptors BLT1 and BLT2: expression and function in human and murine mast cells. J Immunol. 2006;177:3439–47. https://doi.org/10.4049/jimmunol.177.5.3439.

    Article  CAS  PubMed  Google Scholar 

  32. Chen XS, Shelter JR, Johnson EN, Funk CD. Role of leukotrienes revealed by targeted disruption of the 5-lipoxygenase gene. Nature. 1994;372:179–82. https://doi.org/10.1038/372179a0.

    Article  CAS  PubMed  Google Scholar 

  33. Sharon P, Stenson WF. Enhanced synthesis of leukotriene B4 by colonic mucosa in inflammatory bowel disease. Gastroenterology. 1984;86:453–60. https://doi.org/10.1016/S0016-5085(84)80015-3.

    Article  CAS  PubMed  Google Scholar 

  34. Drazen JM, Israel E, O’Byrne PM. Treatment of asthma with drugs modifying the leukotriene pathway. N Engl J Med. 1999;340:197–206. https://doi.org/10.1056/NEJM199901213400306.

    Article  CAS  PubMed  Google Scholar 

  35. Yokomizo T, Kato K, Terawaki K, Izumi T, Shimizu T. A second leukotriene B4receptor, BLT2: A new therapeutic target in inflammation and immunological disorders. J Exp Med. 2000;192:421–31. https://doi.org/10.1084/jem.192.3.421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin L, Wang X, Yu Z. Ischemia-reperfusion injury in the brain: mechanisms and potential therapeutic strategies. Biochem Pharmacol (Los Angel). 2016. https://doi.org/10.4172/2167-0501.1000213.

    Article  PubMed Central  Google Scholar 

  37. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95. https://doi.org/10.1152/physrev.00018.2001.

    Article  CAS  PubMed  Google Scholar 

  38. Cuzzocrea S, Riley DP, Caputi AP, Salvemini S. Antioxidant therapy: A new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev. 2001;53:135–59.

    CAS  PubMed  Google Scholar 

  39. Ni NC, Ballantyne LL, Mewburn JD, Funk CD. Multiple-site activation of the cysteinyl leukotriene receptor 2 is required for exacerbation of ischemia/reperfusion injury. Arterioscler Thromb Vasc Biol. 2014;34:321–30. https://doi.org/10.1161/ATVBAHA.113.302536.

    Article  CAS  PubMed  Google Scholar 

  40. Grewal AK, Singh N, Singh TG. Neuroprotective effect of pharmacological postconditioning on cerebral ischemia–reperfusion-induced injury in mice. J Pharm Pharmacol. 2019;71:956–70. https://doi.org/10.1111/jphp.13073.

    Article  CAS  PubMed  Google Scholar 

  41. Savari S, Vinnakota K, Zhang Y, Sjölander A. Cysteinyl leukotrienes and their receptors: Bridging inflammation and colorectal cancer. World J Gastroenterol. 2014;20:968–77. https://doi.org/10.3748/wjg.v20.i4.968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen Q, Xu T, Li D, Pan D, Wu P, Luo Y, et al. JNK/PI3K/Akt signaling pathway is involved in myocardial ischemia/reperfusion injury in diabetic rats: Effects of salvianolic acid A intervention. Am J Transl Res. 2016;8:2534–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun J, Wang F, Li H, Zhang H, Jin J, Chen W, et al. Neuroprotective effect of sodium butyrate against cerebral ischemia/reperfusion injury in mice. Biomed Res Int. 2015. https://doi.org/10.1155/2015/395895.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang D, Zhang X, Li D, Hao W, Meng F, Wang B, et al. Kaempferide protects against myocardial ischemia/reperfusion injury through activation of the PI3K/Akt/GSK-3 β Pathway. Mediators Inflamm. 2017. https://doi.org/10.1155/2017/5278218.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct. 2015;35:600–4. https://doi.org/10.3109/10799893.2015.1030412.

    Article  CAS  Google Scholar 

  46. Rao V, Reddy ES. Elk-1 proteins interact with MAP kinases. Oncogene. 1994;9(7):1855–60.

    CAS  PubMed  Google Scholar 

  47. Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev. 2004;68:320–44. https://doi.org/10.1128/MMBR.68.2.320-344.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Carletti R, Tacconi S, Bettini E, Ferraguti F. Stress activated protein kinases, a novel family of mitogen-activated protein kinases, are heterogeneously expressed in the adult rat brain and differentially distributed from extracellular-signal-regulated protein kinases. Neuroscience. 1995;69:1103–10. https://doi.org/10.1016/0306-4522(95)00284-P.

    Article  CAS  PubMed  Google Scholar 

  49. Irving EA, Barone FC, Reith AD, Hadingham SJ, Parsons AA. Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischaemia in the rat. Mol Brain Res. 2000;77:65–75. https://doi.org/10.1016/S0169-328X(00)00043-7.

    Article  CAS  PubMed  Google Scholar 

  50. Pniewska E, Pawliczak R. The involvement of phospholipases A2 in asthma and chronic obstructive pulmonary disease. Mediators Inflamm. 2013. https://doi.org/10.1155/2013/793505.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ihara A, Wada K, Yoneda M, Fujisawa N, Takahashi H, Nakajima A. Blockade of leukotriene B4 signaling pathway induces apoptosis and suppresses cell proliferation in colon cancer. J Pharmacol Sci. 2007;103:24–32. https://doi.org/10.1254/jphs.FP0060651.

    Article  CAS  PubMed  Google Scholar 

  52. Bueno OF, Molkentin JD. Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ Res. 2002;91:776–81. https://doi.org/10.1161/01.RES.0000038488.38975.1A.

    Article  CAS  PubMed  Google Scholar 

  53. Jeon SM. Regulation and function of AMPK in physiology and diseases. Exp Mol Med. 2016;48:e245. https://doi.org/10.1038/emm.2016.81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Seo KW, Lee SJ, Kim CE, Yun MR, Park HM, Yun JW, Participation of 5-et al. lipoxygenase-derived LTB4 in 4-hydroxynonenal-enhanced MMP-2 production in vascular smooth muscle cells. Atherosclerosis. 2010; 208:56–61. https://doi.org/10.1016/j.atherosclerosis.2009.06.012.

  55. Sun M, Wang R, Han Q. Inhibition of leukotriene B4 receptor 1 attenuates lipopolysaccharide-induced cardiac dysfunction: Role of AMPK-regulated mitochondrial function. Sci Rep. 2017;7:1–14. https://doi.org/10.1038/srep44352.

    Article  CAS  Google Scholar 

  56. Singh S, Singh TG. Role of nuclear factor kappa B (NF-κB) signalling in neurodegenerative diseases: an mechanistic approach. Curr Neuropharmacol. 2020. https://doi.org/10.2174/1570159x18666200207120949.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Liu T, Zhang L, Joo D, Sun S. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:1–9. https://doi.org/10.1038/sigtrans.2017.23.

    Article  CAS  Google Scholar 

  58. Zhao R, Ying M, Gu S, Yin W, Li Y, Yuan H, et al. Cysteinyl Leukotriene Receptor 2 is Involved in Inflammation and Neuronal Damage by Mediating Microglia M1/M2 Polarization through NF-κB Pathway. Neuroscience. 2019;422:99–118. https://doi.org/10.1016/j.neuroscience.2019.10.048.

    Article  CAS  PubMed  Google Scholar 

  59. Bonizzi G, Piette J, Schoonbroodt S, Greimers R, Havard L, Merville MP, Bours V. Reactive oxygen intermediate-dependent NF-kappaB activation by interleukin-1beta requires 5-lipoxygenase or NADPH oxidase activity. Mol Cell Biol. 1999;19(3):1950–60. https://doi.org/10.1128/mcb.19.3.1950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Won J, Khan M, Singh AK, Singh I. Involvement of phospholipase A 2 and lipoxygenase in lipopolysaccharide-induced inducible nitric oxide synthase expression in glial cells. Glia. 2005;51:13–21. https://doi.org/10.1002/glia.20178.

    Article  PubMed  Google Scholar 

  61. Jatana M, Giri S, Ansari MA, Elango C, Singh AK, Singh I, Khan M. Inhibition of NF-κB activation by 5-lipoxygenase inhibitors protects brain against injury in a rat model of focal cerebral ischemia. J Neuroinflammation. 2006;3:12. https://doi.org/10.1186/1742-2094-3-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Serio KJ, Reddy KV, Bigby TD. Lipopolysaccharide induces 5-lipoxygenase-activating protein gene expression in THP-1 cells via a NF-κB and C/EBP-mediated mechanism. Am J Physiol Cell Physiol. 2005;288(5):C1125–33. https://doi.org/10.4049/jimmunol.170.4.2121.

    Article  CAS  PubMed  Google Scholar 

  63. Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science. 1983;220(4597):568–75. https://doi.org/10.1126/science.6301011.

    Article  CAS  PubMed  Google Scholar 

  64. Theron AJ, Steel HC, Tintinger GR, Gravett CM, Anderson R, Feldman C. Cysteinyl leukotriene receptor-1 antagonists as modulators of innate immune cell function. J Immunol Res. 2014. https://doi.org/10.1155/2014/608930.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhang J, Song J, Xu J, Chen X, Yin P, Lv X, et al. ERK1/2-Egr-1 signaling pathway-mediated protective effects of electroacupuncture in a mouse model of myocardial ischemia-reperfusion. Evid Based Complem Altern Med. 2014. https://doi.org/10.1155/2014/253075.

    Article  Google Scholar 

  66. Khachigian LM, Collins T. Inducible expression of Egr-1-dependent genes: A paradigm of transcriptional activation in vascular endothelium. Circ Res. 1997;81:457–61. https://doi.org/10.1161/01.RES.81.4.457.

    Article  CAS  PubMed  Google Scholar 

  67. Bradley J. TNF-mediated inflammatory disease. J Pathol. 2008;214:149–60. https://doi.org/10.1002/path.2287.

    Article  CAS  PubMed  Google Scholar 

  68. Saito Y, Watanabe K, Fujioka D, Nakamura T, Obata JE, Kawabata K, Watanabe Y, Mishina H, Tamaru S, Kita Y, Shimizu T. Disruption of group IVA cytosolic phospholipase A 2 attenuates myocardial ischemia-reperfusion injury partly through inhibition of TNF-α-mediated pathway. Am J Physiol Hear Circ Physiol. 2012;302:453–61. https://doi.org/10.1152/ajpheart.00955.2011.

    Article  CAS  Google Scholar 

  69. Jupp OJ, Vandenabeele P, Macewan DJ. Distinct regulation of cytosolic phospholipase A 2 phosphorylation, translocation, proteolysis and activation by tumour necrosis factor-receptor subtypes. Biochem J. 2003;374:453–61. https://doi.org/10.1042/bj20030705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rehni AK, Singh TG, Kalra R, Singh N. Pharmacological inhibition of inducible nitric oxide synthase attenuates the development of seizures in mice. Nitric Oxide. 2009;21(2):120–5. https://doi.org/10.1016/j.niox.2009.06.001.

    Article  CAS  PubMed  Google Scholar 

  71. Yoshida N, Yoshikawa T, Nakamura Y, Arai M, Matsuyama K, Iinuma S, et al. Role of neutrophil-endothelial cell interactions in gastric mucosal injury induced by aspirin. J Clin Gastroenterol. 1995;21:S73–7. https://doi.org/10.1007/BF02063228.

    Article  PubMed  Google Scholar 

  72. Kitagawa H, Takeda FU, Kohei H. Effect of endothelium-derived relaxing factor on the gastric lesion induced by HCl in rats. J Pharmacol Exp Ther. 1990;253:1133–7.

    CAS  PubMed  Google Scholar 

  73. Neumayer C, Fügl A, Nanobashvili J, Blumer R, Punz A, Gruber H, et al. Combined enzymatic and antioxidative treatment reduces ischemia-reperfusion injury in rabbit skeletal muscle. J Surg Res. 2006; 15: 133(2):150–8. https://doi.org/10.1016/j.jss.2005.12.005.

  74. Arndt H, Russell J, Kurose I, Kubes P, Granger D. Mediators of leukocyte adhesion in rat mesenteric venules elicited by inhibition of nitric oxide synthesis. Gastroenterology. 1993;105:675–80. https://doi.org/10.1016/0016-5085(93)90882-d.

    Article  CAS  PubMed  Google Scholar 

  75. Golias C, Charalabopoulos A, Stagikas D, Charalabopoulos K, Batistatou A. The kinin system-bradykinin: biological effects and clinical implications. Multiple role of the kinin system-bradykinin, Hippokratia. 2007; 11:124. https://www.ncbi.nlm.nih.gov/pubmed/19582206

  76. Naka Y, Roy DK, Smerling AJ, Michler RE, Smith CR, Stern DM, Oz MC, Pinsky DJ. Inhaled nitric oxide fails to confer the pulmonary protection provided by distal stimulation of the nitric oxide pathway at the level of cyclic guanosine. J Thorac Cardiovasc Surg. 1995;110:1434–41. https://doi.org/10.1016/S0022-5223(95)70066-8.

    Article  CAS  PubMed  Google Scholar 

  77. Burch RM, Axelrod J. Dissociation of bradykinin-induced prostaglandin formation from phosphatidylinositol turnover in Swiss 3T3 fibroblasts: evidence for G protein regulation of phospholipase A2. Proc Natl Acad Sci. 1987;84(18):6374–8. https://doi.org/10.1073/pnas.84.18.6374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hashimoto N, Takeyoshi I, Tsutsumi H, Sunose Y, Tokumine M, Totsuka O, et al. Effects of a bradykinin B2 receptor antagonist, FR173657, on pulmonary ischemia–reperfusion injury in dogs. J Hear Lung Transplant. 2002;21:1022–9. https://doi.org/10.1016/S1053-2498(02)00405-9.

    Article  Google Scholar 

  79. Liang G, Shi B, Luo W, Yang J. The protective effect of caffeic acid on global cerebral ischemia-reperfusion injury in rats. Behav Brain Funct. 2015;11:1–10. https://doi.org/10.1186/s12993-015-0064-x.

    Article  CAS  Google Scholar 

  80. Rehni A, Singh TG. Modulation of leukotriene D4 attenuates the development of seizures in mice. Prostaglandin Leukot Essent Fat Acids. 2011;85:97–106. https://doi.org/10.1016/j.plefa.2011.04.003.

    Article  CAS  Google Scholar 

  81. Kawabori M, Yenari MA. Inflammatory responses in brain ischemia. Curr Med Chem. 2015;10:1258–77. https://doi.org/10.2174/0929867322666150209154036.

    Article  CAS  Google Scholar 

  82. Gelosa P, Colazzo F, Tremoli E, Sironi L, Castiglioni L. Cysteinyl leukotrienes as potential pharmacological targets for cerebral diseases. Mediators Inflamm. 2017;10:2017. https://doi.org/10.1155/2017/3454212.

    Article  CAS  Google Scholar 

  83. Gelosa P, Bonfanti E, Castiglioni L, Delgado-Garcia JM, Gruart A, Fontana L, Gotti M, Tremoli E, Lecca D, Fumagalli M, Cimino M. Improvement of fiber connectivity and functional recovery after stroke by montelukast, an available and safe anti-asthmatic drug. Pharmacol Res. 2019;1(142):223–36. https://doi.org/10.1016/j.phrs.2019.02.025.

    Article  CAS  Google Scholar 

  84. Nayak B, Kumar A, Kothiyal P. Pharmacological evaluation of zafirlukast in experimentally induced global cerebral ischemia/reperfusion injury in mice. Int J Pharm Pharm Sci. 2018;10:30–36. https://doi.org/10.22159/ijpps.2018v10i2.21633.

  85. Wu L, Miao S, Zou LB, Wu P, Hao H, Tang K, Zeng P, Xiong J, Li HH, Wu Q, Cai L. Lipoxin A 4 inhibits 5-lipoxygenase translocation and leukotrienes biosynthesis to exert a neuroprotective effect in cerebral ischemia/reperfusion injury. J Mol Neurosci. 2012;48:185–200. https://doi.org/10.1007/s12031-012-9807-4.

    Article  CAS  PubMed  Google Scholar 

  86. Pergola C, Werz O. 5-Lipoxygenase inhibitors: A review of recent developments and patents. Expert Opin Ther Pat. 2010;20:355–75. https://doi.org/10.1517/13543771003602012.

    Article  CAS  PubMed  Google Scholar 

  87. Chu LS, Wei EQ, Yu GL, Fang SH, Zhou Y, Wang ML, Zhang WP. Pranlukast reduces neutrophil but not macrophage/microglial accumulation in brain after focal cerebral ischemia in mice. Acta Pharmacol Sin. 2006;27:282–8. https://doi.org/10.1111/j.1745-7254.2006.00290.x.

    Article  CAS  PubMed  Google Scholar 

  88. Yu GL, Wei EQ, Wang ML, Zhang WP, Zhang SH, Weng JQ. Pranlukast, a cysteinyl leukotriene receptor-1 antagonist, protects against chronic ischemic brain injury and inhibits the glial scar formation in mice. Brain Res. 2005;1053:116–25. https://doi.org/10.1016/j.brainres.2005.06.046.

    Article  CAS  PubMed  Google Scholar 

  89. Daniele S, Lecca D, Trincavelli ML, Ciampi O, Abbracchio MP, Martini C. Regulation of PC12 cell survival and differentiation by the new P2Y-like receptor GPR17. Cell Signal. 2010;22:697–706. https://doi.org/10.1016/j.cellsig.2009.12.006.

    Article  CAS  PubMed  Google Scholar 

  90. Temporini C, Ceruti S, Calleri E, Ferrario S, Moaddel R, Abbracchio MP, Massolini G. Development of an immobilized GPR17 receptor stationary phase for binding determination using frontal affinity chromatography coupled to mass spectrometry. Anal Biochem. 2009;384:123–9. https://doi.org/10.1016/j.ab.2008.09.010.

    Article  CAS  PubMed  Google Scholar 

  91. Ciana P, Fumagalli M, Trincavelli ML, Verderio C, Rosa P, Lecca D, et al. The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. EMBO J. 2006;25:4615–27. https://doi.org/10.1038/sj.emboj.7601341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cosentino S, Castiglioni L, Colazzo F, Nobili E, Tremoli E, Rosa P, et al. Expression of dual nucleotides/cysteinyl-leukotrienes receptor GPR17 in early trafficking of cardiac stromal cells after myocardial infarction. J Cell Mol Med. 2014;18:1785–96. https://doi.org/10.1111/jcmm.12305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Franke H, Parravicini C, Lecca D, Zanier ER, Heine C, Bremicker K, et al. Changes of the GPR17 receptor, a new target for neurorepair, in neurons and glial cells in patients with traumatic brain injury. Purinergic Signal. 2013;9(3):451–62. https://doi.org/10.1007/s11302-013-9366-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhao B, Zhao CZ, Zhang XY, Huang XQ, Shi WZ, Fang SH, et al. The new P2Y-like receptor G protein-coupled receptor 17 mediates acute neuronal injury and late microgliosis after focal cerebral ischemia in rats. Neuroscience. 2012;202:42–57. https://doi.org/10.1016/j.neuroscience.2011.11.066.

    Article  CAS  PubMed  Google Scholar 

  95. Lecca D, Trincavelli ML, Gelosa P, Sironi L, Ciana P, Fumagalli M. The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair. PLoS One. 2008. https://doi.org/10.1371/journal.pone.0003579.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zhao B, Wang H, Li CX, Song SW, Fang SH, Wei EQ, Shi QJ. GPR17 mediates ischemia-like neuronal injury via microglial activation. Int J Mol Med. 2018;42:2750–62. https://doi.org/10.3892/ijmm.2018.3848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ballerini P, Di Iorio P, Ciccarelli R, Caciagli F, Poli A, Beraudi A, et al. P2Y1 and cysteinyl leukotriene receptors mediate purine and cysteinyl leukotriene co-release in primary cultures of rat microglia Int J Immunopathol Pharmacol. 2005;18: 255–268. https://doi.org/10.1177/039463200501800208.

  98. Grootjans J, Lenaerts K, Derikx JPM, Matthijsen RA, De Bruïne AP, Van Bijnen AA, et al. Human intestinal ischemia-reperfusion-induced inflammation characterized: Experiences from a new translational model. Am J Pathol. 2010;176:2283–91. https://doi.org/10.2353/ajpath.2010.091069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lehr HA, Guhlmann A, Nolte D, Keppler D, Messmer K. Leukotrienes as mediators in ischemia-reperfusion injury in a microcirculation model in the hamster. J Clin Invest. 1991;87:2036–41. https://doi.org/10.1172/JCI115233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wu S, Zhu X, Jin Z, Tong X, Zhu L, Hong X, et al. The protective role of montelukast against intestinal ischemia-reperfusion injury in rats. Sci Rep. 2015;5:1–9. https://doi.org/10.1038/srep15787.

    Article  CAS  Google Scholar 

  101. Sayin T, Cimen S, Cimen S, Bostancı T, Akbaba S, Yildirim Z, Ersoy PE. Colonic anastomosis can be protected from ischemia reperfusion injury with intra-peritoneal Montelukast treatment. Asian J Surg. 2020;43:130–8. https://doi.org/10.1016/j.asjsur.2019.01.022.

    Article  PubMed  Google Scholar 

  102. Konishi T, Lentsch AB. Hepatic ischemia/reperfusion: Mechanisms of tissue injury, repair, and regeneration. Gene Expr. 2017;17:277–87. https://doi.org/10.3727/105221617X15042750874156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Takamatsu Y, Shimada K, Chijiiwa K, Kuroki S, Yamaguchi K, Tanaka M. Role of leukotrienes on hepatic ischemia/reperfusion injury in rats. J Surg Res. 2004;119:14–20. https://doi.org/10.1016/j.jss.2003.07.004.

    Article  CAS  PubMed  Google Scholar 

  104. Yang SL, Huang X, Chen HF, Xu D, Chen LJ, Kong Y, Lou YJ. Increased leukotriene C4 synthesis accompanied enhanced leukotriene C4 synthase expression and activities of ischemia-reperfusion-injured liver in rats. J Surg Res. 2007;140:36–44. https://doi.org/10.1016/j.jss.2006.11.009.

    Article  CAS  PubMed  Google Scholar 

  105. Ohkubo H, Ito Y, Minamino T, Mishima T, Hirata M, Hosono K, et al. Leukotriene B4 type-1 receptor signaling promotes liver repair after hepatic ischemia/reperfusion injury through the enhancement of macrophage recruitment. FASEB J. 2013;27:3132–43. https://doi.org/10.1096/fj.13-227421.

    Article  CAS  PubMed  Google Scholar 

  106. Özkan E, Yardimci S, Dulundu E, Topaloǧlu U, Şehirli O, Ercan F, et al. Protective potential of montelukast against hepatic ischemia/reperfusion injury in rats. J Surg Res. 2010;159:588–94. https://doi.org/10.1016/j.jss.2008.08.006.

    Article  CAS  PubMed  Google Scholar 

  107. Powers SK, Murlasits Z, Wu M, Kavazis AN. Ischemia-reperfusion-induced cardiac injury: A brief review. Med Sci Sports Exerc. 2007;39:1529–36. https://doi.org/10.1249/mss.0b013e3180d099c1.

    Article  PubMed  Google Scholar 

  108. Duah E, Adapala RK, Al. Azzam N, Kondeti V, Gombedza F, Thodeti CK, Paruchuri S. Cysteinyl leukotrienes regulate endothelial cell inflammatory and proliferative signals through CysLT 2 and CysLT 1 receptors. Sci Rep. 2013;3:1–6. https://doi.org/10.1038/srep03274.

  109. Jiang W, Hall SR, Moos MPW, Cao RY, Ishii S, et al. Endothelial cysteinyl leukotriene 2 receptor expression mediates myocardial ischemia-reperfusion injury. Am J Pathol. 2008;172:592–602. https://doi.org/10.2353/ajpath.2008.070834.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Lee C, Appleyard R, Byrne J, Cohn L. Leukotrienes D4 and E4 produced in myocardium impair coronary flow and ventricular function after two hours of global ischaemia in rat heart. Cardiovasc Res. 1993;5:770–3. https://doi.org/10.1093/cvr/27.5.770.

    Article  Google Scholar 

  111. Adamek A, Jung S, Dienesch C, Laser M, Ertl G, Bauersachs J, Frantz S. Role of 5-lipoxygenase in myocardial ischemia-reperfusion injury in mice. Eur J Pharmacol. 2007;571:51–4. https://doi.org/10.1016/j.ejphar.2007.05.040.

    Article  CAS  PubMed  Google Scholar 

  112. Hadi NR, Al-Amran FG, Hussein AA. Effects of thyroid hormone analogue and a leukotrienes pathway-blocker on renal ischemia/reperfusion injury in mice. BMC Nephrol. 2011;12:1–11. https://doi.org/10.1186/1471-2369-12-70.

    Article  CAS  Google Scholar 

  113. Hagar HH, El Tawab RA. Cysteinyl leukotriene receptor antagonism alleviates renal injury induced by ischemia-reperfusion in rats. J Surg Res. 2012;178:e25–34. https://doi.org/10.1016/j.jss.2012.02.022.

    Article  CAS  PubMed  Google Scholar 

  114. Matsuyama M, Funao K, Chargui J, Touraine JL, Nakatani T, Yoshimura R. The role of cysteinyl-Lt1receptor (CysLT1R) in renal ischemia-reperfusion injury. Transplant Proc. 2009;41:73–5. https://doi.org/10.1016/j.transproceed.2008.08.153.

    Article  CAS  PubMed  Google Scholar 

  115. Şener G, Şehirli O, Velioǧlu-Öǧünç A, Çetinel S, Gedik N, Caner M. Montelukast protects against renal ischemia/reperfusion injury in rats. Pharmacol Res. 2006;54:65–71. https://doi.org/10.1016/j.phrs.2006.02.007.

    Article  CAS  PubMed  Google Scholar 

  116. Klausner JM, Paterson IS, Goldman G, Kobzik L, Rodzen C, Lawrence R, Valeri CR, et al. Postischemic renal injury is mediated by neutrophils and leukotrienes. Am J Physiol. Ren. Fluid Electrolyte Physiol. 1989; 256(5):F794–802. https://doi.org/10.1152/ajprenal.1989.256.5.f794.

  117. Noiri E, Yokomizo T, Nakao A, Izumi T, Fujita T, Kimura S, Shimizu T. An in vivo approach showing the chemotactic activity of leukotriene B4 in acute renal ischemic-reperfusion injury. Proc Natl Acad Sci. U. S. A. 2000;97:823–828. https://doi.org/10.1073/pnas.97.2.823.

  118. Pellas T, Design LW. C5a receptor antagonists. Curr Pharm Des. 1999;5:737–56.

    CAS  PubMed  Google Scholar 

  119. Arumugam TV, Shiels IA, Strachan AJ, Abbenante G, Fairlie DP, Taylor SM. A small molecule C5a receptor antagonist protects kidneys from ischemia/reperfusion injury in rats. Kidney Int. 2003;63:134–42. https://doi.org/10.1046/j.1523-1755.2003.00737.x.

    Article  CAS  PubMed  Google Scholar 

  120. Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, Dumont AS. Acute spinal cord injury, part I: Pathophysiologic mechanisms. Clin Neuropharmacol. 2001;24:254–64. https://doi.org/10.1097/00002826-200109000-00002.

    Article  CAS  PubMed  Google Scholar 

  121. Halici Z, Karaca M, Keles ON, Borekci B, Odabasoglu F, Suleyman H, et al. Protective effects of amlodipine on ischemia-reperfusion injury of rat ovary: biochemical and histopathologic evaluation. Fertil Steril. 2008;90:2408–15. https://doi.org/10.1016/j.fertnstert.2007.10.007.

    Article  CAS  PubMed  Google Scholar 

  122. Lafci G, Gedik HS, Korkmaz K, Erdem H, Cicek OF, Nacar OA, et al. Efficacy of iloprost and montelukast combination on spinal cord ischemia/reperfusion injury in a rat model. J Cardiothorac Surg. 2013;8:1–7. https://doi.org/10.1186/1749-8090-8-64.

    Article  Google Scholar 

  123. Paruchuri S, Tashimo H, Feng C, Maekawa A, Xing W, Jiang Y. Leukotriene E4-induced pulmonary inflammation is mediated by the P2Y12 receptor. J Exp Med. 2009;206:2543–55. https://doi.org/10.1084/jem.20091240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rasmussen SGF, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VRP, Sanishvili R, Fischetti RF, Schertler GFX, Weis WI, Kobilka BK. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature. 2007;450:383–7. https://doi.org/10.1038/nature06325.

    Article  CAS  PubMed  Google Scholar 

  125. Rehni A, TG S. Selenium induced anticonvulsant effect: A potential role of prostaglandin E1 receptor activation linked mechanism. J Trace Elem Med Biol. 2013;27:31–39. https://doi.org/10.1016/j.jtemb.2012.05.001

Download references

Acknowledgements

The present study received no funding from any source or any governing body. The authors are grateful to the Chitkara College of Pharmacy, Chitkara University, Rajpura, Patiala, Punjab, India, for providing the necessary facilities.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Conceived and designed the experiments: Thakur Gurjeet Singh. Analyzed the data: Heena Khan, Anjali Gupta. Wrote the manuscript: Heena Khan, Anjali Gupta Editing of the Manuscript: Amarjot Kaur Grewal Critically reviewed the article: Dr. Thakur Gurjeet Singh. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Thakur Gurjeet Singh.

Ethics declarations

Conflicts of interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H., Gupta, A., Singh, T.G. et al. Mechanistic insight on the role of leukotriene receptors in ischemic–reperfusion injury. Pharmacol. Rep 73, 1240–1254 (2021). https://doi.org/10.1007/s43440-021-00258-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-021-00258-8

Keywords

Navigation