Skip to main content
Log in

Generalized thermoelasticity model of nonlocal strain gradient Timoshenko nanobeams

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The aim of this study is to establish a thorough model for appraisal of size-dependent thermoelastic vibrations of Timoshenko nanobeams by capturing small-scale effect on both structural and thermal fields. With the intention of incorporating size effect within motion and heat conduction equations, nonlocal strain gradient theory (NSGT) as well as nonclassical heat conduction model of Guyer and Krumhansl (GK model) are exploited. For the sake of generalization and clarifying the impact of nonclassical scale parameters on results, by introducing some nondimensional quantities, the size-dependent coupled thermoelastic equations are written in dimensionless form. By applying the Laplace transform to this system of differential equations, thermoelastic responses of a simply supported Timoshenko nanobeam under dynamic load are extracted in closed forms. In order to highlight the influence of scale parameters on thermoelastic behavior of Timoshenko nanobeams, a variety of numerical results is provided. The discrepancy between classical and nonclassical outcomes betokens the salient role of structural and thermal scale parameters in accurate analysis of nanobeams. In addition, findings reveal that utilization of NSGT gives the means to capture both stiffness softening and stiffness enhancement characteristic of small-sized structures, so that according to the relative values of two scale parameters of NSGT, the nonclassical model of Timoshenko nanobeam can exhibit either softening or hardening behavior in comparison with the classical one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fleck NA, Muller GM, Ashby MF, Hutchinson JW. Strain gradient plasticity: theory and experiment. Acta Metall Mater. 1994;42(2):475–87.

    Article  Google Scholar 

  2. Ma Q, Clarke DR. Size dependent hardness of silver single crystals. J Mater Res. 1995;10(4):853–63.

    Article  ADS  Google Scholar 

  3. Stölken JS, Evans AG. A microbend test method for measuring the plasticity length scale. Acta Mater. 1998;46(14):5109–15.

    Article  ADS  Google Scholar 

  4. Chong AC, Lam DC. Strain gradient plasticity effect in indentation hardness of polymers. J Mater Res. 1999;14(10):4103–10.

    Article  ADS  Google Scholar 

  5. Toupin RA. Theories of elasticity with couple-stress. Arch Ration Mech Anal. 1964;17(2):85–112.

    Article  MathSciNet  MATH  Google Scholar 

  6. Eringen AC. Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci. 1972;10(5):425–35.

    Article  MATH  Google Scholar 

  7. Yang FACM, Chong ACM, Lam DCC, Tong P. Couple stress based strain gradient theory for elasticity. Int J Solids Struct. 2002;39(10):2731–43.

    Article  MATH  Google Scholar 

  8. Mindlin RD. Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct. 1965;1(4):417–38.

    Article  Google Scholar 

  9. Lim CW, Zhang G, Reddy JN. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids. 2015;78:298–313.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Farokhi H, Ghayesh MH. Nonlinear motion characteristics of microarches under axial loads based on modified couple stress theory. Arch Civ Mech Eng. 2015;15(2):401–11.

    Article  Google Scholar 

  11. Zheng F, Lu Y, Ebrahimi-Mamaghani A. Dynamical stability of embedded spinning axially graded micro and nanotubes conveying fluid. Waves Random Complex Media 2020;1–39. https://doi.org/10.1080/17455030.2020.1821935.

  12. Borjalilou V, Asghari M, Bagheri E. Small-scale thermoelastic damping in micro-beams utilizing the modified couple stress theory and the dual-phase-lag heat conduction model. J Therm Stresses. 2019;42(7):801–14.

    Article  Google Scholar 

  13. Arshid E, Arshid H, Amir S, Mousavi SB. Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory. Arch Civ Mech Eng. 2021;21(1):1–23.

    Article  Google Scholar 

  14. Yang Z, Lu H, Sahmani S, Safaei B. Isogeometric couple stress continuum-based linear and nonlinear flexural responses of functionally graded composite microplates with variable thickness. Arch Civ Mech Eng. 2021;21(3):1–19.

    Article  Google Scholar 

  15. Borjalilou V, Asghari M. Size-dependent analysis of thermoelastic damping in electrically actuated microbeams. Mech Adv Mater Struct. 2021;28(9):952–62.

    Article  Google Scholar 

  16. Soleimani I, Beni YT. Vibration analysis of nanotubes based on two-node size dependent axisymmetric shell element. Arch Civ Mech Eng. 2018;18:1345–58.

    Article  Google Scholar 

  17. Li F, Esmaeili S. On thermoelastic damping in axisymmetric vibrations of circular nanoplates: incorporation of size effect into structural and thermal areas. Eur Phys J Plus. 2021;136(2):1–17.

    Article  Google Scholar 

  18. Glabisz W, Jarczewska K, Holubowski R. Stability of Timoshenko beams with frequency and initial stress dependent nonlocal parameters. Arch Civ Mech Eng. 2019;19:1116–26.

    Article  Google Scholar 

  19. Alipour MM, Shariyat M. Nonlocal zigzag analytical solution for Laplacian hygrothermal stress analysis of annular sandwich macro/nanoplates with poor adhesions and 2D-FGM porous cores. Arch Civ Mech Eng. 2019;19(4):1211–34.

    Article  Google Scholar 

  20. Wang G, Zhang Y, Arefi M. Three-dimensional exact elastic analysis of nanoplates. Arch Civ Mech Eng. 2021;21(3):1–14.

    Article  Google Scholar 

  21. Borjalilou V, Taati E, Ahmadian MT. Bending, buckling and free vibration of nonlocal FG-carbon nanotube-reinforced composite nanobeams: exact solutions. SN Appl Sci. 2019;1(11):1–15.

    Article  Google Scholar 

  22. Arefi M, Civalek O. Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory. Arch Civ Mech Eng. 2020;20(1):1–17.

    Article  Google Scholar 

  23. Yang Z, Cheng D, Cong G, Jin D, Borjalilou V. Dual-phase-lag thermoelastic damping in nonlocal rectangular nanoplates. Waves Random Complex Media 2021;1–20. https://doi.org/10.1080/17455030.2021.1903117.

  24. Sahmani S, Aghdam MM. Imperfection sensitivity of the size-dependent postbuckling response of pressurized FGM nanoshells in thermal environments. Arch Civ Mech Eng. 2017;17(3):623–38.

    Article  Google Scholar 

  25. Borjalilou V, Asghari M. Size-dependent strain gradient-based thermoelastic damping in micro-beams utilizing a generalized thermoelasticity theory. Int J Appl Mech. 2019;11(01):1950007.

    Article  Google Scholar 

  26. Borjalilou V, Asghari M. Thermoelastic damping in strain gradient microplates according to a generalized theory of thermoelasticity. J Therm Stresses. 2020;43(4):401–20.

    Article  Google Scholar 

  27. Sobhy M. Piezoelectric bending of GPL-reinforced annular and circular sandwich nanoplates with FG porous core integrated with sensor and actuator using DQM. Arch Civ Mech Eng. 2021;21(2):1–18.

    Article  Google Scholar 

  28. Dindarloo MH, Zenkour AM. Nonlocal strain gradient shell theory for bending analysis of FG spherical nanoshells in thermal environment. Eur Phys J Plus. 2020;135(10):1–18.

    Article  Google Scholar 

  29. Bai Y, Suhatril M, Cao Y, Forooghi A, Assilzadeh H. Hygro–thermo–magnetically induced vibration of nanobeams with simultaneous axial and spinning motions based on nonlocal strain gradient theory. Eng Comput. 2021;1–18. https://doi.org/10.1007/s00366-020-01218-1.

  30. Zhu X, Lu Z, Wang Z, Xue L, Ebrahimi-Mamaghani A. Vibration of spinning functionally graded nanotubes conveying fluid. Eng Comput. 2020;1–22. https://doi.org/10.1007/s00366-020-01123-7.

  31. Ignaczak J, Ostoja-Starzewski M. Thermoelasticity with finite wave speeds. Oxford University Press; 2010.

    MATH  Google Scholar 

  32. Lord HW, Shulman Y. A generalized dynamical theory of thermoelasticity. J Mech Phys Solids. 1967;15(5):299–309.

    Article  MATH  ADS  Google Scholar 

  33. Tzou DY. Macro-to microscale heat transfer: the lagging behavior. Wiley; 2014.

    Book  Google Scholar 

  34. Guyer RA, Krumhansl JA. Solution of the linearized phonon Boltzmann equation. Phys Rev. 1966;148(2):766.

    Article  ADS  Google Scholar 

  35. Zener C. Internal friction in solids. I. Theory of internal friction in reeds. Phys Rev. 1937;52(3):230.

    Article  MATH  ADS  Google Scholar 

  36. Lifshitz R, Roukes ML. Thermoelastic damping in micro-and nanomechanical systems. Phys Rev B. 2000;61(8):5600.

    Article  ADS  Google Scholar 

  37. Guo FL, Rogerson GA. Thermoelastic coupling effect on a micro-machined beam resonator. Mech Res Commun. 2003;30(6):513–8.

    Article  MATH  Google Scholar 

  38. Sun Y, Fang D, Soh AK. Thermoelastic damping in micro-beam resonators. Int J Solids Struct. 2006;43(10):3213–29.

    Article  MATH  Google Scholar 

  39. Sun Y, Fang D, Saka M, Soh AK. Laser-induced vibrations of micro-beams under different boundary conditions. Int J Solids Struct. 2008;45(7–8):1993–2013.

    Article  MATH  Google Scholar 

  40. Taati E, Najafabadi MM, Reddy JN. Size-dependent generalized thermoelasticity model for Timoshenko micro-beams based on strain gradient and non-Fourier heat conduction theories. Compos Struct. 2014;116:595–611.

    Article  Google Scholar 

  41. Zenkour AM. Thermoelastic response of a microbeam embedded in visco-Pasternak’s medium based on GN-III model. J Therm Stresses. 2017;40(2):198–210.

    Article  Google Scholar 

  42. Abouelregal AE, Zenkour AM. Nonlocal thermoelastic model for temperature-dependent thermal conductivity nanobeams due to dynamic varying loads. Microsyst Technol. 2018;24(2):1189–99.

    Article  Google Scholar 

  43. Hosseini SM. Analytical solution for nonlocal coupled thermoelasticity analysis in a heat-affected MEMS/NEMS beam resonator based on Green–Naghdi theory. Appl Math Model. 2018;57:21–36.

    Article  MathSciNet  MATH  Google Scholar 

  44. Kumar H, Mukhopadhyay S. Thermoelastic damping analysis in microbeam resonators based on Moore–Gibson–Thompson generalized thermoelasticity theory. Acta Mech. 2020;231:3003–15.

    Article  MathSciNet  MATH  Google Scholar 

  45. Hamidi BA, Hosseini SA, Hassannejad R, Khosravi F. Theoretical analysis of thermoelastic damping of silver nanobeam resonators based on Green–Naghdi via nonlocal elasticity with surface energy effects. Eur Phys J Plus. 2020;135(1):1–20.

    Article  Google Scholar 

  46. Kumar R. Effect of phase-lag on thermoelastic vibration of Timoshenko beam. J Therm Stresses. 2020;43(11):1337–54.

    Article  Google Scholar 

  47. Kumar H, Mukhopadhyay S. Response of deflection and thermal moment of Timoshenko microbeams considering modified couple stress theory and dual-phase-lag heat conduction model. Compos Struct. 2021;263:113620.

    Article  Google Scholar 

  48. Shafiei N, She GL. On vibration of functionally graded nano-tubes in the thermal environment. Int J Eng Sci. 2018;133:84–98.

    Article  MathSciNet  MATH  Google Scholar 

  49. Li L, Hu Y. Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material. Int J Eng Sci. 2016;107:77–97.

    Article  MathSciNet  MATH  Google Scholar 

  50. Guo FL, Jiao WJ, Wang GQ, Chen ZQ. Distinctive features of thermoelastic dissipation in microbeam resonators at nanoscale. J Therm Stresses. 2016;39(3):360–9.

    Article  Google Scholar 

  51. Arash B, Ansari R. Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain. Phys E. 2010;42(8):2058–64.

    Article  Google Scholar 

  52. Wang Q, Wang CM. The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology. 2007;18(7):075702.

    Article  ADS  Google Scholar 

  53. Zhang YQ, Liu GR, Han X. Effect of small length scale on elastic buckling of multi-walled carbon nanotubes under radial pressure. Phys Lett A. 2006;349(5):370–6.

    Article  ADS  Google Scholar 

  54. Sears A, Batra RC. Macroscopic properties of carbon nanotubes from molecular-mechanics simulations. Phys Rev B. 2004;69(23):235406.

    Article  ADS  Google Scholar 

  55. Li X, Li L, Hu Y, Ding Z, Deng W. Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Compos Struct. 2017;165:250–65.

    Article  Google Scholar 

  56. Zeighampour H, Beni YT, Dehkordi MB. Wave propagation in viscoelastic thin cylindrical nanoshell resting on a visco-Pasternak foundation based on nonlocal strain gradient theory. Thin-Walled Struct. 2018;122:378–86.

    Article  Google Scholar 

  57. Hu YG, Liew KM, Wang Q, He XQ, Yakobson BI. Nonlocal shell model for elastic wave propagation in single-and double-walled carbon nanotubes. J Mech Phys Solids. 2008;56(12):3475–85.

    Article  MATH  ADS  Google Scholar 

  58. Zeighampour H, Beni YT. Size dependent analysis of wave propagation in functionally graded composite cylindrical microshell reinforced by carbon nanotube. Compos Struct. 2017;179:124–31.

    Article  Google Scholar 

  59. Maranganti R, Sharma P. Length scales at which classical elasticity breaks down for various materials. Phys Rev Lett. 2007;98(19):195504.

    Article  ADS  Google Scholar 

  60. Zhang H, Kim T, Choi G, Cho HH. Thermoelastic damping in micro-and nanomechanical beam resonators considering size effects. Int J Heat Mass Transf. 2016;103:783–90.

    Article  Google Scholar 

  61. Bae MH, Li Z, Aksamija Z, Martin PN, Xiong F, Ong ZY, Pop E. Ballistic to diffusive crossover of heat flow in graphene ribbons. Nat Commun. 2013;4(1):1–7.

    Article  Google Scholar 

  62. Xu X, Pereira LF, Wang Y, Wu J, Zhang K, Zhao X, Özyilmaz B. Length-dependent thermal conductivity in suspended single-layer graphene. Nat Commun. 2014;5(1):1–6.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the supports of design and mechanical properties of a new buffer structure for landing detector.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuezheng Yue or Vahid Borjalilou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, X., Yue, X. & Borjalilou, V. Generalized thermoelasticity model of nonlocal strain gradient Timoshenko nanobeams. Archiv.Civ.Mech.Eng 21, 124 (2021). https://doi.org/10.1007/s43452-021-00280-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-021-00280-w

Keywords

Navigation