Skip to main content

Advertisement

Log in

Alkali-Activated Materials and Geopolymer: a Review of Common Precursors and Activators Addressing Circular Economy

  • Review
  • Published:
Circular Economy and Sustainability Aims and scope Submit manuscript

Abstract

Introduction

The vast increase in CO2 and waste generation in recent decades has been a major obstacle to sustainable development and sustainability. In construction industry, the production of ordinary Portland cement is a major greenhouse gas emitter with almost 8% of total CO2 production in the world. To address this, Alkali-activated materials and geopolymer have more recently been introduced as a green and sustainable alternative of ordinary Portland cement with significantly lowered environmental footprints. Their use to replace Portland cement products generally leads to vast energy and virgin materials savings resulting in a sustainable concrete production. In doing so, it reuses the solid waste generated in industrial and manufacturing sectors, which is aligned with circular economy. In turn, it reduces the need for ordinary Portland cement consumption and its subsequent CO2 generation.

Objective

To provide further insight and address the challenges facing the substitution of ordinary Portland cement, this article reviews different types, mechanisms, and result of mechanical and durability properties of alkali-activated materials and geopolymer reported in literature. Finally, it discusses future projections of waste materials that have cementitious properties and can replace ordinary Portland cement and be used in alkali-activated materials and geopolymer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mohamad Taghvaee V et al (2021) Sustainable development goals: transportation, health and public policy. Rev Econ Polit Sci, vol ahead-of-p, no ahead-of-print. https://doi.org/10.1108/REPS-12-2019-0168

  2. Mohamad Taghvaee V, Agheli L, Assari Arani A, Nodehi M, Khodaparast Shirazi J (2019) Environmental pollution and economic growth elasticities of maritime and air transportations in Iran. Mar Econ Manag 2(2):114–123. https://doi.org/10.1108/maem-09-2019-0008

    Article  Google Scholar 

  3. Zhao X, Hwang BG, Lim J (2020) Job satisfaction of project managers in green construction projects: constituents, barriers, and improvement strategies. J Clean Prod 246:118968. https://doi.org/10.1016/j.jclepro.2019.118968

    Article  Google Scholar 

  4. Lehne J, Preston F (2018) “Chatham House Report Making Concrete Change Innovation in Low-carbon Cement and Concrete The Royal Institute of International Affairs, Chatham House Report Series, www.chathamhouse.org/sites/default/files/publications/research/2018-06-13-makingconcrete- c,”, [Online]. Available: www.chathamhouse.org. Accessed 7 Jan 2020

  5. Arrigoni A, Panesar DK, Duhamel M, Opher T, Saxe S, Posen ID, MacLean HL (2020) Life cycle greenhouse gas emissions of concrete containing supplementary cementitious materials: cut-off vs. substitution. J Clean Prod 263:121465. https://doi.org/10.1016/j.jclepro.2020.121465

    Article  CAS  Google Scholar 

  6. Ohno M, Li VC (2014) A feasibility study of strain hardening fiber reinforced fly ash-based geopolymer composites. Constr Build Mater 57:163–168. https://doi.org/10.1016/j.conbuildmat.2014.02.005

    Article  Google Scholar 

  7. Natali A, Manzi S, Bignozzi MC (2011) Novel fiber-reinforced composite materials based on sustainable geopolymer matrix. Procedia Eng 21:1124–1131. https://doi.org/10.1016/j.proeng.2011.11.2120

    Article  CAS  Google Scholar 

  8. Kuenzel C, Grover LM, Vandeperre L, Boccaccini AR, Cheeseman CR (2013) Production of nepheline/quartz ceramics from geopolymer mortars. J Eur Ceram Soc 33(2):251–258. https://doi.org/10.1016/j.jeurceramsoc.2012.08.022

    Article  CAS  Google Scholar 

  9. Liew YM, Heah CY, Li LY, Jaya NA, Abdullah MMAB, Tan SJ, Hussin K (2017) Formation of one-part-mixing geopolymers and geopolymer ceramics from geopolymer powder. Constr Build Mater 156:9–18. https://doi.org/10.1016/j.conbuildmat.2017.08.110

    Article  CAS  Google Scholar 

  10. Bernal SA, Bejarano J, Garzón C, Mejía De Gutiérrez R, Delvasto S, Rodríguez ED (2012) Performance of refractory aluminosilicate particle/fiber-reinforced geopolymer composites. Compos Part B Eng 43(4):1919–1928. https://doi.org/10.1016/j.compositesb.2012.02.027

    Article  CAS  Google Scholar 

  11. Choo H, Lim S, Lee W, Lee C (2016) Compressive strength of one-part alkali activated fly ash using red mud as alkali supplier. Constr Build Mater 125:21–28. https://doi.org/10.1016/j.conbuildmat.2016.08.015

    Article  CAS  Google Scholar 

  12. Duxson P, Provis JL (2008) Designing precursors for geopolymer cements. J Am Ceram Soc 91(12):3864–3869. https://doi.org/10.1111/j.1551-2916.2008.02787.x

    Article  CAS  Google Scholar 

  13. Ouellet-Plamondon C, Habert G (2015) Life cycle assessment (LCA) of alkali-activated cements and concretes. In Handbook of Alkali-Activated Cements, Mortars and Concretes, Woodhead Publishing Limited, pp. 663–686

  14. Purdon AO (1940) The action of alkalis on blast-furnace slag. J Soc Chem Ind 9(59):191–202

    Google Scholar 

  15. Davidovits J (2008) Geopolymer Chemistry and Applications, 5th edition. Geopolymer Institute

  16. Davidovits PJ (1930) Pyramids 126(3180)

  17. L. Vickers, A. van Riessen, and W. Rickard, Fire-resistant geopolymers: role of fibres and fillers to enhance thermal properties. 2015.

  18. Provis JL, Van Deventer JSJ (2009) Geopolymers: structures, processing, properties and industrial applications. Woodhead pubishing. https://doi.org/10.1533/9781845696382

  19. Gao X, Yu QL (2019) Effects of an eco-silica source based activator on functional alkali activated lightweight composites. Constr Build Mater 215:686–695. https://doi.org/10.1016/j.conbuildmat.2019.04.251

    Article  CAS  Google Scholar 

  20. Abdollahnejad Z, Mastali M, Falah M, Luukkonen T, Mazari M, Illikainen M (2019) Construction and demolition waste as recycled aggregates in alkali-activated concretes. Materials (Basel) 12(23). https://doi.org/10.3390/ma12234016

  21. Yang B, Jang JG (2020) Environmentally benign production of one-part alkali-activated slag with calcined oyster shell as an activator. Constr Build Mater 257:119552. https://doi.org/10.1016/j.conbuildmat.2020.119552

    Article  CAS  Google Scholar 

  22. Nunes VA, Borges PHR, Zanotti C (2019) Mechanical compatibility and adhesion between alkali-activated repair mortars and Portland cement concrete substrate. Constr Build Mater 215:569–581. https://doi.org/10.1016/j.conbuildmat.2019.04.189

    Article  CAS  Google Scholar 

  23. Aydin S, Baradan B (2012) Mechanical and microstructural properties of heat cured alkali-activated slag mortars. Mater Des 35:374–383. https://doi.org/10.1016/j.matdes.2011.10.005

    Article  CAS  Google Scholar 

  24. Hassan A, Arif M, Shariq M (2019) Use of geopolymer concrete for a cleaner and sustainable environment – a review of mechanical properties and microstructure. J Clean Prod 223:704–728. https://doi.org/10.1016/j.jclepro.2019.03.051

    Article  Google Scholar 

  25. Ding Y, Dai JG, Shi CJ (2016) Mechanical properties of alkali-activated concrete: a state-of-the-art review. Constr Build Mater 127:68–79. https://doi.org/10.1016/j.conbuildmat.2016.09.121

    Article  CAS  Google Scholar 

  26. Pacheco-Torgal F, Castro-Gomes J, Jalali S (2008) Alkali-activated binders: a review. Part 1. Historical background, terminology, reaction mechanisms and hydration products. Constr Build Mater 22(7):1305–1314. https://doi.org/10.1016/j.conbuildmat.2007.10.015

    Article  Google Scholar 

  27. Pacheco-Torgal F, Barroso de Aguiar J, Ding Y, Tahri W, Baklouti S (2015) Performance of alkali-activated mortars for the repair and strengthening of OPC concrete. Woodhead Publishing Limited. https://doi.org/10.1533/9781845696382

  28. Pacheco-Torgal F, Abdollahnejad Z, Camões AF, Jamshidi M, Ding Y (2012) Durability of alkali-activated binders: a clear advantage over Portland cement or an unproven issue? Constr Build Mater 30:400–405. https://doi.org/10.1016/j.conbuildmat.2011.12.017

    Article  Google Scholar 

  29. Adesanya E, Ohenoja K, Luukkonen T, Kinnunen P, Illikainen M (2018) One-part geopolymer cement from slag and pretreated paper sludge. J Clean Prod 185:168–175. https://doi.org/10.1016/j.jclepro.2018.03.007

    Article  CAS  Google Scholar 

  30. Abdollahnejad Z, Luukkonen T, Mastali M, Giosue C, Favoni O, Ruello ML, Kinnunen P, Illikainen M (2020) Microstructural analysis and strength development of one-part alkali-activated slag/ceramic binders under different curing regimes. Waste Biomass Valorization 11(6):3081–3096. https://doi.org/10.1007/s12649-019-00626-9

    Article  CAS  Google Scholar 

  31. Provis JL, Bernal SA (2014) Binder chemistry – blended systems and intermediate Ca content. RILEM State-of-the-Art Rep 13:125–144. https://doi.org/10.1007/978-94-007-7672-2_5

    Article  CAS  Google Scholar 

  32. Luukkonen T, Abdollahnejad Z, Yliniemi J, Kinnunen P, Illikainen M (2018) Comparison of alkali and silica sources in one-part alkali-activated blast furnace slag mortar. J Clean Prod 187:171–179. https://doi.org/10.1016/j.jclepro.2018.03.202

    Article  CAS  Google Scholar 

  33. Matalkah F (2017) Mechanochemical synthesis of one-part alkali aluminosilicate hydraulic cement. Mater Struct. https://doi.org/10.1617/s11527-016-0968-4

  34. Matalkah F, Xu L, Wu W, Soroushian P (2017) Mechanochemical synthesis of one-part alkali aluminosilicate hydraulic cement. Mater Struct Constr 50(1). https://doi.org/10.1617/s11527-016-0968-4

  35. Khale D, Chaudhary R (2007) Mechanism of geopolymerization and factors influencing its development: A review. J Mater Sci 42(3):729–746. https://doi.org/10.1007/s10853-006-0401-4

    Article  CAS  Google Scholar 

  36. Zhu X, Tang D, Yang K, Zhang Z, Li Q, Pan Q, Yang C (2018) Effect of Ca(OH)2 on shrinkage characteristics and microstructures of alkali-activated slag concrete. Constr Build Mater 175:467–482. https://doi.org/10.1016/j.conbuildmat.2018.04.180

    Article  CAS  Google Scholar 

  37. Mastali M, Kinnunen P, Dalvand A, Mohammadi Firouz R, Illikainen M (2018) Drying shrinkage in alkali-activated binders – a critical review. Constr Build Mater 190. Elsevier Ltd:533–550. https://doi.org/10.1016/j.conbuildmat.2018.09.125

    Article  CAS  Google Scholar 

  38. Shi Z, Leemann A, Rentsch D, Lothenbach B (2020) Synthesis of alkali-silica reaction product structurally identical to that formed in field concrete. Mater Des 190:108562. https://doi.org/10.1016/j.matdes.2020.108562

    Article  CAS  Google Scholar 

  39. Oey T, la Plante EC, Falzone G, Hsiao YH, Wada A, Monfardini L, Bauchy M, Bullard JW, Sant G (2020) Calcium nitrate: a chemical admixture to inhibit aggregate dissolution and mitigate expansion caused by alkali-silica reaction. Cem Concr Compos 110(August 2019). https://doi.org/10.1016/j.cemconcomp.2020.103592

  40. Wang W, Noguchi T (2020) Alkali-silica reaction (ASR) in the alkali-activated cement (AAC) system: a state-of-the-art review. Constr Build Mater 252:119105. https://doi.org/10.1016/j.conbuildmat.2020.119105

    Article  CAS  Google Scholar 

  41. Wang A et al (2020) The durability of alkali-activated materials in comparison with ordinary portland cements and concretes: a review. Engineering (xxxx). https://doi.org/10.1016/j.eng.2019.08.019

  42. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42(9):2917–2933. https://doi.org/10.1007/s10853-006-0637-z

    Article  CAS  Google Scholar 

  43. Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A (2015) An overview of the chemistry of alkali-activated cement-based binders. Woodhead Publishing Limited. https://doi.org/10.1533/9781782422884.1.19

  44. Guo X, Shi H, Chen L, Dick WA (2010) Alkali-activated complex binders from class C fly ash and Ca-containing admixtures. J Hazard Mater 173(1–3):480–486. https://doi.org/10.1016/j.jhazmat.2009.08.110

    Article  CAS  Google Scholar 

  45. Shi C, Qu B, Provis JL (2019) Recent progress in low-carbon binders. Cem Concr Res 122(May):227–250. https://doi.org/10.1016/j.cemconres.2019.05.009

    Article  CAS  Google Scholar 

  46. Guo S, Dai Q, Si R (2019) Effect of calcium and lithium on alkali-silica reaction kinetics and phase development. Cem Concr Res 115(October 2018):220–229. https://doi.org/10.1016/j.cemconres.2018.10.007

    Article  CAS  Google Scholar 

  47. Topark-Ngarm P, Chindaprasirt P, Sata V (2015) Setting time, strength, and bond of high-calcium fly ash geopolymer concrete. J Mater Civ Eng 27(7):1–7. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001157

    Article  CAS  Google Scholar 

  48. Temuujin J, Williams RP, van Riessen A (2009) Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature. J Mater Process Technol 209(12–13):5276–5280. https://doi.org/10.1016/j.jmatprotec.2009.03.016

    Article  CAS  Google Scholar 

  49. Guo X, Shi H, Dick WA (2010) Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cem Concr Compos 32(2):142–147. https://doi.org/10.1016/j.cemconcomp.2009.11.003

    Article  CAS  Google Scholar 

  50. Puligilla S, Mondal P (2015) Co-existence of aluminosilicate and calcium silicate gel characterized through selective dissolution and FTIR spectral subtraction. Cem Concr Res 70:39–49. https://doi.org/10.1016/j.cemconres.2015.01.006

    Article  CAS  Google Scholar 

  51. Puligilla S, Mondal P (2013) Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cem Concr Res 43(1):70–80. https://doi.org/10.1016/j.cemconres.2012.10.004

    Article  CAS  Google Scholar 

  52. Collins F, Sanjayan JG (2000) Cracking tendency of alkali-activated slag concrete subjected to restrained shrinkage. Cem Concr Res 30(5):791–798. https://doi.org/10.1016/S0008-8846(00)00243-X

    Article  CAS  Google Scholar 

  53. Sufian Badar M, Kupwade-Patil K, Bernal SA, Provis JL, Allouche EN (2014) Corrosion of steel bars induced by accelerated carbonation in low and high calcium fly ash geopolymer concretes. Constr Build Mater 61:79–89. https://doi.org/10.1016/j.conbuildmat.2014.03.015

    Article  Google Scholar 

  54. Pan Z, Tao Z, Cao YF, Wuhrer R, Murphy T (2018) Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature. Cem Concr Compos 86:9–18. https://doi.org/10.1016/j.cemconcomp.2017.09.011

    Article  CAS  Google Scholar 

  55. Kirca Ö, Özgür Yaman I, Tokyay M (2013) Compressive strength development of calcium aluminate cement-GGBFS blends. Cem Concr Compos 35(1):163–170. https://doi.org/10.1016/j.cemconcomp.2012.08.016

    Article  CAS  Google Scholar 

  56. Puligilla S, Chen X, Mondal P (2018) Understanding the role of silicate concentration on the early-age reaction kinetics of a calcium containing geopolymeric binder. Constr Build Mater 191:206–215. https://doi.org/10.1016/j.conbuildmat.2018.09.184

    Article  CAS  Google Scholar 

  57. Xie F, Liu Z, Zhang D, Wang J, Huang T, Wang D (2020) Reaction kinetics and kinetics models of alkali activated phosphorus slag. Constr Build Mater 237:117728. https://doi.org/10.1016/j.conbuildmat.2019.117728

    Article  CAS  Google Scholar 

  58. Sukmak P, De Silva P, Horpibulsuk S, Chindaprasirt P (2015) Sulfate resistance of clay-portland cement and clay high-calcium fly ash geopolymer. J Mater Civ Eng 27(5):1–11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001112

    Article  CAS  Google Scholar 

  59. Zhang J, Shi C, Zhang Z, Ou Z (2017) Durability of alkali-activated materials in aggressive environments: a review on recent studies. Constr Build Mater 152:598–613. https://doi.org/10.1016/j.conbuildmat.2017.07.027

    Article  CAS  Google Scholar 

  60. Rakhimova NR, Rakhimov RZ (2019) Toward clean cement technologies: a review on alkali-activated fly-ash cements incorporated with supplementary materials. J Non-Cryst Solids 509(January):31–41. https://doi.org/10.1016/j.jnoncrysol.2019.01.025

    Article  CAS  Google Scholar 

  61. Winnefeld F, Leemann A, Lucuk M, Svoboda P, Neuroth M (2010) Assessment of phase formation in alkali activated low and high calcium fly ashes in building materials. Constr Build Mater 24(6):1086–1093. https://doi.org/10.1016/j.conbuildmat.2009.11.007

    Article  Google Scholar 

  62. Bakharev T (2005) Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cem Concr Res 35(6):1224–1232. https://doi.org/10.1016/j.cemconres.2004.06.031

    Article  CAS  Google Scholar 

  63. Chindaprasirt P, Chareerat T, Sirivivatnanon V (2007) Workability and strength of coarse high calcium fly ash geopolymer. Cem Concr Compos 29(3):224–229. https://doi.org/10.1016/j.cemconcomp.2006.11.002

    Article  CAS  Google Scholar 

  64. Davidovits PJ, Morris M (1990) The Pyramids: An Enigma Solved, no. 1. Dorset

  65. De Barros S, De Souza JR, Gomes KC, Sampaio EM, Barbosa NP, Torres SM (2012) Adhesion of geopolymer bonded joints considering surface treatments. J Adhes 88(4–6):364–375. https://doi.org/10.1080/00218464.2012.660075

    Article  CAS  Google Scholar 

  66. Bell JL, Driemeyer PE, Kriven WM (2009) Formation of ceramics from metakaolin-based geopolymers. Part II: K-based geopolymer. J Am Ceram Soc 92(3):607–615. https://doi.org/10.1111/j.1551-2916.2008.02922.x

    Article  CAS  Google Scholar 

  67. Shi C, Roy D, Krivenko P (2003) Alkali-Activated Cements and Concretes. CRC Press. https://doi.org/10.1201/9781482266900

  68. Ismail I, Bernal SA, Provis JL, San R, Hamdan S, Van Deventer JSJ (2014) Cement & Concrete Composites Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem Concr Compos 45:125–135. https://doi.org/10.1016/j.cemconcomp.2013.09.006

    Article  CAS  Google Scholar 

  69. Angulo-Ramírez DE, Mejía de Gutiérrez R, Puertas F (2017) Alkali-activated Portland blast-furnace slag cement: mechanical properties and hydration. 140:119–128. https://doi.org/10.1016/j.conbuildmat.2017.02.092.

  70. Shearer CR, Provis JL, Bernal SA, Kurtis KE (2016) Alkali-activation potential of biomass-coal co-fired fly ash. Cem Concr Compos 73:62–74. https://doi.org/10.1016/j.cemconcomp.2016.06.014

    Article  CAS  Google Scholar 

  71. Shekhovtsova J, Zhernovsky I, Kovtun M, Kozhukhova N, Zhernovskaya I, Kearsley E (2018) Estimation of fly ash reactivity for use in alkali-activated cements - a step towards sustainable building material and waste utilization. J Clean Prod 178:22–33. https://doi.org/10.1016/j.jclepro.2017.12.270

    Article  CAS  Google Scholar 

  72. Abdel-Gawwad HA, García SRV, Hassan HS (2018) Thermal activation of air cooled slag to create one-part alkali activated cement. Ceram Int 44(12):14935–14939. https://doi.org/10.1016/j.ceramint.2018.05.089

    Article  CAS  Google Scholar 

  73. Alanazi H, Yang M, Zhang D, Gao Z (2016) Bond strength of PCC pavement repairs using metakaolin-based geopolymer mortar. Cem Concr Compos 65:75–82. https://doi.org/10.1016/j.cemconcomp.2015.10.009

    Article  CAS  Google Scholar 

  74. Sturm P, Gluth GJG, Brouwers HJH, Kühne HC (2016) Synthesizing one-part geopolymers from rice husk ash. Constr Build Mater 124:961–966. https://doi.org/10.1016/j.conbuildmat.2016.08.017

    Article  CAS  Google Scholar 

  75. Ke X, Bernal SA, Ye N, Provis JL, Yang J (2015) One-part geopolymers based on thermally treated red Mud/NaOH blends. J Am Ceram Soc 98(1):5–11. https://doi.org/10.1111/jace.13231

    Article  CAS  Google Scholar 

  76. Ye N, Yang J, Liang S, Hu Y, Hu J, Xiao B, Huang Q (2016) Synthesis and strength optimization of one-part geopolymer based on red mud. Constr Build Mater 111:317–325. https://doi.org/10.1016/j.conbuildmat.2016.02.099

    Article  CAS  Google Scholar 

  77. Peng MX, Wang ZH, Xiao QG, Song F, Xie W, Yu LC, Huang HW, Yi SJ (2017) Applied Clay Science Effects of alkali on one-part alkali-activated cement synthesized by calcining bentonite with dolomite and Na 2 CO 3. Appl Clay Sci 139:64–71. https://doi.org/10.1016/j.clay.2017.01.020

    Article  CAS  Google Scholar 

  78. Hajimohammadi A, Deventer JSJ (2017) Characterisation of one-part geopolymer binders made from fly. Waste Biomass Valorization 8(1):225–233. https://doi.org/10.1007/s12649-016-9582-5

    Article  CAS  Google Scholar 

  79. Tchakoute Kouamo H, Elimbi A, Mbey JA, Ngally Sabouang CJ, Njopwouo D (2012) The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products: a comparative study. Constr Build Mater 35:960–969. https://doi.org/10.1016/j.conbuildmat.2012.04.023

    Article  Google Scholar 

  80. Sasanipour H, Aslani F, Taherinezhad J (2019) Effect of silica fume on durability of self-compacting concrete made with waste recycled concrete aggregates. Constr Build Mater 227:116598. https://doi.org/10.1016/j.conbuildmat.2019.07.324

    Article  CAS  Google Scholar 

  81. Adil G, Kevern JT, Mann D (2020) Influence of silica fume on mechanical and durability of pervious concrete. Constr Build Mater 247:118453. https://doi.org/10.1016/j.conbuildmat.2020.118453

    Article  CAS  Google Scholar 

  82. Esfandiari J, Loghmani P (2019) Effect of perlite powder and silica fume on the compressive strength and microstructural characterization of self-compacting concrete with lime-cement binder. Meas J Int Meas Confed 147:106846. https://doi.org/10.1016/j.measurement.2019.07.074

    Article  Google Scholar 

  83. Khan M, Rehman A, Ali M (2020) Efficiency of silica-fume content in plain and natural fiber reinforced concrete for concrete road. Constr Build Mater 244:118382. https://doi.org/10.1016/j.conbuildmat.2020.118382

    Article  CAS  Google Scholar 

  84. Megat Johari MA, Brooks JJ, Kabir S, Rivard P (2011) Influence of supplementary cementitious materials on engineering properties of high strength concrete. Constr Build Mater 25(5):2639–2648. https://doi.org/10.1016/j.conbuildmat.2010.12.013

    Article  Google Scholar 

  85. Tripathi D, Kumar R, Mehta PK, Singh A (2020) Silica fume mixed concrete in acidic environment. Mater Today Proc (xxxx):6–10. https://doi.org/10.1016/j.matpr.2020.01.311

  86. Oner A, Akyuz S (2007) An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cem Concr Compos 29(6):505–514. https://doi.org/10.1016/j.cemconcomp.2007.01.001

    Article  CAS  Google Scholar 

  87. Gao JM, Qian CX, Liu HF, Wang B, Li L (2005) ITZ microstructure of concrete containing GGBS. Cem Concr Res 35(7):1299–1304. https://doi.org/10.1016/j.cemconres.2004.06.042

    Article  CAS  Google Scholar 

  88. Tavasoli S, Nili M, Serpoosh B (2018) Effect of GGBS on the frost resistance of self-consolidating concrete. Constr Build Mater 165:717–722. https://doi.org/10.1016/j.conbuildmat.2018.01.027

    Article  Google Scholar 

  89. O’Connell M, McNally C, Richardson MG (2012) Performance of concrete incorporating GGBS in aggressive wastewater environments. Constr Build Mater 27(1):368–374. https://doi.org/10.1016/j.conbuildmat.2011.07.036

    Article  Google Scholar 

  90. Oner A, Akyuz S, Yildiz R (2005) An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete. Cem Concr Res 35(6):1165–1171. https://doi.org/10.1016/j.cemconres.2004.09.031

    Article  CAS  Google Scholar 

  91. Yoon YS, Won JP, Woo SK, Song YC (2002) Enhanced durability performance of fly ash concrete for concrete-faced rockfill dam application. Cem Concr Res 32(1):23–30. https://doi.org/10.1016/S0008-8846(01)00623-8

    Article  CAS  Google Scholar 

  92. Duan P, Shui Z, Chen W, Shen C (2013) Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete. Constr Build Mater 44:1–6. https://doi.org/10.1016/j.conbuildmat.2013.02.075

    Article  CAS  Google Scholar 

  93. Aiswarya S, P. A. G, D. C (2013) A review on use of metakaolin in concrete. Eng Sci Technol An Int J 3(3):592–597

    Google Scholar 

  94. Vejmelková E, Pavlíková M, Keppert M, Keršner Z, Rovnaníková P, Ondráček M, Sedlmajer M, Černý R (2010) High performance concrete with Czech metakaolin: experimental analysis of strength, toughness and durability characteristics. Constr Build Mater 24(8):1404–1411. https://doi.org/10.1016/j.conbuildmat.2010.01.017

    Article  Google Scholar 

  95. Rattanachu P, Toolkasikorn P, Tangchirapat W, Chindaprasirt P, Jaturapitakkul C (2020) Performance of recycled aggregate concrete with rice husk ash as cement binder. Cem Concr Compos 108(January 2019):103533. https://doi.org/10.1016/j.cemconcomp.2020.103533

    Article  CAS  Google Scholar 

  96. Mosaberpanah MA, Umar SA (2020) Utilizing rice husk ash as supplement to cementitious materials on performance of ultra high performance concrete: – a review. Mater Today Sustain 7–8:100030. https://doi.org/10.1016/j.mtsust.2019.100030

    Article  Google Scholar 

  97. Chabi E, Lecomte A, Adjovi EC, Dieye A, Merlin A (2018) Mix design method for plant aggregates concrete: example of the rice husk. Constr Build Mater 174:233–243. https://doi.org/10.1016/j.conbuildmat.2018.04.097

    Article  Google Scholar 

  98. Adesina PA, Olutoge FA (2019) Structural properties of sustainable concrete developed using rice husk ash and hydrated lime. J Build Eng 25(February):100804. https://doi.org/10.1016/j.jobe.2019.100804

    Article  Google Scholar 

  99. Khmiri A, Chaabouni M, Samet B (2013) Chemical behaviour of ground waste glass when used as partial cement replacement in mortars. Constr Build Mater 44:74–80. https://doi.org/10.1016/j.conbuildmat.2013.02.040

    Article  Google Scholar 

  100. Omran A, Tagnit-Hamou A (2016) Performance of glass-powder concrete in field applications. Constr Build Mater 109:84–95. https://doi.org/10.1016/j.conbuildmat.2016.02.006

    Article  Google Scholar 

  101. Du H, Tan KH (2017) Properties of high volume glass powder concrete. Cem Concr Compos 75:22–29. https://doi.org/10.1016/j.cemconcomp.2016.10.010

    Article  CAS  Google Scholar 

  102. Park SB, Lee BC, Kim JH (2004) Studies on mechanical properties of concrete containing waste glass aggregate. Cem Concr Res 34(12):2181–2189. https://doi.org/10.1016/j.cemconres.2004.02.006

    Article  CAS  Google Scholar 

  103. Sangha CM, Alani AM, Walden PJ (2004) Relative strength of green glass cullet concrete. Mag Concr Res 56(5):293–297. https://doi.org/10.1680/macr.2004.56.5.293

    Article  CAS  Google Scholar 

  104. Topçu IB, Canbaz M (2004) Properties of concrete containing waste glass. Cem Concr Res 34(2):267–274. https://doi.org/10.1016/j.cemconres.2003.07.003

    Article  CAS  Google Scholar 

  105. Ye N, Yang J, Ke X, Zhu J, Li Y, Xiang C, Wang H, Li L, Xiao B (2014) Synthesis and characterization of geopolymer from bayer red mud with thermal pretreatment. J Am Ceram Soc 97(5):1652–1660. https://doi.org/10.1111/jace.12840

    Article  CAS  Google Scholar 

  106. Kumar A, Kumar S (2013) Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization. Constr Build Mater 38:865–871. https://doi.org/10.1016/j.conbuildmat.2012.09.013

    Article  CAS  Google Scholar 

  107. He J, Jie Y, Zhang J, Yu Y, Zhang G (2013) Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cem Concr Compos 37(1):108–118. https://doi.org/10.1016/j.cemconcomp.2012.11.010

    Article  CAS  Google Scholar 

  108. Joseph AM, Snellings R, Van den Heede P, Matthys S, De Belie N (2018) The use of municipal solidwaste incineration ash in various building materials: a Belgian point of view. Materials (Basel) 11(1). https://doi.org/10.3390/ma11010141

  109. Ferone C, Colangelo F, Messina F, Santoro L, Cioffi R (2013) Recycling of pre-washed municipal solid waste incinerator fly ash in the manufacturing of low temperature setting geopolymer materials. Materials (Basel) 6(8):3420–3437. https://doi.org/10.3390/ma6083420

    Article  CAS  Google Scholar 

  110. Wongsa A, Boonserm K, Waisurasingha C, Sata V, Chindaprasirt P (2017) Use of municipal solid waste incinerator (MSWI) bottom ash in high calcium fly ash geopolymer matrix. J Clean Prod 148:49–59. https://doi.org/10.1016/j.jclepro.2017.01.147

    Article  CAS  Google Scholar 

  111. Zheng L, Wang W, Shi Y (2010) The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer. Chemosphere 79(6):665–671. https://doi.org/10.1016/j.chemosphere.2010.02.018

    Article  CAS  Google Scholar 

  112. Santa RAAB, Bernardin AM, Riella HG, Kuhnen NC (2013) Geopolymer synthetized from bottom coal ash and calcined paper sludge. J Clean Prod 57:302–307. https://doi.org/10.1016/j.jclepro.2013.05.017

    Article  CAS  Google Scholar 

  113. Panesar DK (2019) Supplementary cementing materials, in developments in the formulation and reinforcement of concrete. Elsevier, pp. 55–85. https://doi.org/10.1016/B978-0-08-102616-8.00003-4

  114. Giergiczny Z (2019) Fly ash and slag. Cem Concr Res 124(February). https://doi.org/10.1016/j.cemconres.2019.105826

  115. Collins F, Sanjayan JG (2001) Microcracking and strength development of alkali activated slag concrete. Cem Concr Compos 23(4–5):345–352. https://doi.org/10.1016/S0958-9465(01)00003-8

    Article  CAS  Google Scholar 

  116. Collins F, Sanjayan JG (2000) Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete. Cem Concr Res 30(9):1401–1406. https://doi.org/10.1016/S0008-8846(00)00327-6

    Article  CAS  Google Scholar 

  117. Yang KH, Song JK, Il Song K (2013) Assessment of CO 2 reduction of alkali-activated concrete. J Clean Prod 39:265–272. https://doi.org/10.1016/j.jclepro.2012.08.001

    Article  CAS  Google Scholar 

  118. Arbi K, Nedeljkovic M, Zuo Y, Ye G (2020) A review on the durability of alkali-activated fly ash / slag systems: advances , issues , and perspectives. https://doi.org/10.1021/acs.iecr.6b00559

  119. Abdollahnejad Z, Mastali M, Luukkonen T, Kinnunen P, Illikainen M (2018) Fiber-reinforced one-part alkali-activated slag/ceramic binders. Ceram Int 44(8):8963–8976. https://doi.org/10.1016/j.ceramint.2018.02.097

    Article  CAS  Google Scholar 

  120. Yousefi Oderji S, Chen B, Ahmad MR, Shah SFA (2019) Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: effect of slag and alkali activators. J Clean Prod 225:1–10. https://doi.org/10.1016/j.jclepro.2019.03.290

    Article  CAS  Google Scholar 

  121. Rakhimova NR, Rakhimov RZ (2019) Toward clean cement technologies : A review on alkali-activated fl y-ash cements incorporated with supplementary materials. J Non-Cryst Solids 509(January):31–41. https://doi.org/10.1016/j.jnoncrysol.2019.01.025

    Article  CAS  Google Scholar 

  122. Rakhimova NR, Rakhimov RZ (2019) Reaction products, structure and properties of alkali-activated metakaolin cements incorporated with supplementary materials - a review. J Mater Res Technol 8(1):1522–1531. https://doi.org/10.1016/j.jmrt.2018.07.006

    Article  CAS  Google Scholar 

  123. Idir R, Cyr M, Pavoine A (2020) Investigations on the durability of alkali-activated recycled glass. Constr Build Mater 236:117477. https://doi.org/10.1016/j.conbuildmat.2019.117477

    Article  CAS  Google Scholar 

  124. Torres-Carrasco M, Reinosa JJ, de la Rubia MA, Reyes E, Alonso Peralta F, Fernández JF (2019) Critical aspects in the handling of reactive silica in cementitious materials: effectiveness of rice husk ash vs nano-silica in mortar dosage. Constr Build Mater 223:360–367. https://doi.org/10.1016/j.conbuildmat.2019.07.023

    Article  CAS  Google Scholar 

  125. Ramezanianpour AA, Moeini MA (2018) Mechanical and durability properties of alkali activated slag coating mortars containing nanosilica and silica fume. Constr Build Mater 163:611–621. https://doi.org/10.1016/j.conbuildmat.2017.12.062

    Article  CAS  Google Scholar 

  126. Sun S, Lin J, Zhang P, Fang L, Ma R, Quan Z, Song X (2018) Geopolymer synthetized from sludge residue pretreated by the wet alkalinizing method: compressive strength and immobilization efficiency of heavy metal. Constr Build Mater 170:619–626. https://doi.org/10.1016/j.conbuildmat.2018.03.068

    Article  CAS  Google Scholar 

  127. Yan S, Sagoe-Crentsil K (2012) Properties of wastepaper sludge in geopolymer mortars for masonry applications. J Environ Manag 112:27–32. https://doi.org/10.1016/j.jenvman.2012.07.008

    Article  CAS  Google Scholar 

  128. Shoaei P, Ameri F, Reza Musaeei H, Ghasemi T, Cheah CB (2020) Glass powder as a partial precursor in Portland cement and alkali-activated slag mortar: a comprehensive comparative study. Constr Build Mater 251:118991. https://doi.org/10.1016/j.conbuildmat.2020.118991

    Article  CAS  Google Scholar 

  129. Zhang S, Keulen A, Arbi K, Ye G (2017) Waste glass as partial mineral precursor in alkali-activated slag/fly ash system. Cem Concr Res 102(November 2016):29–40. https://doi.org/10.1016/j.cemconres.2017.08.012

    Article  CAS  Google Scholar 

  130. Liu Y, Shi C, Zhang Z, Li N (2019) An overview on the reuse of waste glasses in alkali-activated materials. Resour Conserv Recycl 144(December 2018):297–309. https://doi.org/10.1016/j.resconrec.2019.02.007

    Article  Google Scholar 

  131. Obenaus-Emler R, Falah M, Illikainen M (2020) Assessment of mine tailings as precursors for alkali-activated materials for on-site applications. Constr Build Mater 246:118470. https://doi.org/10.1016/j.conbuildmat.2020.118470

    Article  CAS  Google Scholar 

  132. Xiaolong Z, Shiyu Z, Hui L, Yingliang Z (2020) Disposal of mine tailings via geopolymerization. J Clean Prod (xxxx):124756. https://doi.org/10.1016/j.jclepro.2020.124756

  133. Chindaprasirt P, Rattanasak U, Taebuanhuad S (2013) Role of microwave radiation in curing the fly ash geopolymer. Adv Powder Technol 24(3):703–707. https://doi.org/10.1016/j.apt.2012.12.005

    Article  CAS  Google Scholar 

  134. Chindaprasirt P, Rattanasak U, Taebuanhuad S (2013) Resistance to acid and sulfate solutions of microwave-assisted high calcium fly ash geopolymer. Mater Struct Constr 46(3):375–381. https://doi.org/10.1617/s11527-012-9907-1

    Article  CAS  Google Scholar 

  135. Sturm P, Greiser S, Gluth GJG, Jäger C, Brouwers HJH (2015) Degree of reaction and phase content of silica-based one-part geopolymers investigated using chemical and NMR spectroscopic methods. J Mater Sci 50(20):6768–6778. https://doi.org/10.1007/s10853-015-9232-5.

  136. Bernal SA et al (2014) Alkali Activated Materials, vol 13. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-7672-2

  137. Lizcano M, Gonzalez A, Basu S, Lozano K, Radovic M (2012) Effects of water content and chemical composition on structural properties of alkaline activated metakaolin-based geopolymers. J Am Ceram Soc 95(7):2169–2177. https://doi.org/10.1111/j.1551-2916.2012.05184.x

    Article  CAS  Google Scholar 

  138. Steins P, Poulesquen A, Diat O, Frizon F (2012) Structural evolution during geopolymerization from an early age to consolidated material. Langmuir 28(22):8502–8510. https://doi.org/10.1021/la300868v

    Article  CAS  Google Scholar 

  139. Criado M, Palomo A, Fernández-Jiménez A (2005) Alkali activation of fly ashes. Part 1: effect of curing conditions on the carbonation of the reaction products. Fuel 84(16):2048–2054. https://doi.org/10.1016/j.fuel.2005.03.030

    Article  CAS  Google Scholar 

  140. Thomas RJ, Lezama D, Peethamparan S (2017) On drying shrinkage in alkali-activated concrete: Improving dimensional stability by aging or heat-curing. Cem Concr Res 91:13–23. https://doi.org/10.1016/j.cemconres.2016.10.003

    Article  CAS  Google Scholar 

  141. Król M, Rożek P, Chlebda D, Mozgawa W (2018) Influence of alkali metal cations/type of activator on the structure of alkali-activated fly ash – ATR-FTIR studies. Spectrochim Acta - Part A Mol Biomol Spectrosc 198:33–37. https://doi.org/10.1016/j.saa.2018.02.067

    Article  CAS  Google Scholar 

  142. Silva I, Castro-Gomes JP, Albuquerque A (2012) Effect of immersion in water partially alkali-activated materials obtained of tungsten mine waste mud. Constr Build Mater 35:117–124. https://doi.org/10.1016/j.conbuildmat.2012.02.069

    Article  Google Scholar 

  143. El-Feky MS, Kohail M, El-Tair AM, Serag MI (2020) Effect of microwave curing as compared with conventional regimes on the performance of alkali activated slag pastes. Constr Build Mater 233:117268. https://doi.org/10.1016/j.conbuildmat.2019.117268

    Article  CAS  Google Scholar 

  144. Alharbi YR, Abadel AA, Salah AA, Mayhoub OA, Kohail M (2020) Engineering properties of alkali activated materials reactive powder concrete. Constr Build Mater (xxxx):121550. https://doi.org/10.1016/j.conbuildmat.2020.121550

  145. Pimraksa K, Chindaprasirt P, Rungchet A, Sagoe-Crentsil K, Sato T (2011) Lightweight geopolymer made of highly porous siliceous materials with various Na2O/Al2O3 and SiO2/Al2O3 ratios. Mater Sci Eng A 528(21):6616–6623. https://doi.org/10.1016/j.msea.2011.04.044

    Article  CAS  Google Scholar 

  146. Liew YM, Heah CY, Mohd Mustafa AB, Kamarudin H (2016) Structure and properties of clay-based geopolymer cements: a review. Prog Mater Sci 83:595–629. https://doi.org/10.1016/j.pmatsci.2016.08.002

    Article  CAS  Google Scholar 

  147. Tippayasam C, Balyore P, Thavorniti P, Kamseu E, Leonelli C, Chindaprasirt P, Chaysuwan D (2016) Potassium alkali concentration and heat treatment affected metakaolin-based geopolymer. Constr Build Mater 104:293–297. https://doi.org/10.1016/j.conbuildmat.2015.11.027

    Article  CAS  Google Scholar 

  148. NIOSH, “Sodium Hydroxide | NIOSH | CDC.” https://www.cdc.gov/niosh/topics/sodium-hydroxide/default.html (accessed Dec. 27, 2020).

  149. Giannaros P, Kanellopoulos A, Al-Tabbaa A (2016) Sealing of cracks in cement using microencapsulated sodium silicate. Smart Mater Struct 25(8). https://doi.org/10.1088/0964-1726/25/8/084005

  150. Miller CT (1987) Groundwater Qual 59(6)

  151. Hocking MB (2005) Industrial Bases by Chemical Routes. Handb Chem Technol Pollut Control:201–220. https://doi.org/10.1016/b978-012088796-5/50010-7

  152. Speight JG (2017) Industrial Inorganic Chemistry, in Environmental Inorganic Chemistry for Engineers, no. Chapter 2, pp. 111–169. https://doi.org/10.1016/b978-0-12-849891-0.00003-5

  153. Haneke KE (2002) “Sodium metasilicate pentahydrate [ 10213-79-3 ], and sodium metasilicate nonahydrate [ 13517-24-3 ] review of toxicological literature sodium metasilicate , anhydrous [ 6834-92-0 ], sodium metasilicate pentahydrate [ 10213-79-3 ], and sodium metasilicate,” no. January, 2002

  154. Encyclopedia.com, “Potassium Hydroxide | Encyclopedia.com.” https://www.encyclopedia.com/science/academic-and-educational-journals/potassium-hydroxide. Accessed Dec. 28, 2020.

  155. Kubba Z, Fahim Huseien G, Sam ARM, Shah KW, Asaad MA, Ismail M, Tahir MM, Mirza J (2018) Impact of curing temperatures and alkaline activators on compressive strength and porosity of ternary blended geopolymer mortars. Case Stud Constr Mater 9:e00205. https://doi.org/10.1016/j.cscm.2018.e00205

    Article  Google Scholar 

  156. Ma C, Zhao B, Guo S, Long G, Xie Y (2019) Properties and characterization of green one-part geopolymer activated by composite activators. J Clean Prod 220:188–199. https://doi.org/10.1016/j.jclepro.2019.02.159

    Article  CAS  Google Scholar 

  157. Mounika G, Ramesh B, Kalyana Rama JS (2020) Experimental investigation on physical and mechanical properties of alkali activated concrete using industrial and agro waste. Mater Today Proc 33:4372–4376. https://doi.org/10.1016/j.matpr.2020.07.634

    Article  CAS  Google Scholar 

  158. Aguirre-Guerrero AM, Mejía de Gutiérrez R (2020) Alkali-activated protective coatings for reinforced concrete exposed to chlorides. Constr Build Mater (xxxx). https://doi.org/10.1016/j.conbuildmat.2020.121098

  159. Tuyan M, Zhang LV, Nehdi ML (2020) Development of sustainable preplaced aggregate concrete with alkali-activated slag grout. Constr Build Mater 263:120227. https://doi.org/10.1016/j.conbuildmat.2020.120227

    Article  CAS  Google Scholar 

  160. Nanayakkara O et al (2020) Alkali activated slag concrete incorporating recycled aggregate concrete: Long term performance and sustainability aspect. Constr Build Mater (xxxx):121512. https://doi.org/10.1016/j.conbuildmat.2020.121512

  161. Mehta A, Siddique R, Ozbakkaloglu T, Shaikh FUA, Belarbi R (2020) Fly ash and ground granulated blast furnace slag-based alkali-activated concrete: Mechanical, transport and microstructural properties. Constr Build Mater 257:119548. https://doi.org/10.1016/j.conbuildmat.2020.119548

    Article  CAS  Google Scholar 

  162. Phoo-Ngernkham T, Maegawa A, Mishima N, Hatanaka S, Chindaprasirt P (2015) Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA-GBFS geopolymer. Constr Build Mater 91:1–8. https://doi.org/10.1016/j.conbuildmat.2015.05.001

    Article  Google Scholar 

  163. Škvára F, Kopecký L, Šmilauer V, Bittnar Z (2009) Material and structural characterization of alkali activated low-calcium brown coal fly ash. J Hazard Mater 168(2–3):711–720. https://doi.org/10.1016/j.jhazmat.2009.02.089

    Article  CAS  Google Scholar 

  164. Winnefeld F, Ben Haha M, Le Saout G, Costoya M, Ko SC, Lothenbach B (2014) Influence of slag composition on the hydration of alkali-activated slags. J Sustain Cem Mater 4(2):85–100. https://doi.org/10.1080/21650373.2014.955550

    Article  CAS  Google Scholar 

  165. Krizan D, Zivanovic B (2002) Effects of dosage and modulus of water glass on early hydration of alkali-slag cements. Cem Concr Res 32(8):1181–1188. https://doi.org/10.1016/S0008-8846(01)00717-7

    Article  CAS  Google Scholar 

  166. Bilim C, Karahan O, Atiş CD, İlkentapar S (2015) Effects of chemical admixtures and curing conditions on some properties of alkali-activated cementless slag mixtures. KSCE J Civ Eng 19(3):733–741. https://doi.org/10.1007/s12205-015-0629-0

    Article  Google Scholar 

  167. Abdollahnejad Z, Mastali M, Falah M, Shaad KM, Luukkonen T, Illikainen M (2020) Durability of the reinforced one-part alkali-activated slag mortars with different fibers. Waste Biomass Valorization (0123456789). https://doi.org/10.1007/s12649-020-00958-x

  168. Ma C, Zhao B, Wang L, Long G, Xie Y (2020) Clean and low-alkalinity one-part geopolymeric cement: effects of sodium sulfate on microstructure and properties. J Clean Prod 252:119279. https://doi.org/10.1016/j.jclepro.2019.119279

    Article  CAS  Google Scholar 

  169. Abdel-Gawwad HA, Rashad AM, Heikal M (2019) Sustainable utilization of pretreated concrete waste in the production of one-part alkali-activated cement. J Clean Prod 232:318–328. https://doi.org/10.1016/j.jclepro.2019.05.356

    Article  CAS  Google Scholar 

  170. Chen W, Peng R, Straub C, Yuan B (2020) Promoting the performance of one-part alkali-activated slag using fine lead-zinc mine tailings. Constr Build Mater 236:117745. https://doi.org/10.1016/j.conbuildmat.2019.117745

    Article  CAS  Google Scholar 

  171. Haruna S, Mohammed BS, Wahab MMA, Liew MS (2020) Effect of paste aggregate ratio and curing methods on the performance of one-part alkali-activated concrete. Constr Build Mater 261:120024. https://doi.org/10.1016/j.conbuildmat.2020.120024

    Article  CAS  Google Scholar 

  172. Ahmad MR, Chen B, Shah SFA (2020) Influence of different admixtures on the mechanical and durability properties of one-part alkali-activated mortars. Constr Build Mater 265:120320. https://doi.org/10.1016/j.conbuildmat.2020.120320

    Article  CAS  Google Scholar 

  173. Coppola L, Coffetti D, Crotti E, Dell’Aversano R, Gazzaniga G (2019) The influence of heat and steam curing on the properties of one-part fly ash/slag alkali activated materials: Preliminary results. AIP Conf Proc 2196(December). https://doi.org/10.1063/1.5140311

  174. Coppola L, Coffetti D, Crotti E, Candamano S, Crea F, Gazzaniga G, Pastore T (2020) The combined use of admixtures for shrinkage reduction in one-part alkali activated slag-based mortars and pastes. Constr Build Mater 248:118682. https://doi.org/10.1016/j.conbuildmat.2020.118682

    Article  CAS  Google Scholar 

  175. Nath SK, Kumar S (2019) Role of alkali concentration on reaction kinetics of fly ash geopolymerization. J Non-Cryst Solids 505(September 2018):241–251. https://doi.org/10.1016/j.jnoncrysol.2018.11.007

    Article  CAS  Google Scholar 

  176. Görhan G, Kürklü G (2014) The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Compos Part B Eng 58:371–377. https://doi.org/10.1016/j.compositesb.2013.10.082

    Article  CAS  Google Scholar 

  177. Xu H, Van Deventer JSJ (2000) The geopolymerisation of alumino-silicate minerals. Int J Miner Process 59(3):247–266. https://doi.org/10.1016/S0301-7516(99)00074-5

    Article  CAS  Google Scholar 

  178. Hounsi AD et al (2014) How does Na, K alkali metal concentration change the early age structural characteristic of kaolin-based geopolymers. Ceram Int 40(7 PART A):8953–8962. https://doi.org/10.1016/j.ceramint.2014.02.052

    Article  CAS  Google Scholar 

  179. Borges PHR, Banthia N, Alcamand HA, Vasconcelos WL, Nunes EHM (2016) Performance of blended metakaolin/blastfurnace slag alkali-activated mortars. Cem Concr Compos 71:42–52. https://doi.org/10.1016/j.cemconcomp.2016.04.008

    Article  CAS  Google Scholar 

  180. Rodrigue A, Duchesne J, Fournier B, Champagne M, Bissonnette B (2020) Alkali-silica reaction in alkali-activated combined slag and fly ash concretes: The tempering effect of fly ash on expansion and cracking. Constr Build Mater 251:118968. https://doi.org/10.1016/j.conbuildmat.2020.118968

    Article  CAS  Google Scholar 

  181. Sturm P, Gluth GJG, Jäger C, Brouwers HJH, Kühne HC (2018) Sulfuric acid resistance of one-part alkali-activated mortars. Cem Concr Res 109(April):54–63. https://doi.org/10.1016/j.cemconres.2018.04.009

    Article  CAS  Google Scholar 

  182. Li Z, Thomas RJ, Peethamparan S (2019) Cement and concrete research alkali-silica reactivity of alkali-activated concrete subjected to ASTM C 1293 and 1567 alkali-silica reactivity tests. Cem Concr Res 123(June):105796. https://doi.org/10.1016/j.cemconres.2019.105796

    Article  CAS  Google Scholar 

  183. Abdollahnejad Z, Mastali M, Woof B, Illikainen M (2020) High strength fiber reinforced one-part alkali activated slag/fly ash binders with ceramic aggregates: Microscopic analysis, mechanical properties, drying shrinkage, and freeze-thaw resistance. Constr Build Mater 241:118129. https://doi.org/10.1016/j.conbuildmat.2020.118129

    Article  CAS  Google Scholar 

  184. Bakharev T (2005) Resistance of geopolymer materials to acid attack. Cem Concr Res 35(4):658–670. https://doi.org/10.1016/j.cemconres.2004.06.005

    Article  CAS  Google Scholar 

  185. Gevaudan JP, Caicedo-Ramirez A, Hernandez MT, Srubar WV (2019) Copper and cobalt improve the acid resistance of alkali-activated cements. Cem Concr Res 115(September 2017):327–338. https://doi.org/10.1016/j.cemconres.2018.08.002

    Article  CAS  Google Scholar 

  186. Ren J, Zhang L, San Nicolas R (2020) Degradation process of alkali-activated slag/fly ash and Portland cement-based pastes exposed to phosphoric acid. Constr Build Mater 232:117209. https://doi.org/10.1016/j.conbuildmat.2019.117209

    Article  CAS  Google Scholar 

  187. Bakharev T, Sanjayan JG, Cheng YB (2003) Resistance of alkali-activated slag concrete to acid attack. Cem Concr Res 33(10):1607–1611. https://doi.org/10.1016/S0008-8846(03)00125-X

    Article  CAS  Google Scholar 

  188. Ballekere Kumarappa D, Peethamparan S, Ngami M (2018) Autogenous shrinkage of alkali activated slag mortars: Basic mechanisms and mitigation methods. Cem Concr Res 109(July 2017):1–9. https://doi.org/10.1016/j.cemconres.2018.04.004

    Article  CAS  Google Scholar 

  189. Rakngan W, Williamson T, Ferron RD, Sant G, Juenger MCG (2018) Controlling workability in alkali-activated Class C fly ash. Constr Build Mater 183:226–233. https://doi.org/10.1016/j.conbuildmat.2018.06.174

    Article  CAS  Google Scholar 

  190. Melo Neto AA, Cincotto MA, Repette W (2008) Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cem Concr Res 38(4):565–574. https://doi.org/10.1016/j.cemconres.2007.11.002

    Article  CAS  Google Scholar 

  191. Peng P (2020) Effect of matching relation of multi-scale, randomly distributed pores on geometric distribution of induced cracks in hydraulic fracturing. Energy Explor Exploit 38(6):2436–2465. https://doi.org/10.1177/0144598720928150

    Article  CAS  Google Scholar 

  192. Zdravkov BD, Čermák JJ, Šefara M, Janků J (2007) Pore classification in the characterization of porous materials: a perspective. Cent Eur J Chem 5(2):385–395. https://doi.org/10.2478/s11532-007-0017-9

    Article  CAS  Google Scholar 

  193. Li J, Liu D, Yao Y, Cai Y, Guo X (2013) Physical characterization of the pore-fracture system in coals, Northeastern China. Energy Explor Exploit 31(2):267–285. https://doi.org/10.1260/0144-5987.31.2.267

    Article  CAS  Google Scholar 

  194. Ma W et al (2019) Performance of chemical chelating agent stabilization and cement solidification on heavy metals in MSWI fly ash: a comparative study. J Environ Manag 247(January):169–177. https://doi.org/10.1016/j.jenvman.2019.06.089

    Article  CAS  Google Scholar 

  195. Rovnaník P (2010) Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr Build Mater 24(7):1176–1183. https://doi.org/10.1016/j.conbuildmat.2009.12.023

    Article  Google Scholar 

  196. Zhu H, Zhang Z, Zhu Y, Tian L (2014) Durability of alkali-activated fly ash concrete: chloride penetration in pastes and mortars. Constr Build Mater 65:51–59. https://doi.org/10.1016/j.conbuildmat.2014.04.110

    Article  Google Scholar 

  197. Olivia M, Nikraz HR (2011) Strength and water penetrability of fly ash geopolymer concrete. J Eng Appl Sci 6(7):70–78

    Google Scholar 

  198. Ismail I, Bernal SA, Provis JL, San Nicolas R, Brice DG, Kilcullen AR, Hamdan S, van Deventer JSJ (2013) Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes. Constr Build Mater 48:1187–1201. https://doi.org/10.1016/j.conbuildmat.2013.07.106

    Article  Google Scholar 

  199. Provis JL, Myers RJ, White CE, Rose V, Van Deventer JSJ (2012) X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cem Concr Res 42(6):855–864. https://doi.org/10.1016/j.cemconres.2012.03.004

    Article  CAS  Google Scholar 

  200. Bernal SA, Mejía De Gutiérrez R, Provis JL (2012) Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Constr Build Mater 33:99–108. https://doi.org/10.1016/j.conbuildmat.2012.01.017

    Article  Google Scholar 

  201. Ma Y, Hu J, Ye G (2013) The pore structure and permeability of alkali activated fly ash. Fuel 104:771–780. https://doi.org/10.1016/j.fuel.2012.05.034

    Article  CAS  Google Scholar 

  202. Zhang Z, Wang H (2015) Analysing the relation between pore structure and permeability of alkali-activated concrete binders. Woodhead Publishing Limited

  203. Bakharev T (2006) Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing. Cem Concr Res 36(6):1134–1147. https://doi.org/10.1016/j.cemconres.2006.03.022

    Article  CAS  Google Scholar 

  204. Fernández-Jiménez A, Palomo A, Pastor JY, Martín A (2008) New cementitious materials based on alkali-activated fly ash: performance at high temperatures. J Am Ceram Soc 91(10):3308–3314. https://doi.org/10.1111/j.1551-2916.2008.02625.x

    Article  CAS  Google Scholar 

  205. Abdel-Gawwad HA, Khalil KA (2018) Application of thermal treatment on cement kiln dust and feldspar to create one-part geopolymer cement. Constr Build Mater 187:231–237. https://doi.org/10.1016/j.conbuildmat.2018.07.161

    Article  CAS  Google Scholar 

  206. Sturm P, Gluth GJG, Simon S, Brouwers HJH, Kühne HC (2016) The effect of heat treatment on the mechanical and structural properties of one-part geopolymer-zeolite composites. Thermochim Acta 635:41–58. https://doi.org/10.1016/j.tca.2016.04.015

    Article  CAS  Google Scholar 

  207. Sarıdemir M, Çelikten S (2020) Investigation of fire and chemical effects on the properties of alkali-activated lightweight concretes produced with basaltic pumice aggregate. Constr Build Mater 260. https://doi.org/10.1016/j.conbuildmat.2020.119969

  208. EIA, “Electricity generation from natural gas and renewables increases as a result of lower natural gas prices and declining costs of solar and wind renewable capacity, making these fuels increasingly competitive,” 2020.

  209. Electricity and the environment. U.S. Energy Information Administration (EIA) (2018) http://www.eia.gov/energyexplained/?page=electricity_environment. Accessed 5 Jan 2020

  210. Singh B (2018) Rice husk ash. Elsevier Ltd

  211. Juenger MCG, Snellings R, Bernal SA (2019) Supplementary cementitious materials: new sources, characterization, and performance insights. Cem Concr Res 122(February):257–273. https://doi.org/10.1016/j.cemconres.2019.05.008

    Article  CAS  Google Scholar 

  212. Silva RV, Brito J (2018) Plastic wastes. Elsevier Ltd

  213. Ng S, Engelsen CJ (2018) Construction and demolition wastes. In Waste and Supplementary Cementitious Materials in Concrete: Characterisation,Properties and Applications, pp. 229–255. Elsevier Ltd

  214. Yuksel I (2018) Blast-furnace slag. In Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications, pp. 361–415. Elsevier Ltd

  215. Khatib JM, Baalbaki O, ElKordi AA (2018) “Metakaolin,” in waste and supplementary cementitious materials in concrete: characterisation, properties and applications pp. 493–511

  216. Kenai S (2018) Recycled aggregates. Elsevier Ltd

  217. S. Marinković, Dragaš J (2018) Fly ash. In Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications, pp. 325–360

  218. Topçu İB, Unverdi A (2018) Scrap tires/crumb rubber. In Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications, pp. 51–77

  219. Dumitru I, Song T (2018) Waste glass. Elsevier Ltd

  220. Tavakoli D, Heidari A, Karimian M (2013) Properties of concretes produced with waste ceramic tile aggregate. Asian J Civ Eng 14(3):369–382

    Google Scholar 

  221. Bin Mahmud H, Hamid NAA, Chin KY (2010) Production of high strength concrete incorporating an agricultural waste- rice husk ash. ICBEE 2010 - 2010 2nd Int Conf Chem Biol Environ Eng Proc (Icbee):106–109. https://doi.org/10.1109/ICBEE.2010.5649093

  222. Plastics Insight. “Polyethylene terephthalate production, price and market.” https://www.plasticsinsight.com/resin-intelligence/resin-prices/polyethylene-terephthalate/. Accessed Dec. 23, 2020.

  223. United States Geological Survey (2019) “Garnet Statistics and Information,” https://www.usgs.gov/centers/nmic/garnet-statistics-and-information. Accessed Dec. 23, 2020

Download references

Acknowledgements

The graphics in this article are sketched through a licensed Adobe Photoshop express and Bio render.

Availability of Data and Material

The data gathered is available as the supplementary material.

Code Availability

The authors declare that no code is used for the purpose of this article.

Author information

Authors and Affiliations

Authors

Contributions

Mehrab Nodehi: conceptualization; data curation; investigation; resources; writing original draft; Vahid Mohammad Taghvaee: validation.

Corresponding author

Correspondence to Mehrab Nodehi.

Ethics declarations

Consent to Publish

The authors declare their consent to publish this article in the journal of Circular Economy and Sustainability.

Conflict of Interests

The authors declare no competing interests.

Supplementary Information

ESM 1

(XLSX 12 kb)

ESM 2

(XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nodehi, M., Taghvaee, V.M. Alkali-Activated Materials and Geopolymer: a Review of Common Precursors and Activators Addressing Circular Economy. Circ.Econ.Sust. 2, 165–196 (2022). https://doi.org/10.1007/s43615-021-00029-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43615-021-00029-w

Keywords

Navigation