Skip to main content
Log in

Single electron charging effects in semiconductor quantum dots

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

We have studied charging effects in a lateral split-gate quantum dot defined by metal gates in the two dimensional electron gas (2 DEG) of a GaAs/AlGaAs heterostructure. The gate structure allows an independent control of the conductances of the two tunnel barriers separating the quantum dot from the two 2 DEG leads, and enables us to vary the number of electrons that are localized in the dot. We have measured Coulomb oscillations in the conductance and the Coulomb staircase in current-voltage characteristics and studied their dependence on the conductances of the tunnel barriers. We show experimentally that at zero magnetic field charging effects start to affect the transport properties when both barrier conductances are smaller than the first quantized conductance value of a point contact at 2e 2/h. The experiments are described by a simple model in terms of electrochemical potentials, which includes both the discreteness of the electron charge and the quantum energy states due to confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. See for a review: Averin, D.V., Likharev, K.K.: In: Quantum effects in small disordered systems. Al'tshuler, B., Lee, P., Webb, R. (eds.). Amsterdam: Elsevier 1990

    Google Scholar 

  2. Scott-Thomas, J.H.F., Field, S.B., Kastner, M.A., Smith, H.I., Antonadis, D.A.: Phys. Rev. Lett.62, 583 (1989)

    Google Scholar 

  3. Field, S.B., Kastner, M.A., Meirav, U., Scott-Thomas, J.H.F., Antonadis, D.A., Smith, H.I., Wind, S.J.: Phys. Rev. B42, 3523 (1990)

    Google Scholar 

  4. Staring, A.A.M., Houten, H. van, Beenakker, C.W.J., Foxon, C.T.: High magnetic fields in semiconductor physics, III. Landwehr, G. (ed.), Berlin, Heidelberg, New York: Springer 1990

    Google Scholar 

  5. Houten, H. van, Beenakker, C.W.J.: Phys. Rev. Lett.63, 1893 (1989)

    Google Scholar 

  6. Glazman, L.I., Shekhter, R.I.: J. Phys. Condensed Matter1, 5811 (1989)

    Google Scholar 

  7. Meirav, U., Kastner, M.A., Wind, S.J.: Phys. Rev. Lett.65, 771 (1990)

    Google Scholar 

  8. McEuen, P.L., Foxman, E.B., Meirav, U., Kastner, M.A., Meir, Y., Wingreen, N.S., Wind, S.J.: Phys. Rev. Lett.66, 1926 (1991)

    Google Scholar 

  9. Wees, B.J. van, Kouwenhoven, L.P., Harmans, C.J.P.M., Williamson, J.G., Timmering, C.E., Broekaart, M.E.I., Foxon, C.T., Harris, J.J.: Phys. Rev. Lett.62, 2523 (1989)

    Google Scholar 

  10. Grabert, H., Devoret, M.H. (eds.): Proceedings of the NATO ASI onSingle Charge Tunneling, Les Houches, March 1991. New York: Plenum Press 1992

    Google Scholar 

  11. See also: Kouwenhoven, L.P., Vaart, N.C. van der, Johnson, A.T., Harmans, C.J.P.M., Williamson, J.G., Staring, A.A.M., Foxon, C.T.: In: Festkörperprobleme/Advances in Solid State Physics. Rössler, K. (ed.), Vol. 31, pp. 329–340. Braunschweig: Vieweg 1991

    Google Scholar 

  12. Wees, B.J. van, Houten, H. van, Beenakker, C.W.J., Williamson, J.G., Kouwenhoven, L.P., Marel, D. van der, Foxon, C.T.: Phys. Rev. Lett.60, 848 (1988)

    Google Scholar 

  13. Wharam, D.A., Thornton, T.J., Newbury, R., Pepper, M., Ahmed, H., Frost, J.E.F., Hasko, D.G., Peacock, D.C., Ritchie, D.A., Jones, G.A.C.: J. Phys. C21, L209 (1988)

    Google Scholar 

  14. Korotkov, A.N., Averin, D.V., Likharev, K.K.: Physica B165/166, 927 (1990); Averin, D.V., Korotkov, A.N., Likharev, K.K.: Phys. Rev. B44, 6199 (1991)

    Google Scholar 

  15. Groshev, A., Ivanov, T., Valtchinov, V.: Phys. Rev. Lett.66, 1082 (1991)

    Google Scholar 

  16. Beenakker, C.W.J., Houten, H. van, Staring, A.A.M.: Phys. Rev. B44, 1657 (1991); Beenakker, C.W.J.: Phys. Rev. B44, 1646 (1991); Houten, H. van, Beenakker, C.W.J., Staring, A.A.M.: In [10]

    Google Scholar 

  17. Note thatV l , andV r as defined here differ form the results of ordinary circuit analysis, e.g. capacitor divider equations. This comes from our inclusion of the discrete electron charge, while circuit analysis implicitly assumes a continuous charge fluid

  18. Averin, D.V., Nazarov, Yu.V.: Phys. Rev. Lett.65, 2446 (1990)

    Google Scholar 

  19. Kouwenhoven, L.P., Johnson, A.T., Vaart, N.C. van der, Harmans, C.J.P.M., Foxon, C.T.: Phys. Rev. Lett.67, 1626 (1991)

    Google Scholar 

  20. Kouwenhoven, L.P., Johnson, A.T., Vaart, N.C. van der, Enden, A. van der, Harmans, C.J.P.M., Foxon, C.T.: Z. Phys. B — Condensed Matter85, 381 (1991)

    Google Scholar 

  21. Geerligs, L.J., Anderegg, V.F., Holweg, P.A.M., Mooij, J.E., Pothier, H., Esteve, D., Urbina, C., Devoret, M.H.: Phys. Rev. Lett.64, 2691 (1990)

    Google Scholar 

  22. Geerligs, L.J.: Classical and quantum charge dynamics in small tunneljunctions. Thesis, Delft University of Technology (1990)

  23. Johnson, A.T. et al.: (in preparation)

  24. Kumar, A., Laux, S.E., Stern, F.: Phys. Rev. B42, 5166 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouwenhoven, L.P., van der Vaart, N.C., Johnson, A.T. et al. Single electron charging effects in semiconductor quantum dots. Z. Physik B - Condensed Matter 85, 367–373 (1991). https://doi.org/10.1007/BF01307632

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01307632

Keywords

Navigation