Skip to main content
Log in

Autoreconvolution — An extension to the “reference convolution” procedure for the simultaneous analysis of two fluorescence decays from one sample

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A fast and simple method of analyzing fluorescence decay data collected using the time-correlated single-photon counting technique is presented. The technique is related to the “reference convolution” method and is applicable to systems characterized by groups of fluorescence decays which are interrelated such that each can be fitted by a sum of exponentials which differs only in preexponential factors from that descriptive of another in the set. Suitable cases include monomer/excimer systems, fluorescence anisotropy decay analysis, and heterogeneous emission systems. The advantages of this method are discussed with examples of its application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. O’Connor and D. Phillips (1983)Time-Correlated Single Photon Counting, Academic Press, New York.

    Google Scholar 

  2. M. C. Chang, S. H. Courtney, A. J. Cross, R. J. Gulotty, J. W. Petrich, and G. R. Fleming (1985)Anal. Inst. 14, 433–464.

    Article  CAS  Google Scholar 

  3. C. Lewis, W. R. Ware, L. J. Doemeny, and T. L. Nemzek (1973)Rev. Sci. Instrum. 44, 107–114.

    Article  CAS  Google Scholar 

  4. P. Wahl, J. C. Auchet, and B. Donzel (1974)Rev. Sci. Instrum. 45, 28–32.

    Article  CAS  Google Scholar 

  5. D. M. Rayner, A. E. McKinnon, A. G. Szabo, and P. A. Hackett (1976)Can. J. Chem. 54, 3246–3259.

    Article  CAS  Google Scholar 

  6. R. W. Wijnaendts van Resandt, R. H. Vogel, and S. W. Provencher (1982)Rev. Sci. Instrum. 53, 1392–1397.

    Article  Google Scholar 

  7. J.-E. Löfroth (1985)Eur. Biophys. J. 13, 45–58.

    Article  Google Scholar 

  8. G. Rumbles, A. J. Brown, and D. Phillips (1991)J. Chem. Soc. Faraday Trans. 87, 825–830.

    Article  CAS  Google Scholar 

  9. J. R. Lakowicz and A. Balter (1982)Biophvs. Chem. 15, 353–360.

    Article  CAS  Google Scholar 

  10. J. R. Lakowicz and A. Balter (1982)Biophys. Chem. 16, 223–240.

    Article  PubMed  CAS  Google Scholar 

  11. M. Hauser and G. Wagenblast (1983) in R. B. Cundall and R. E. Dale (Eds.),Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology, Plenum Press, New York, pp. 463–480.

    Google Scholar 

  12. J. Vogelsang and M. Hauser (1990)J. Phys. Chem. 94, 7488–7494.

    Article  CAS  Google Scholar 

  13. M. D. Barkley, A. A. Kowalczyk, and L. Brand (1981)J. Chem. Phys. 75, 3581–3593.

    Article  CAS  Google Scholar 

  14. D. J. S. Birch and R. E. Imhof (1991) in J. R. Lakowicz (Ed.),Topics in Fluorescence Spectroscopy, Plenum Press, New York, Vol. 1, pp. 1–95.

    Google Scholar 

  15. J. M. Beechem, E. Gratton, M. Ameloot, J. R. Knutson, and L. Brand (1989)The Global Analysis of Fluorescence Intensity and Anisotropy Decay Data: Second Generation Theory and Programs, Laboratory for Fluorescence Dynamics, Department of Physics, University of Illinois at Urbana-Champaign.

  16. J. M. Beechem, E. Gratton, M. Ameloot, J. R. Knutson, and L. Brand (1991) in J. R. Lakowicz (Ed.),Topics in Fluorescence Spectroscopy, Plenum Press, London, Vol. 2, pp. 241–305.

    Google Scholar 

  17. A. E. McKinnon, A. G. Szabo, and D. R. Miller (1977)J. Phys. Chem. 81, 1564–1570.

    Article  CAS  Google Scholar 

  18. D. V. O’Connor, W. R. Ware, and J. C. Andre (1979)J. Phys. Chem. 83, 1333–1343.

    Article  CAS  Google Scholar 

  19. H. P. Good, A. J. Kallir, and U. P. Wild (1984)J. Phys. Chem. 88, 5435–5441.

    Article  CAS  Google Scholar 

  20. D. W. Marquardt (1963)J. Soc. Ind. Appl. Math 11, 431–441.

    Article  Google Scholar 

  21. P. R. Bevington (1969)Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York.

    Google Scholar 

  22. A. Grinvald and I. Z. Steinberg (1974)Anal. Biochem. 59, 583–598.

    Article  PubMed  CAS  Google Scholar 

  23. A. E. W. Knight and B. K. Selinger (1971)Spectrochim. Acta 27A, 1223–1234.

    Google Scholar 

  24. A. E. W. Knight and B. K. Selinger (1973)Aust. J. Chem. 26, 1–27.

    Article  CAS  Google Scholar 

  25. T. Murao, I. Yamazaki, and K. Yoshihara (1982)Appl. Opt. 21, 2297–2298.

    CAS  PubMed  Google Scholar 

  26. G. Rumbles, T. A. Smith, I. Soutar, and L. Swanson (in press).

  27. A. J. Marsh, G. Rumbles, I. Soutar, and L. Swanson (1992)Chem. Phys. Lett. 195, 31–35.

    Article  CAS  Google Scholar 

  28. A. J. Cross and G. R. Fleming (1984)Biophys. J. 46, 45–56.

    Article  PubMed  CAS  Google Scholar 

  29. R. L. Christensen, R. C. Drake, and D. Phillips (1986)J. Phys. Chem. 90, 5960–5967.

    Article  CAS  Google Scholar 

  30. J. B. Birks, D. J. Dyson, and I. H. Munro (1963)Proc. Roy. Soc. Lond. A275, 575–588.

    Google Scholar 

  31. D. Phillips, A. J. Roberts, and I. Soutar (1980)J. Polym. Sci. Polym. Lett. Ed. 18, 123–129.

    Article  CAS  Google Scholar 

  32. D. A. Holden, P. Y.-K. Wang, and J. E. Guillet (1980)Macromolecules 13, 295–298.

    Article  CAS  Google Scholar 

  33. T. A. Smith, G. D. Scholes, G. O. Tumer, and K. P. Ghiggino (1994)J. Chem. Soc. Faraday Trans. 90, 2845–2847.

    Article  CAS  Google Scholar 

  34. T. A. Smith, D. A. Shipp, G. D. Scholes, and K. P. Ghiggino (1994)J. Photochem. Photobiol. A 80, 177–185.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rumbles, G., Smith, T.A., Brown, A.J. et al. Autoreconvolution — An extension to the “reference convolution” procedure for the simultaneous analysis of two fluorescence decays from one sample. J Fluoresc 7, 217–229 (1997). https://doi.org/10.1007/BF02758222

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02758222

Key Words

Navigation