Skip to main content

Advertisement

Log in

Immunosenescence of T cells: a key player in rheumatoid arthritis

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Introduction

The incidence of rheumatoid arthritis (RA) and its complications are expected to increase with age. Remarkably, RA patients were identified features of accelerated aging, particularly in immunosenescence. As is known, T cells in RA patients readily differentiate into pro-inflammatory phenotypes that maintain chronic and persistent inflammatory changes in joints and many other organ systems. Recent evidence suggests that T cells are most sensitive to aging, and aged CD4+ T cells contribute to inflammaging, which plays a crucial role in accelerating the disease process. In recent years, the molecular mechanisms of T cell immunosenescence were beginning to be understood. Immune aging in RA T cells is associated with thymus insufficiency, metabolic abnormalities, shortened telomere length, and chronic energy stress. Therefore, we summarized the role and mechanism of T cell immunosenescence in RA.

Methods

A computer-based online search was performed using the PubMed database for published articles concerning T cells aging and rheumatoid arthritis.

Results

In this review, we assess the roles of CD4+ T cells in the center of inflammaging especially in RA and emphasize arthritogenic effector functions of senescent T cell; also we discuss the possible molecular mechanisms of senescent T cells and therapeutic targets to intervene T cells immunosenescence for improvement of RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SASP:

Senescence-associated secretory phenotype

TCR:

T cell receptor

TEMRA:

Terminally differentiated effector memory T cell

IGF-1:

Insulin-like growth factor-1

FOXO:

Forkhead box O

mTOR:

Mechanistic target of rapamycin

MMPs:

Matrix metalloproteinases

RANKL:

Receptor activator of nuclear factor-κB ligand

Wnt:

Wingless/integrated

LRP5/6:

LDL-receptor-related protein 5/6

DDK-1:

Dickkopf-related protein 1

ATM:

Ataxia telangiectasia-mutated

DNA-PKcs:

DNA dependent protein kinase catalytic subunit

PFKFB3:

Phosphofructokinase/fructose biphosphatase3

G6PD:

Glucose-6-phosphate dehydrogenease

DDR:

DNA damage response

TCA:

Tricarboxylic acid cycle

AMPK:

Adenosine 5’-monophosphate-activated protein kinase

mTORC1:

Mechanistic target of rapamycin complex1

PTEN:

Phosphatase and tensin homolog deleted on chromosome ten

SIRT1:

NAD + -dependent deacetylase sirtuin-1

Nrf2:

Nuclear factor erythroid2-related factor 2

NHEJ:

Non-homologous end joining

NMT1:

N-myristoyltransferase 1

Drp1:

Dynamin-related protein 1

PGC1α:

Peroxisome proliferator-activated receptor-γ coactivator-1α

References

  1. Smolen, J.S., et al., Rheumatoid arthritis. Nature Reviews Disease Primers, 2018. 4(1).

  2. Weyand CM, Zeisbrich M, Goronzy JJ. Metabolic signatures of T-cells and macrophages in rheumatoid arthritis. Curr Opin Immunol. 2017;46:112–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Firestein GS, McInnes IB. Immunopathogenesis of rheumatoid arthritis. Immunity. 2017;46(2):183–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: a review. JAMA. 2018;320(13):1360–72.

    Article  PubMed  Google Scholar 

  5. McInnes IB, Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis. The Lancet. 2017;389(10086):2328–37.

    Article  CAS  Google Scholar 

  6. Dedmon LE. The genetics of rheumatoid arthritis. Rheumatol (Oxford). 2020;59(10):2661–70.

    Article  CAS  Google Scholar 

  7. Amariuta T, et al. Advances in genetics toward identifying pathogenic cell states of rheumatoid arthritis. Immunol Rev. 2020;294(1):188–204.

    Article  CAS  PubMed  Google Scholar 

  8. Mellado M, et al. T cell migration in rheumatoid arthritis. Front Immunol. 2015;6:384.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Weyand CM, Goronzy JJ. Aging of the immune system mechanisms and therapeutic targets. Ann Am Thorac Soc. 2016;13(Suppl 5):S422–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shirakawa K, Sano M. T cell immunosenescence in aging, obesity, and cardiovascular disease. Cells. 2021;10(9):2435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mittelbrunn M, Kroemer G. Hallmarks of T cell aging. Nat Immunol. 2021;22(6):687–98.

    Article  CAS  PubMed  Google Scholar 

  12. Moro-Garcia MA, et al. Influence of inflammation in the process of T lymphocyte differentiation: proliferative, metabolic, and oxidative changes. Front Immunol. 2018;9:339.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nikolich-Zugich J. The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol. 2018;19(1):10–9.

    Article  CAS  PubMed  Google Scholar 

  14. Goh J et al. Targeting the molecular and cellular pillars of human aging with exercise. FEBS J. 2021

  15. Covre LP, et al. The role of senescent T cells in immunopathology. Aging Cell. 2020;19(12): e13272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bektas A, et al. Human T cell immunosenescence and inflammation in aging. J Leukoc Biol. 2017;102(4):977–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bauer ME. Accelerated immunosenescence in rheumatoid arthritis: impact on clinical progression. Immun Ageing. 2020;17:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gonzalez-Osuna L, et al. Premature senescence of T-cells favors bone loss during osteolytic diseases a new concern in the osteoimmunology arena. Aging Dis. 2021;12(5):1150–61.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sood A, Raji MA. Cognitive impairment in elderly patients with rheumatic disease and the effect of disease-modifying anti-rheumatic drugs. Clin Rheumatol. 2021;40(4):1221–31.

    Article  PubMed  Google Scholar 

  20. Koetz K, et al. T cell homeostasis in patients with rheumatoid arthritis. Proc Natl Acad Sci U S A. 2000;97(16):9203–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fessler J, Angiari S. The role of T cell senescence in neurological diseases and its regulation by cellular metabolism. Front Immunol. 2021;12: 706434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weyand CM, Yang Z, Goronzy JJ. T-cell aging in rheumatoid arthritis. Curr Opin Rheumatol. 2014;26(1):93–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kunkl M, et al. T helper cells: the modulators of inflammation in multiple sclerosis. Cells. 2020;9(2):482.

    Article  CAS  PubMed Central  Google Scholar 

  24. Weyand CM, Goronzy JJ. Immunometabolism in the development of rheumatoid arthritis. Immunol Rev. 2020;294(1):177–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Petersen LE, et al. Characterization of senescence biomarkers in rheumatoid arthritis: relevance to disease progression. Clin Rheumatol. 2019;38(10):2909–15.

    Article  PubMed  Google Scholar 

  26. Trintinaglia L, et al. Features of immunosenescence in women newly diagnosed with breast cancer. Front Immunol. 2018;9:1651.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Plunkett FJ, et al. The loss of telomerase activity in highly differentiated CD8+CD28-CD27- T cells is associated with decreased Akt (Ser473) phosphorylation. J Immunol. 2007;178(12):7710–9.

    Article  CAS  PubMed  Google Scholar 

  28. Barbe-Tuana F, et al. The interplay between immunosenescence and age-related diseases. Semin Immunopathol. 2020;42(5):545–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fessler J, et al. Premature senescence of T-cell subsets in axial spondyloarthritis. Ann Rheum Dis. 2016;75(4):748–54.

    Article  CAS  PubMed  Google Scholar 

  30. Luque-Campos N, et al. Mesenchymal stem cells improve rheumatoid arthritis progression by controlling memory T cell response. Front Immunol. 2019;10:798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Minato N, Hattori M, Hamazaki Y. Physiology and pathology of T-cell aging. Int Immunol. 2020;32(4):223–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goronzy JJ, Weyand CM. Mechanisms underlying T cell ageing. Nat Rev Immunol. 2019;19(9):573–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang Y, et al. Germline genetic patterns underlying familial rheumatoid arthritis, systemic lupus erythematosus and primary Sjogren’s syndrome highlight T cell-initiated autoimmunity. Ann Rheum Dis. 2020;79(2):268–75.

    Article  CAS  PubMed  Google Scholar 

  34. Kroemer G, Zitvogel L. CD4(+) T cells at the center of inflammaging. Cell Metab. 2020;32(1):4–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Muscate F, Woestemeier A, Gagliani N. Functional heterogeneity of CD4(+) T cells in liver inflammation. Semin Immunopathol. 2021;43(4):549–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Morgan J, et al. Classical CD4 T cells as the cornerstone of antimycobacterial immunity. Immunol Rev. 2021;301(1):10–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. van der Geest KSM, et al. Aging disturbs the balance between effector and regulatory CD4+ T cells. Exp Gerontol. 2014;60:190–6.

    Article  PubMed  Google Scholar 

  38. Chemin K, Gerstner C, Malmstrom V. Effector functions of CD4+ T cells at the site of local autoimmune inflammation-lessons from rheumatoid arthritis. Front Immunol. 2019;10:353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ruterbusch M, et al. In vivo CD4(+) T cell differentiation and function: revisiting the Th1/Th2 paradigm. Annu Rev Immunol. 2020;38:705–25.

    Article  CAS  PubMed  Google Scholar 

  40. Schmitt V, Rink L, Uciechowski P. The Th17/Treg balance is disturbed during aging. Exp Gerontol. 2013;48(12):1379–86.

    Article  CAS  PubMed  Google Scholar 

  41. Kumar P, Bhattacharya P, Prabhakar BS. A comprehensive review on the role of co-signaling receptors and treg homeostasis in autoimmunity and tumor immunity. J Autoimmun. 2018;95:77–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bharath LP, et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab. 2020;32(1):44–55 (e6).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sahmatova L, et al. Signs of innate immune activation and premature immunosenescence in psoriasis patients. Sci Rep. 2017;7(1):7553.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ouyang X, et al. Potentiation of Th17 cytokines in aging process contributes to the development of colitis. Cell Immunol. 2011;266(2):208–17.

    Article  CAS  PubMed  Google Scholar 

  45. Lucas C, Perdriger A, Ame P. Definition of B cell helper T cells in rheumatoid arthritis and their behavior during treatment. Semin Arthritis Rheum. 2020;50(5):867–72.

    Article  CAS  PubMed  Google Scholar 

  46. Scott DL, Wolfe F, Huizinga TW. Rheumatoid arthritis. Lancet. 2010;376(9746):1094–108.

    Article  PubMed  Google Scholar 

  47. Kerola AM, et al. Incidence, sociodemographic factors and treatment penetration of rheumatoid arthritis and psoriatic arthritis in Norway. Semin Arthritis Rheum. 2021;51(5):1081–8.

    Article  PubMed  Google Scholar 

  48. Chalan P, et al. Rheumatoid arthritis, immunosenescence and the hallmarks of aging. Curr Aging Sci. 2015;8(2):131–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lenaers G, et al. Dysfunctional T cell mitochondria lead to premature aging. Trends Mol Med. 2020;26(9):799–800.

    Article  CAS  PubMed  Google Scholar 

  50. Shao L, Goronzy JJ, Weyand CM. DNA-dependent protein kinase catalytic subunit mediates T-cell loss in rheumatoid arthritis. EMBO Mol Med. 2010;2(10):415–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Costenbader KH, et al. Immunosenescence and rheumatoid arthritis: does telomere shortening predict impending disease? Autoimmun Rev. 2011;10(9):569–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lopez-Otin C, et al. The hallmarks of aging. Cell. 2013;153(6):1194–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chavez MD, Tse HM. Targeting mitochondrial-derived reactive oxygen species in T cell-mediated autoimmune diseases. Front Immunol. 2021;12: 703972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Papadaki HA, et al. Bone marrow progenitor cell reserve and function and stromal cell function are defective in rheumatoid arthritis: evidence for a tumor necrosis factor alpha-mediated effect. Blood. 2002;99(5):1610–9.

    Article  CAS  PubMed  Google Scholar 

  55. Goronzy JJ, Weyand CM. Aging, autoimmunity and arthritis: T-cell senescence and contraction of T-cell repertoire diversity—catalysts of autoimmunity and chronic inflammation. Arthritis Res Ther. 2003;5(5):225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li Z, Guo J, Bi L. Role of the NLRP3 inflammasome in autoimmune diseases. Biomed Pharmacother. 2020;130: 110542.

    Article  CAS  PubMed  Google Scholar 

  57. Patlán M, et al. Relative increase of Th17 phenotype in senescent CD4+CD28null T cells from peripheral blood of patients with rheumatoid arthritis. Clin Exp Rheumatol. 2021;39(4):925–6.

    Article  PubMed  Google Scholar 

  58. Martin DE, et al. Targeting aging: lessons learned from immunometabolism and cellular senescence. Front Immunol. 2021;12: 714742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Qiu J, et al. Metabolic control of autoimmunity and tissue inflammation in rheumatoid arthritis. Front Immunol. 2021;12: 652771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. ElTanbouly MA, Noelle RJ. Rethinking peripheral T cell tolerance: checkpoints across a T cell’s journey. Nat Rev Immunol. 2021;21(4):257–67.

    Article  CAS  PubMed  Google Scholar 

  61. Darrigues J, van Meerwijk JPM, Romagnoli P. Age-dependent changes in regulatory t lymphocyte development and function: a mini-review. Gerontology. 2018;64(1):28–35.

    Article  CAS  PubMed  Google Scholar 

  62. Guo Z, et al. DCAF1 regulates treg senescence via the ROS axis during immunological aging. J Clin Invest. 2020;130(11):5893–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang T, et al. Regulatory T cells in rheumatoid arthritis showed increased plasticity toward Th17 but retained suppressive function in peripheral blood. Ann Rheum Dis. 2015;74(6):1293–301.

    Article  CAS  PubMed  Google Scholar 

  64. Zhu Y, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14(4):644–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Robbins PD, et al. Senolytic drugs: reducing senescent cell viability to extend health span. Annu Rev Pharmacol Toxicol. 2021;61:779–803.

    Article  CAS  PubMed  Google Scholar 

  66. Novais EJ, et al. Long-term treatment with senolytic drugs dasatinib and quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nat Commun. 2021;12(1):5213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Birch J, Gil J. Senescence and the SASP: many therapeutic avenues. Genes Dev. 2020;34(23–24):1565–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mannick JB, et al. mTOR inhibition improves immune function in the elderly. Sci Transl Med. 2014;6(268):268ra179.

    Article  PubMed  Google Scholar 

  69. Rathinam VAK, Chan FK. Inflammasome, inflammation, and tissue homeostasis. Trends Mol Med. 2018;24(3):304–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Boothby IC, Cohen JN, Rosenblum MD. Regulatory T cells in skin injury: at the crossroads of tolerance and tissue repair. Sci Immunol. 2020;5(47):eaaz9631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Klose CS, Artis D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol. 2016;17(7):765–74.

    Article  CAS  PubMed  Google Scholar 

  72. Falconer J, et al. Review: synovial cell metabolism and chronic inflammation in rheumatoid arthritis. Arthritis Rheumatol. 2018;70(7):984–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rao DA, et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature. 2017;542(7639):110–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pandya JM, et al. Circulating T helper and T regulatory subsets in untreated early rheumatoid arthritis and healthy control subjects. J Leukoc Biol. 2016;100(4):823–33.

    Article  CAS  PubMed  Google Scholar 

  75. Jeffery LE, et al. Decreased sensitivity to 1,25-dihydroxyvitamin D3 in T cells from the rheumatoid joint. J Autoimmun. 2018;88:50–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Weyand CM, Wu B, Goronzy JJ. The metabolic signature of T cells in rheumatoid arthritis. Curr Opin Rheumatol. 2020;32(2):159–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Salminen A. Increased immunosuppression impairs tissue homeostasis with aging and age-related diseases. J Mol Med (Berl). 2021;99(1):1–20.

    Article  CAS  Google Scholar 

  78. Chen Z, et al. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat Rev Rheumatol. 2019;15(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  79. Fessler J, et al. Novel senescent regulatory T-cell subset with impaired suppressive function in rheumatoid arthritis. Front Immunol. 2017;8:300.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Meyer A, et al. Kinase activity profiling reveals contribution of G-protein signaling modulator 2 deficiency to impaired regulatory T cell migration in rheumatoid arthritis. J Autoimmun. 2021;124:102726.

    Article  CAS  PubMed  Google Scholar 

  81. Corrado M, Pearce EL. Targeting memory T cell metabolism to improve immunity. J Clin Invest, 2022;132(1):e148546.

  82. Fardellone P, et al. Bone Loss, Osteoporosis, and Fractures in Patients with Rheumatoid Arthritis: A Review. J Clin Med. 2020;9(10):3361.

    Article  PubMed Central  Google Scholar 

  83. Komatsu N et al. Plasma cells promote osteoclastogenesis and periarticular bone loss in autoimmune arthritis. J Clin Invest, 2021;131(6):e143060.

  84. Zhao H, Lu A, He X. Roles of MicroRNAs in bone destruction of rheumatoid arthritis. Front Cell Dev Biol. 2020;8: 600867.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Cho SK, et al. Effectiveness of bazedoxifene in preventing glucocorticoid-induced bone loss in rheumatoid arthritis patients. Arthritis Res Ther. 2021;23(1):176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fessler J, et al. Senescent T-cells promote bone loss in rheumatoid arthritis. Front Immunol. 2018;9:95.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wang G, et al. Cycloastragenol attenuates osteoclastogenesis and bone loss by targeting RANKL-induced Nrf2/Keap1/ARE, NF-kappaB, calcium, and NFATc1 pathways. Front Pharmacol. 2021;12: 810322.

    Article  CAS  PubMed  Google Scholar 

  88. Zerbini CAF, et al. Biologic therapies and bone loss in rheumatoid arthritis. Osteoporos Int. 2017;28(2):429–46.

    Article  CAS  PubMed  Google Scholar 

  89. Liu H, et al. NR1D1 modulates synovial inflammation and bone destruction in rheumatoid arthritis. Cell Death Dis. 2020;11(2):129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Finzel S, et al. Comparison of the effects of tocilizumab monotherapy and adalimumab in combination with methotrexate on bone erosion repair in rheumatoid arthritis. Ann Rheum Dis. 2019;78(9):1186–91.

    Article  CAS  PubMed  Google Scholar 

  91. Adam S, et al. JAK inhibition increases bone mass in steady-state conditions and ameliorates pathological bone loss by stimulating osteoblast function. Sci Transl Med. 2020;12(530):eaay4447.

    Article  CAS  PubMed  Google Scholar 

  92. Shim JH, Stavre Z, Gravallese EM. Bone loss in rheumatoid arthritis: basic mechanisms and clinical implications. Calcif Tissue Int. 2018;102(5):533–46.

    Article  CAS  PubMed  Google Scholar 

  93. Cici D, et al. Wnt signaling and biological therapy in rheumatoid arthritis and spondyloarthritis. Int J Mol Sci. 2019;20(22):5552.

    Article  CAS  PubMed Central  Google Scholar 

  94. Szentpetery A, et al. Effects of targeted therapies on the bone in arthritides. Autoimmun Rev. 2017;16(3):313–20.

    Article  CAS  PubMed  Google Scholar 

  95. Najm A, et al. MicroRNA-17-5p reduces inflammation and bone erosions in mice with collagen-induced arthritis and directly targets the JAK/STAT pathway in rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheumatol. 2020;72(12):2030–9.

    Article  CAS  PubMed  Google Scholar 

  96. Bhadricha H, et al. Increased frequency of Th17 cells and IL-17 levels are associated with low bone mineral density in postmenopausal women. Sci Rep. 2021;11(1):16155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell. 2017;66(6):801–17.

    Article  CAS  PubMed  Google Scholar 

  98. Li Y, Goronzy JJ, Weyand CM. DNA damage, metabolism and aging in pro-inflammatory T cells: rheumatoid arthritis as a model system. Exp Gerontol. 2018;105:118–27.

    Article  CAS  PubMed  Google Scholar 

  99. Shao L. DNA damage response signals transduce stress from rheumatoid arthritis risk factors into T cell dysfunction. Front Immunol. 2018;9:3055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ummarino D. Rheumatoid arthritis: DNA repair links T-cell ageing to inflammation. Nat Rev Rheumatol. 2016;12(12):694.

    Article  PubMed  Google Scholar 

  101. Li Y, et al. Deficient activity of the nuclease MRE11A induces T cell aging and promotes arthritogenic effector functions in patients with rheumatoid arthritis. Immunity. 2016;45(4):903–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wiley CD, et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 2016;23(2):303–14.

    Article  CAS  PubMed  Google Scholar 

  103. Li Y, et al. The DNA repair nuclease MRE11A functions as a mitochondrial protector and prevents T cell pyroptosis and tissue inflammation. Cell Metab. 2019;30(3):477–92 (e6).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Certo M, et al. Endothelial cell and T-cell crosstalk: targeting metabolism as a therapeutic approach in chronic inflammation. Br J Pharmacol. 2021;178(10):2041–59.

    Article  CAS  PubMed  Google Scholar 

  105. Weyand CM, Goronzy JJ. Immunometabolism in early and late stages of rheumatoid arthritis. Nat Rev Rheumatol. 2017;13(5):291–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Perl A. mTOR activation is a biomarker and a central pathway to autoimmune disorders, cancer, obesity, and aging. Ann N Y Acad Sci. 2015;1346(1):33–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yang H, et al. MTORC1 coordinates the autophagy and apoptosis signaling in articular chondrocytes in osteoarthritic temporomandibular joint. Autophagy. 2020;16(2):271–88.

    Article  CAS  PubMed  Google Scholar 

  108. Nnah IC, et al. TFEB-driven endocytosis coordinates MTORC1 signaling and autophagy. Autophagy. 2019;15(1):151–64.

    Article  CAS  PubMed  Google Scholar 

  109. Reznick RM, et al. Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab. 2007;5(2):151–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Callender LA, et al. GATA3 induces mitochondrial biogenesis in primary human CD4(+) T cells during DNA damage. Nat Commun. 2021;12(1):3379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ye Z, et al. Regulation of miR-181a expression in T cell aging. Nat Commun. 2018;9(1):3060.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Xiong Y, et al. hPMSCs-derived exosomal miRNA-21 protects against aging-related oxidative damage of CD4(+) T cells by targeting the PTEN/PI3K-Nrf2 axis. Front Immunol. 2021;12: 780897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu X, et al. Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition. Nat Commun. 2018;9(1):249.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Chung JH. The role of DNA-PK in aging and energy metabolism. FEBS J. 2018;285(11):1959–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gamal RM, et al. Telomere dysfunction-related serological markers and oxidative stress markers in rheumatoid arthritis patients: correlation with diseases activity. Clin Rheumatol. 2018;37(12):3239–46.

    Article  PubMed  Google Scholar 

  116. Cao D, et al. Disruption of telomere Integrity and DNA repair machineries by KML001 induces T cell senescence, apoptosis, and cellular dysfunctions. Front Immunol. 2019;10:1152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ji Y, et al. Topological DNA damage, telomere attrition and T cell senescence during chronic viral infections. Immun Ageing. 2019;16:12.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wang Y, et al. Cytoplasmic DNA sensing by KU complex in aged CD4(+) T cell potentiates T cell activation and aging-related autoimmune inflammation. Immunity. 2021;54(4):632–47 (e9).

    Article  CAS  PubMed  Google Scholar 

  119. Yue X, et al. DNA-PKcs: a multi-faceted player in DNA damage response. Front Genet. 2020;11: 607428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cai WW, et al. Metabolic reprogramming as a key regulator in the pathogenesis of rheumatoid arthritis. Inflamm Res. 2020;69(11):1087–101.

    Article  CAS  PubMed  Google Scholar 

  121. Franco F, et al. Metabolic and epigenetic regulation of T-cell exhaustion. Nat Metab. 2020;2(10):1001–12.

    Article  CAS  PubMed  Google Scholar 

  122. Yanes RE, et al. Metabolic reprogramming in memory CD4 T cell responses of old adults. Clin Immunol. 2019;207:58–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Peng H-Y, et al. Metabolic reprogramming and reactive oxygen species in T cell immunity. Front Immunol. 2021;12:652687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. McGuire PJ. Mitochondrial dysfunction and the aging immune system. Biol (Basel). 2019;8(2):26.

    CAS  Google Scholar 

  125. Pucino V, et al. Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4(+) T cell metabolic rewiring. Cell Metab. 2019;30(6):1055–74 (e8).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yang Z, et al. Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Sci Transl Med. 2016;8(331):331ra38.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Davalli P, et al. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev. 2016;2016:3565127.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Lavin MF, et al. ATM-dependent phosphorylation of all three members of the MRN complex: from sensor to adaptor. Biomolecules. 2015;5(4):2877–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Shen Y, et al. Metabolic control of the scaffold protein TKS5 in tissue-invasive, proinflammatory T cells. Nat Immunol. 2017;18(9):1025–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Myers DR, Wheeler B, Roose JP. mTOR and other effector kinase signals that impact T cell function and activity. Immunol Rev. 2019;291(1):134–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lin SC, Hardie DG. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 2018;27(2):299–313.

    Article  CAS  PubMed  Google Scholar 

  132. Zeng H, Chi H. mTOR and lymphocyte metabolism. Curr Opin Immunol. 2013;25(3):347–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lamming DW, Bar-Peled L. Lysosome: the metabolic signaling hub. Traffic. 2019;20(1):27–38.

    Article  CAS  PubMed  Google Scholar 

  134. Kundu-Raychaudhuri S, Abria C, Raychaudhuri SP. IL-9, a local growth factor for synovial T cells in inflammatory arthritis. Cytokine. 2016;79:45–51.

    Article  CAS  PubMed  Google Scholar 

  135. Pegoretti V, et al. Selective modulation of TNF-TNFRs signaling: insights for multiple sclerosis treatment. Front Immunol. 2018;9:925.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Su YJ, Wang PW, Weng SW. The role of mitochondria in immune-cell-mediated tissue regeneration and ageing. Int J Mol Sci. 2021;22(5):2668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Correia-Melo C, et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016;35(7):724–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Callender LA, et al. Mitochondrial mass governs the extent of human T cell senescence. Aging Cell. 2020;19(2): e13067.

    Article  CAS  PubMed  Google Scholar 

  139. Schroth J, Henson SM. Mitochondrial dysfunction accelerates ageing. Immunometabolism. 2020;2(4): e200035.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Clayton SA, et al. Mitochondria as key players in the pathogenesis and treatment of rheumatoid arthritis. Front Immunol. 2021;12: 673916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jiang Y, et al. Caveolin-1 controls mitochondrial damage and ROS production by regulating fission-fusion dynamics and mitophagy. Redox Biol. 2022;52: 102304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Moro L. Mitochondrial dysfunction in aging and cancer. J Clin Med. 2019;8(11):1983.

    Article  CAS  PubMed Central  Google Scholar 

  143. Fakouri NB, et al. Toward understanding genomic instability, mitochondrial dysfunction and aging. FEBS J. 2019;286(6):1058–73.

    Article  CAS  PubMed  Google Scholar 

  144. Raz Y, et al. Activation-induced autophagy Is preserved in CD4+ T-cells in familial longevity. J Gerontol A Biol Sci Med Sci. 2017;72(9):1201–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bektas A, et al. Age-associated changes in human CD4(+) T cells point to mitochondrial dysfunction consequent to impaired autophagy. Aging (Albany NY). 2019;11(21):9234–63.

    Article  CAS  Google Scholar 

  146. Vaena S, et al. Aging-dependent mitochondrial dysfunction mediated by ceramide signaling inhibits antitumor T cell response. Cell Rep. 2021;35(5): 109076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wyman B, Perl A. Metabolic pathways mediate pathogenesis and offer targets for treatment in rheumatic diseases. Curr Opin Rheumatol. 2020;32(2):184–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tan S, et al. Platelet factor 4 enhances CD4(+) T effector memory cell responses via Akt-PGC1alpha-TFAM signaling-mediated mitochondrial biogenesis. J Thromb Haemost. 2020;18(10):2685–700.

    Article  CAS  PubMed  Google Scholar 

  149. Diot A, Morten K, Poulton J. Mitophagy plays a central role in mitochondrial ageing. Mamm Genome. 2016;27(7–8):381–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Willinger T, Flavell RA. Canonical autophagy dependent on the class III phosphoinositide-3 kinase Vps34 is required for naive T-cell homeostasis. Proc Natl Acad Sci USA. 2012;109(22):8670–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Baixauli F, et al. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses. Cell Metab. 2015;22(3):485–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wu D, Prives C. Relevance of the p53-MDM2 axis to aging. Cell Death Differ. 2018;25(1):169–79.

    Article  CAS  PubMed  Google Scholar 

  153. Blandino G, et al. Wild type- and mutant p53 proteins in mitochondrial dysfunction: emerging insights in cancer disease. Semin Cell Dev Biol. 2020;98:105–17.

    Article  CAS  PubMed  Google Scholar 

  154. Liu B, Li J, Cairns MJ. Identifying miRNAs, targets and functions. Brief Bioinform. 2014;15(1):1–19.

    Article  PubMed  Google Scholar 

  155. Kabekkodu SP, et al. Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc. 2018;93(4):1955–86.

    Article  PubMed  Google Scholar 

  156. Lu Q, et al. miRNAs as therapeutic targets in inflammatory disease. Trends Pharmacol Sci. 2019;40(11):853–65.

    Article  CAS  PubMed  Google Scholar 

  157. Kroesen BJ, et al. Immuno-miRs: critical regulators of T-cell development, function and ageing. Immunology. 2015;144(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  158. Kim C, et al. miR-181a-regulated pathways in T-cell differentiation and aging. Immun Ageing. 2021;18(1):28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Gustafson CE, et al. Functional pathways regulated by microRNA networks in CD8 T-cell aging. Aging Cell. 2019;18(1): e12879.

    Article  PubMed  Google Scholar 

  160. Hammaker D, Firestein GS. Epigenetics of inflammatory arthritis. Curr Opin Rheumatol. 2018;30(2):188–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Teteloshvili N, et al. Involvement of MicroRNAs in the aging-related decline of CD28 expression by human T cells. Front Immunol. 2018;9:1400.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Yang P, et al. MicroRNA let-7g-5p alleviates murine collagen-induced arthritis by inhibiting Th17 cell differentiation. Biochem Pharmacol. 2020;174: 113822.

    Article  CAS  PubMed  Google Scholar 

  163. Jin S, et al. Protectin DX restores Treg/Th17 cell balance in rheumatoid arthritis by inhibiting NLRP3 inflammasome via miR-20a. Cell Death Dis. 2021;12(3):280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Cheng NL, et al. MicroRNA-125b modulates inflammatory chemokine CCL4 expression in immune cells and its reduction causes CCL4 increase with age. Aging Cell. 2015;14(2):200–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Evangelatos G, et al. MicroRNAs in rheumatoid arthritis: from pathogenesis to clinical impact. Autoimmun Rev. 2019;18(11): 102391.

    Article  CAS  PubMed  Google Scholar 

  166. Cunningham CC, et al. Serum miRNA signature in rheumatoid arthritis and “at-risk individuals.” Front Immunol. 2021;12: 633201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Guo D, et al. Study of miRNA interactome in active rheumatoid arthritis patients reveals key pathogenic roles of dysbiosis in the infection-immune network. Rheumatol (Oxford). 2021;60(3):1512–22.

    Article  CAS  Google Scholar 

  168. Hanlon P, et al. Frailty in rheumatoidrmdopen arthritis and its relationship with disease activity, hospitalisation and mortality: a longitudinal analysis of the scottish early rheumatoid arthritis cohort and UK Biobank. RMD Open. 2022;8(1):e002111.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Salaffi F et al. Inflammaging and frailty in immune-mediated rheumatic diseases: how to address and score the issue. Clin Rev Allergy Immunol. 2022;8(1):e002111.

Download references

Acknowledgements

The authors wish to acknowledge Anhui engineering technology research center of biochemical pharmaceutical for the support of experimental equipment.

Funding

This work was supported by grants from the National Natural Science Foundation of China (81703529), 512 Talent Training Program of Bengbu Medical College (by51202203), the Major research project of Education Department of Anhui Province (KJ2021ZD0086), Scientific and Technological Collaboration Project of Bengbu and Bengbu Medical College (BYLK201819), The Innovation and Entrepreneurship Project Plan of National Undergraduate Support Project of China (202010367037, 202110367020).

Author information

Authors and Affiliations

Authors

Contributions

YG designed and conducted the literature review and drafted the manuscript. WC, YZ, YL, and JC conducted the literature review. FW designed and conceptualized the manuscript. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Fang Wei.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Responsible Editor: Jason J. McDougall.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Cai, W., Zhou, Y. et al. Immunosenescence of T cells: a key player in rheumatoid arthritis. Inflamm. Res. 71, 1449–1462 (2022). https://doi.org/10.1007/s00011-022-01649-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01649-0

Keywords

Navigation