Skip to main content

Advertisement

Log in

γ-radiation-induced γH2AX formation occurs preferentially in actively transcribing euchromatic loci

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The central dogma in radiation biology is that nuclear DNA is the critical target with respect to radiosensitivity. In accordance with the theoretical expectations, and in the absence of a conclusive model, the general consensus in the field has been to view chromatin as a homogeneous template for DNA damage and repair. This paradigm has been called into question by recent findings indicating a disparity in γ-irradiation-induced γH2AX foci formation in euchromatin and heterochromatin. Here, we have extended those studies and provide evidence that γH2AX foci form preferentially in actively transcribing euchromatin following γ-irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    Article  CAS  PubMed  Google Scholar 

  2. Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146:905–916

    Article  CAS  PubMed  Google Scholar 

  3. Karagiannis TC, Harikrishnan KN, El-Osta A (2007) Disparity of histone deacetylase inhibition on repair of radiation-induced DNA damage on euchromatin and constitutive heterochromatin compartments. Oncogene 26:3963–3971

    Article  CAS  PubMed  Google Scholar 

  4. Kim JA, Kruhlak M, Dotiwala F, Nussenzweig A, Haber JE (2007) Heterochromatin is refractory to gamma-H2AX modification in yeast and mammals. J Cell Biol 178:209–218

    Article  CAS  PubMed  Google Scholar 

  5. Kinner A, Wu W, Staudt C, Iliakis G (2008) Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 36:5678–5694

    Article  CAS  PubMed  Google Scholar 

  6. Cowell IG, Sunter NJ, Singh PB, Austin CA, Durkacz BW, Tilby MJ (2007) gammaH2AX foci form preferentially in euchromatin after ionising-radiation. PLoS ONE 2:e1057

    Article  PubMed  Google Scholar 

  7. Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849

    Article  CAS  PubMed  Google Scholar 

  8. Peters AH, Mermoud JE, O’Carroll D, Pagani M, Schweizer D, Brockdorff N, Jenuwein T (2002) Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nat Genet 30:77–80

    Article  CAS  PubMed  Google Scholar 

  9. Ruthenburg AJ, Allis CD, Wysocka J (2007) Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 25:15–30

    Article  CAS  PubMed  Google Scholar 

  10. Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Lobrich M, Jeggo PA (2008) ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 31:167–177

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The support of the Australian Institute of Nuclear Science and Engineering is acknowledged. T.C.K. was the recipient of AINSE awards and is supported by the National Health and Medical Research Council of Australia (566559). R.V. is supported by a Melbourne Research Scholarship from the University of Melbourne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assam El-Osta.

Additional information

R. S. Vasireddy and T.C. Karagiannis contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasireddy, R.S., Karagiannis, T.C. & El-Osta, A. γ-radiation-induced γH2AX formation occurs preferentially in actively transcribing euchromatic loci. Cell. Mol. Life Sci. 67, 291–294 (2010). https://doi.org/10.1007/s00018-009-0181-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0181-5

Keywords

Navigation