Skip to main content
Log in

Histone deacetylase inhibitors augment doxorubicin-induced DNA damage in cardiomyocytes

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutics with suberoylanilide hydroxamic acid (Vorinostat) and depsipeptide (Romidepsin) already being approved for clinical use. Numerous studies have identified that histone deacetylase inhibitors will be most effective in the clinic when used in combination with conventional cancer therapies such as ionizing radiation and chemotherapeutic agents. One promising combination, particularly for hematologic malignancies, involves the use of histone deacetylase inhibitors with the anthracycline, doxorubicin. However, we previously identified that trichostatin A can potentiate doxorubicin-induced hypertrophy, the dose-limiting side-effect of the anthracycline, in cardiac myocytes. Here we have the extended the earlier studies and evaluated the effects of combinations of the histone deacetylase inhibitors, trichostatin A, valproic acid and sodium butyrate on doxorubicin-induced DNA double-strand breaks in cardiomyocytes. Using γH2AX as a molecular marker for the DNA lesions, we identified that all of the broad-spectrum histone deacetylase inhibitors tested augment doxorubicin-induced DNA damage. Furthermore, it is evident from the fluorescence photomicrographs of stained nuclei that the histone deacetylase inhibitors also augment doxorubicin-induced hypertrophy. These observations highlight the importance of investigating potential side-effects, in relevant model systems, which may be associated with emerging combination therapies for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Marks PA (2010) The clinical development of histone deacetylase inhibitors as targeted anticancer drugs. Expert Opin Investig Drugs 19(9):1049–1066. doi:10.1517/13543784.2010.510514

    Article  PubMed  CAS  Google Scholar 

  2. Grant C, Rahman F, Piekarz R, Peer C, Frye R, Robey RW, Gardner ER, Figg WD, Bates SE (2010) Romidepsin: a new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors. Expert Rev Anticancer Ther 10(7):997–1008. doi:10.1586/era.10.88

    Article  PubMed  CAS  Google Scholar 

  3. Marks PA, Xu WS (2009) Histone deacetylase inhibitors: potential in cancer therapy. J Cell Biochem 107(4):600–608. doi:10.1002/jcb.22185

    Article  PubMed  CAS  Google Scholar 

  4. Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6(1):38–51. doi:10.1038/nrc1779

    Article  PubMed  CAS  Google Scholar 

  5. Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5(10):981–989. doi:10.1158/1541-7786.MCR-07-0324

    Article  PubMed  CAS  Google Scholar 

  6. Frew AJ, Johnstone RW, Bolden JE (2009) Enhancing the apoptotic and therapeutic effects of HDAC inhibitors. Cancer Lett 280(2):125–133. doi:10.1016/j.canlet.2009.02.042

    Article  PubMed  CAS  Google Scholar 

  7. Rasheed W, Bishton M, Johnstone RW, Prince HM (2008) Histone deacetylase inhibitors in lymphoma and solid malignancies. Expert Rev Anticancer Ther 8(3):413–432. doi:10.1586/14737140.8.3.413

    Article  PubMed  CAS  Google Scholar 

  8. Singh BN, Zhang G, Hwa YL, Li J, Dowdy SC, Jiang SW (2010) Nonhistone protein acetylation as cancer therapy targets. Expert Rev Anticancer Ther 10(6):935–954. doi:10.1586/era.10.62

    Article  PubMed  CAS  Google Scholar 

  9. Bots M, Johnstone RW (2009) Rational combinations using HDAC inhibitors. Clin Cancer Res 15(12):3970–3977. doi:10.1158/1078-0432.CCR-08-2786

    Article  PubMed  CAS  Google Scholar 

  10. Richon VM, Garcia-Vargas J, Hardwick JS (2009) Development of vorinostat: current applications and future perspectives for cancer therapy. Cancer Lett 280(2):201–210. doi:10.1016/j.canlet.2009.01.002

    Article  PubMed  CAS  Google Scholar 

  11. Chen CS, Wang YC, Yang HC, Huang PH, Kulp SK, Yang CC, Lu YS, Matsuyama S, Chen CY (2007) Histone deacetylase inhibitors sensitize prostate cancer cells to agents that produce DNA double-strand breaks by targeting Ku70 acetylation. Cancer Res 67(11):5318–5327. doi:10.1158/0008-5472.CAN-06-3996

    Article  PubMed  CAS  Google Scholar 

  12. Harikrishnan KN, Karagiannis TC, Chow MZ, El-Osta A (2008) Effect of valproic acid on radiation-induced DNA damage in euchromatic and heterochromatic compartments. Cell Cycle 7(4):468–476

    Article  PubMed  CAS  Google Scholar 

  13. Karagiannis TC, Harikrishnan KN, El-Osta A (2005) The histone deacetylase inhibitor, Trichostatin A, enhances radiation sensitivity and accumulation of gammaH2A.X. Cancer Biol Ther 4(7):787–793

    Article  PubMed  CAS  Google Scholar 

  14. Karagiannis TC, Harikrishnan KN, El-Osta A (2007) Disparity of histone deacetylase inhibition on repair of radiation-induced DNA damage on euchromatin and constitutive heterochromatin compartments. Oncogene 26(27):3963–3971. doi:10.1038/sj.onc.1210174

    Article  PubMed  CAS  Google Scholar 

  15. Karagiannis TC, Kn H, El-Osta A (2006) The epigenetic modifier, valproic acid, enhances radiation sensitivity. Epigenetics 1(3):131–137

    Article  PubMed  Google Scholar 

  16. Munshi A, Kurland JF, Nishikawa T, Tanaka T, Hobbs ML, Tucker SL, Ismail S, Stevens C, Meyn RE (2005) Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin Cancer Res 11(13):4912–4922. doi:10.1158/1078-0432.CCR-04-2088

    Article  PubMed  CAS  Google Scholar 

  17. Munster P, Marchion D, Bicaku E, Lacevic M, Kim J, Centeno B, Daud A, Neuger A, Minton S, Sullivan D (2009) Clinical and biological effects of valproic acid as a histone deacetylase inhibitor on tumor and surrogate tissues: phase I/II trial of valproic acid and epirubicin/FEC. Clin Cancer Res 15(7):2488–2496. doi:10.1158/1078-0432.CCR-08-1930

    Article  PubMed  CAS  Google Scholar 

  18. Schuchmann M, Schulze-Bergkamen H, Fleischer B, Schattenberg JM, Siebler J, Weinmann A, Teufel A, Worns M, Fischer T, Strand S, Lohse AW, Galle PR (2006) Histone deacetylase inhibition by valproic acid down-regulates c-FLIP/CASH and sensitizes hepatoma cells towards CD95- and TRAIL receptor-mediated apoptosis and chemotherapy. Oncol Rep 15(1):227–230

    PubMed  CAS  Google Scholar 

  19. Namdar M, Perez G, Ngo L, Marks PA (2010) Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proc Natl Acad Sci USA 107(46):20003–20008. doi:10.1073/pnas.1013754107

    Article  PubMed  CAS  Google Scholar 

  20. Lee JH, Choy ML, Ngo L, Foster SS, Marks PA (2010) Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. Proc Natl Acad Sci USA 107(33):14639–14644. doi:10.1073/pnas.1008522107

    Article  PubMed  CAS  Google Scholar 

  21. Karagiannis TC, Lin AJ, Ververis K, Chang L, Tang MM, Okabe J, El-Osta A (2010) Trichostatin A accentuates doxorubicin-induced hypertrophy in cardiac myocytes. Aging (Albany NY) 2(10):659–668

    CAS  Google Scholar 

  22. Hortobagyi GN (1997) Anthracyclines in the treatment of cancer. An overview. Drugs 54(Suppl 4):1–7

    Article  PubMed  CAS  Google Scholar 

  23. Young RC, Ozols RF, Myers CE (1981) The anthracycline antineoplastic drugs. N Engl J Med 305(3):139–153. doi:10.1056/NEJM198107163050305

    Article  PubMed  CAS  Google Scholar 

  24. Mordente A, Meucci E, Martorana GE, Giardina B, Minotti G (2001) Human heart cytosolic reductases and anthracycline cardiotoxicity. IUBMB Life 52(1–2):83–88. doi:10.1080/15216540252774829

    PubMed  CAS  Google Scholar 

  25. Olson RD, Mushlin PS (1990) Doxorubicin cardiotoxicity: analysis of prevailing hypotheses. FASEB J 4(13):3076–3086

    PubMed  CAS  Google Scholar 

  26. Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97(11):2869–2879. doi:10.1002/cncr.11407

    Article  PubMed  CAS  Google Scholar 

  27. Weiss RB (1992) The anthracyclines: will we ever find a better doxorubicin? Semin Oncol 19(6):670–686

    PubMed  CAS  Google Scholar 

  28. Zordoky BN, El-Kadi AO (2008) Induction of several cytochrome P450 genes by doxorubicin in H9c2 cells. Vascul Pharmacol 49(4–6):166–172. doi:10.1016/j.vph.2008.07.004

    Article  PubMed  CAS  Google Scholar 

  29. Vasireddy RS, Tang MM, Mah LJ, Georgiadis GT, El-Osta A, Karagiannis TC (2010) Evaluation of the spatial distribution of gammaH2AX following ionizing radiation. J Vis Exp (42).doi:10.3791/2203

  30. Mah LJ, Vasireddy RS, Tang MM, Georgiadis GT, El-Osta A, Karagiannis TC (2010) Quantification of gammaH2AX foci in response to ionising radiation. J Vis Exp (38).doi:10.3791/1957

  31. Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, Pommier Y (2008) GammaH2AX and cancer. Nat Rev Cancer 8(12):957–967. doi:10.1038/nrc2523

    Article  PubMed  CAS  Google Scholar 

  32. Mah LJ, El-Osta A, Karagiannis TC (2010) gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24(4):679–686. doi:10.1038/leu.2010.6

    Article  PubMed  CAS  Google Scholar 

  33. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868

    Article  PubMed  CAS  Google Scholar 

  34. Kimes BW, Brandt BL (1976) Properties of a clonal muscle cell line from rat heart. Exp Cell Res 98(2):367–381

    Article  PubMed  CAS  Google Scholar 

  35. Menard C, Pupier S, Mornet D, Kitzmann M, Nargeot J, Lory P (1999) Modulation of L-type calcium channel expression during retinoic acid-induced differentiation of H9C2 cardiac cells. J Biol Chem 274(41):29063–29070

    Article  PubMed  CAS  Google Scholar 

  36. Chien KR, Knowlton KU, Zhu H, Chien S (1991) Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J 5(15):3037–3046

    PubMed  CAS  Google Scholar 

  37. Merten KE, Jiang Y, Feng W, Kang YJ (2006) Calcineurin activation is not necessary for Doxorubicin-induced hypertrophy in H9c2 embryonic rat cardiac cells: involvement of the phosphoinositide 3-kinase-Akt pathway. J Pharmacol Exp Ther 319(2):934–940. doi:10.1124/jpet.106.108845

    Article  PubMed  CAS  Google Scholar 

  38. McMullen JR, Jennings GL (2007) Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol 34(4):255–262. doi:10.1111/j.1440-1681.2007.04585.x

    Article  PubMed  CAS  Google Scholar 

  39. Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79. doi:10.1146/annurev.physiol.65.092101

    Article  PubMed  CAS  Google Scholar 

  40. Ho KK, Pinsky JL, Kannel WB, Levy D (1993) The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol 22(4 Suppl A):6A–13A

    Article  PubMed  CAS  Google Scholar 

  41. Lloyd-Jones DM, Larson MG, Leip EP, Beiser A, D’Agostino RB, Kannel WB, Murabito JM, Vasan RS, Benjamin EJ, Levy D (2002) Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation 106(24):3068–3072

    Article  PubMed  Google Scholar 

  42. Salvatorelli E, Guarnieri S, Menna P, Liberi G, Calafiore AM, Mariggio MA, Mordente A, Gianni L, Minotti G (2006) Defective one- or two-electron reduction of the anticancer anthracycline epirubicin in human heart. Relative importance of vesicular sequestration and impaired efficiency of electron addition. J Biol Chem 281(16):10990–11001

    Article  PubMed  CAS  Google Scholar 

  43. Ikegami E, Fukazawa R, Kanbe M, Watanabe M, Abe M, Kamisago M, Hajikano M, Katsube Y, Ogawa S (2007) Edaravone, a potent free radical scavenger, prevents anthracycline-induced myocardial cell death. Circ J 71(11):1815–1820. doi:JST.JSTAGE/circj/71.1815

    Article  PubMed  CAS  Google Scholar 

  44. Kim DS, Kim HR, Woo ER, Hong ST, Chae HJ, Chae SW (2005) Inhibitory effects of rosmarinic acid on adriamycin-induced apoptosis in H9c2 cardiac muscle cells by inhibiting reactive oxygen species and the activations of c-Jun N-terminal kinase and extracellular signal-regulated kinase. Biochem Pharmacol 70(7):1066–1078. doi:10.1016/j.bcp.2005.06.026

    Article  PubMed  CAS  Google Scholar 

  45. Kim DS, Woo ER, Chae SW, Ha KC, Lee GH, Hong ST, Kwon DY, Kim MS, Jung YK, Kim HM, Kim HK, Kim HR, Chae HJ (2007) Plantainoside D protects adriamycin-induced apoptosis in H9c2 cardiac muscle cells via the inhibition of ROS generation and NF-kappaB activation. Life Sci 80(4):314–323. doi:10.1016/j.lfs.2006.09.019

    Article  PubMed  CAS  Google Scholar 

  46. Li K, Sung RY, Huang WZ, Yang M, Pong NH, Lee SM, Chan WY, Zhao H, To MY, Fok TF, Li CK, Wong YO, Ng PC (2006) Thrombopoietin protects against in vitro and in vivo cardiotoxicity induced by doxorubicin. Circulation 113(18):2211–2220. doi:10.1161/CIRCULATIONAHA.105.560250

    Article  PubMed  CAS  Google Scholar 

  47. Mohamed HE, Asker ME, Ali SI, el-Fattah TM (2004) Protection against doxorubicin cardiomyopathy in rats: role of phosphodiesterase inhibitors type 4. J Pharm Pharmacol 56(6):757–768. doi:10.1211/0022357023565

    Article  PubMed  CAS  Google Scholar 

  48. Spallarossa P, Garibaldi S, Altieri P, Fabbi P, Manca V, Nasti S, Rossettin P, Ghigliotti G, Ballestrero A, Patrone F, Barsotti A, Brunelli C (2004) Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol 37(4):837–846. doi:10.1016/j.yjmcc.2004.05.024

    Article  PubMed  CAS  Google Scholar 

  49. Blagosklonny MV, Hall MN (2009) Growth and aging: a common molecular mechanism. Aging (Albany NY) 1(4):357–362

    CAS  Google Scholar 

  50. Demidenko ZN, Blagosklonny MV (2009) Quantifying pharmacologic suppression of cellular senescence: prevention of cellular hypertrophy versus preservation of proliferative potential. Aging (Albany NY) 1(12):1008–1016

    CAS  Google Scholar 

  51. Demidenko ZN, Zubova SG, Bukreeva EI, Pospelov VA, Pospelova TV, Blagosklonny MV (2009) Rapamycin decelerates cellular senescence. Cell Cycle 8(12):1888–1895. doi:8606[pii]

    Article  PubMed  CAS  Google Scholar 

  52. Dickey JS, Redon CE, Nakamura AJ, Baird BJ, Sedelnikova OA, Bonner WM (2009) H2AX: functional roles and potential applications. Chromosoma 118(6):683–692. doi:10.1007/s00412-009-0234-4

    Article  PubMed  CAS  Google Scholar 

  53. Chua CC, Liu X, Gao J, Hamdy RC, Chua BH (2006) Multiple actions of pifithrin-alpha on doxorubicin-induced apoptosis in rat myoblastic H9c2 cells. Am J Physiol Heart Circ Physiol 290(6):H2606–H2613. doi:10.1152/ajpheart.01138.2005

    Article  PubMed  CAS  Google Scholar 

  54. L’Ecuyer T, Sanjeev S, Thomas R, Novak R, Das L, Campbell W, Heide RV (2006) DNA damage is an early event in doxorubicin-induced cardiac myocyte death. Am J Physiol Heart Circ Physiol 291(3):H1273–H1280. doi:10.1152/ajpheart.00738.2005

    Article  PubMed  Google Scholar 

  55. Liu J, Mao W, Ding B, Liang CS (2008) ERKs/p53 signal transduction pathway is involved in doxorubicin-induced apoptosis in H9c2 cells and cardiomyocytes. Am J Physiol Heart Circ Physiol 295(5):H1956–H1965. doi:10.1152/ajpheart.00407.2008

    Article  PubMed  CAS  Google Scholar 

  56. Kim J, Park H, Im JY, Choi WS, Kim HS (2007) Sodium butyrate regulates androgen receptor expression and cell cycle arrest in human prostate cancer cells. Anticancer Res 27(5):3285–3292

    PubMed  CAS  Google Scholar 

  57. Antos CL, McKinsey TA, Dreitz M, Hollingsworth LM, Zhang CL, Schreiber K, Rindt H, Gorczynski RJ, Olson EN (2003) Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors. J Biol Chem 278(31):28930–28937. doi:10.1074/jbc.M303113200

    Article  PubMed  CAS  Google Scholar 

  58. Sprigg L, Li A, Choy FY, Ausio J (2010) Interaction of daunomycin with acetylated chromatin. J Med Chem 53(17):6457–6465. doi:10.1021/jm1007853

    Article  PubMed  CAS  Google Scholar 

  59. Karagiannis TC, El-Osta A (2007) Will broad-spectrum histone deacetylase inhibitors be superseded by more specific compounds? Leukemia 21(1):61–65. doi:10.1038/sj.leu.2404464

    Article  PubMed  CAS  Google Scholar 

  60. McKinsey TA (2010) Isoform-selective HDAC inhibitors: Closing in on translational medicine for the heart. J Mol Cell Cardiol. doi:10.1016/j.yjmcc.2010.11.009

  61. Su H, Altucci L, You Q (2008) Competitive or noncompetitive, that’s the question: research toward histone deacetylase inhibitors. Mol Cancer Ther 7(5):1007–1012. doi:10.1158/1535-7163.MCT-07-2289

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge grant and fellowship support from the Australian Institute of Nuclear Science and Engineering (AINSE), the National Health and Medical Research Council (NHMRC), and the CRC for Biomedical Imaging Development (CRC-BID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom C. Karagiannis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ververis, K., Rodd, A.L., Tang, M.M. et al. Histone deacetylase inhibitors augment doxorubicin-induced DNA damage in cardiomyocytes. Cell. Mol. Life Sci. 68, 4101–4114 (2011). https://doi.org/10.1007/s00018-011-0727-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0727-1

Keywords

Navigation