Skip to main content

Advertisement

Log in

Properties and mechanisms of action of naturally occurring antifungal peptides

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Antimicrobial peptides are a vital component of the innate immune system of all eukaryotic organisms and many of these peptides have potent antifungal activity. They have potential application in the control of fungal pathogens that are a serious threat to both human health and food security. Development of antifungal peptides as therapeutics requires an understanding of their mechanism of action on fungal cells. To date, most research on antimicrobial peptides has focused on their activity against bacteria. Several antimicrobial peptides specifically target fungal cells and are not active against bacteria. Others with broader specificity often have different mechanisms of action against bacteria and fungi. This review focuses on the mechanism of action of naturally occurring antifungal peptides from a diverse range of sources including plants, mammals, amphibians, insects, crabs, spiders, and fungi. While antimicrobial peptides were originally proposed to act via membrane permeabilization, the mechanism of antifungal activity for these peptides is generally more complex and often involves entry of the peptide into the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brahmachary M et al (2004) ANTIMIC: a database of antimicrobial sequences. Nucleic Acids Res 32(database issue):D586–D589

    Article  PubMed  CAS  Google Scholar 

  2. Selitrennikoff CP (2001) Antifungal proteins. Appl Environ Microbiol 67(7):2883–2894

    Article  PubMed  CAS  Google Scholar 

  3. Fisher MC et al (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393):186–194

    Article  PubMed  CAS  Google Scholar 

  4. Wisplinghoff H et al (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis (an official publication of the Infectious Diseases Society of America) 39(3):309–317

    Article  Google Scholar 

  5. Husain S et al (2003) Opportunistic mycelial fungal infections in organ transplant recipients: emerging importance of non-Aspergillus mycelial fungi. Clin Infect Dis (an official publication of the Infectious Diseases Society of America) 37(2):221–229

    Article  Google Scholar 

  6. Pennisi E (2001) The push to pit genomics against fungal pathogens. Science 292(5525):2273–2274

    Article  PubMed  CAS  Google Scholar 

  7. Coca M et al (2004) Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Mol Biol 54(2):245–259

    Article  PubMed  CAS  Google Scholar 

  8. Anand A et al (2003) Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. J Exp Bot 54(384):1101–1111

    Article  PubMed  CAS  Google Scholar 

  9. Osusky M et al (2004) Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Transgenic Res 13(2):181–190

    Article  PubMed  CAS  Google Scholar 

  10. Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. BioEssays (News and Reviews in Molecular, Cellular and Developmental Biology 28(8):799–808

    Article  Google Scholar 

  11. Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. BioEssays 28(8):799–808

    Article  PubMed  Google Scholar 

  12. Fontaine T et al (2000) Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J Biol Chem 275(36):27594–27607

    PubMed  CAS  Google Scholar 

  13. Schoffelmeer EA et al (1999) The cell wall of Fusarium oxysporum. Fungal Genet Biol 27(2–3):275–282

    Article  PubMed  CAS  Google Scholar 

  14. Zlotnik H et al (1984) Saccharomyces cerevisiae mannoproteins form an external cell wall layer that determines wall porosity. J Bacteriol 159(3):1018–1026

    PubMed  CAS  Google Scholar 

  15. Brul S et al (1997) The incorporation of mannoproteins in the cell wall of S. cerevisiae and filamentous Ascomycetes. Antonie Van Leeuwenhoek 72(3):229–237

    Article  PubMed  CAS  Google Scholar 

  16. Klis FM et al (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26(3):239–256

    Article  PubMed  CAS  Google Scholar 

  17. Matsuzaki K (1999) Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta 1462(1–2):1–10

    PubMed  CAS  Google Scholar 

  18. Theis T, Stahl U (2004) Antifungal proteins: targets, mechanisms and prospective applications. Cell Mol Life Sci 61(4):437–455

    Article  PubMed  CAS  Google Scholar 

  19. Bloch KE (1983) Sterol structure and membrane function. CRC Crit Rev Biochem 14(1):47–92

    Article  PubMed  CAS  Google Scholar 

  20. Brajtburg J et al (1990) Amphotericin B: current understanding of mechanisms of action. Antimicrob Agents Chemother 34(2):183–188

    Article  PubMed  CAS  Google Scholar 

  21. Lupetti A et al (2002) Molecular basis of resistance to azole antifungals. Trends Mol Med 8(2):76–81

    Article  PubMed  CAS  Google Scholar 

  22. Wang TY, Leventis R, Silvius JR (2000) Fluorescence-based evaluation of the partitioning of lipids and lipidated peptides into liquid-ordered lipid microdomains: a model for molecular partitioning into “lipid rafts”. Biophys J 79(2):919–933

    Article  PubMed  CAS  Google Scholar 

  23. Bagnat M et al (2000) Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc Natl Acad Sci USA 97(7):3254–3259

    Article  PubMed  CAS  Google Scholar 

  24. Thevissen K et al (2005) Fungal sphingolipids as targets for the development of selective antifungal therapeutics. Curr Drug Targets 6(8):923–928

    Article  PubMed  CAS  Google Scholar 

  25. Loon LCV, Strien EAV (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  26. Jami SK et al (2006) Molecular, biochemical and structural characterization of osmotin-like protein from black nightshade (Solanum nigrum). J Plant Physiol 164(3):238–252

    Article  PubMed  CAS  Google Scholar 

  27. Kuwabara C et al (2002) Abscisic acid- and cold-induced thaumatin-like protein in winter wheat has an antifungal activity against snow mould Microdochium nivale. Physiol Plant 115(1):101–110

    Article  PubMed  CAS  Google Scholar 

  28. Osmond RI et al (2001) Binding interactions between barley thaumatin-like proteins and (1,3)-beta-d-glucans. Kinetics, specificity, structural analysis and biological implications. Eur J Biochem 268(15):4190–4199

    Article  PubMed  CAS  Google Scholar 

  29. Singh NK et al (1987) Characterization of osmotin: a thaumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiol 85(2):529–536

    Article  PubMed  CAS  Google Scholar 

  30. Roberts W, Selitrennikoff C (1990) Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. J Gen Microbiol 136:1771–1778

    Article  CAS  Google Scholar 

  31. de Vos AM et al (1985) Three-dimensional structure of thaumatin I, an intensely sweet protein. Proc Natl Acad Sci USA 82(5):1406–1409

    Article  PubMed  Google Scholar 

  32. Min K et al (2004) Crystal structure of osmotin, a plant antifungal protein. Proteins 54(1):170–173

    Article  PubMed  CAS  Google Scholar 

  33. Batalia MA et al (1996) The crystal structure of the antifungal protein zeamatin, a member of the thaumatin-like, PR-5 protein family. Nat Struct Biol 3(1):19–23

    Article  PubMed  CAS  Google Scholar 

  34. Koiwa H et al (1999) Crystal structure of tobacco PR-5d protein at 1.8 Å resolution reveals a conserved acidic cleft structure in antifungal thaumatin-like proteins. J Mol Biol 286(4):1137–1145

    Article  PubMed  CAS  Google Scholar 

  35. Salzman RA et al (2004) Inorganic cations mediate plant PR5 protein antifungal activity through fungal Mnn1- and Mnn4-regulated cell surface glycans. Mol Plant Microbe Interact 17(7):780–788

    Article  PubMed  CAS  Google Scholar 

  36. Ghosh R, Chakrabarti C (2008) Crystal structure analysis of NP24-I: a thaumatin-like protein. Planta 228(5):883–890

    Article  PubMed  CAS  Google Scholar 

  37. Abad LR et al (1996) Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. Plant Sci 118(1):11–23

    Article  CAS  Google Scholar 

  38. Schimoler-O’Rourke R, Richardson M, Selitrennikoff CP (2001) Zeamatin inhibits trypsin and alpha-amylase activities. Appl Environ Microbiol 67(5):2365–2366

    Article  PubMed  Google Scholar 

  39. Anzlovar S et al (1998) Membrane permeabilizing activity of pathogenesis-related protein linusitin from flax seed. Mol Plant Microbe Interact 11(7):610–617

    Article  CAS  Google Scholar 

  40. Yun DJ et al (1997) Stress proteins on the yeast cell surface determine resistance to osmotin, a plant antifungal protein. Proc Natl Acad Sci USA 94(13):7082–7087

    Article  PubMed  CAS  Google Scholar 

  41. Ibeas JI et al (2001) Resistance to the plant PR-5 protein osmotin in the model fungus Saccharomyces cerevisiae is mediated by the regulatory effects of SSD1 on cell wall composition. Plant J 25(3):271–280

    Article  PubMed  CAS  Google Scholar 

  42. Narasimhan ML et al (2003) Overexpression of a cell wall glycoprotein in Fusarium oxysporum increases virulence and resistance to a plant PR-5 protein. Plant J 36(3):390–400

    Article  PubMed  CAS  Google Scholar 

  43. Ibeas JI et al (2000) Fungal cell wall phosphomannans facilitate the toxic activity of a plant PR-5 protein. Plant J 23(3):375–383

    Article  PubMed  CAS  Google Scholar 

  44. Yun DJ et al (1998) Osmotin, a plant antifungal protein, subverts signal transduction to enhance fungal cell susceptibility. Mol Cell 1(6):807–817

    Article  PubMed  CAS  Google Scholar 

  45. Narasimhan ML et al (2005) Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. Mol Cell 17(2):171–180

    Article  PubMed  CAS  Google Scholar 

  46. Monteiro S et al (2003) Osmotin and thaumatin from grape: a putative general defense mechanism against pathogenic fungi. Phytopathology 93(12):1505–1512

    Article  PubMed  CAS  Google Scholar 

  47. Mahdavi F, Sariah M, Maziah M (2012) Expression of rice thaumatin-like protein gene in transgenic banana plants enhances resistance to fusarium wilt. Appl Biochem Biotechnol 166(4):1008–1019

    Article  PubMed  CAS  Google Scholar 

  48. Florack DE, Stiekema WJ (1994) Thionins: properties, possible biological roles and mechanisms of action. Plant Mol Biol 26(1):25–37

    Article  PubMed  CAS  Google Scholar 

  49. Stec B (2006) Plant thionins-the structural perspective. Cell Mol Life Sci 63(12):1370–1385

    Article  PubMed  CAS  Google Scholar 

  50. Hughes P et al (2000) The cytotoxic plant protein, beta-purothionin, forms ion channels in lipid membranes. J Biol Chem 275(2):823–827

    Article  PubMed  CAS  Google Scholar 

  51. Carrasco L et al (1981) Thionins: plant peptides that modify membrane permeability in cultured mammalian cells. Eur J Biochem 116(1):185–189

    Article  PubMed  CAS  Google Scholar 

  52. Stec B et al (2004) Proposal for molecular mechanism of thionins deduced from physico-chemical studies of plant toxins. J Pept Res 64(6):210–224

    Article  PubMed  CAS  Google Scholar 

  53. Majewski J, Stec B (2010) X-ray scattering studies of model lipid membrane interacting with purothionin provide support for a previously proposed mechanism of membrane lysis. Eur Biophys J 39(8):1155–1165

    Article  PubMed  CAS  Google Scholar 

  54. Oard S, Karki B, Enright F (2007) Is there a difference in metal ion-based inhibition between members of thionin family: molecular dynamics simulation study. Biophys Chem 130(1–2):65–75

    Article  PubMed  CAS  Google Scholar 

  55. Lay FT, Anderson MA (2005) Defensins-components of the innate immune system in plants. Curr Protein Pept Sci 6(1):85–101

    Article  PubMed  CAS  Google Scholar 

  56. Carvalho Ade O, Gomes VM (2009) Plant defensins—prospects for the biological functions and biotechnological properties. Peptides 30(5):1007–1020

    Article  PubMed  CAS  Google Scholar 

  57. Colilla FJ, Rocher A, Mendez E (1990) Gamma-purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm. FEBS Lett 270(1–2):191–194

    Article  PubMed  CAS  Google Scholar 

  58. Bloch C Jr, Richardson M (1991) A new family of small (5 kDa) protein inhibitors of insect alpha-amylases from seeds or sorghum (Sorghum bicolor (L) Moench) have sequence homologies with wheat gamma-purothionins. FEBS Lett 279(1):101–104

    Article  PubMed  CAS  Google Scholar 

  59. Thomma BP, Cammue BP, Thevissen K (2002) Plant defensins. Planta 216(2):193–202

    Article  PubMed  CAS  Google Scholar 

  60. van der Weerden NL, Anderson MA (2012) Plant defensins: common fold, multiple functions. Fungal Biol Rev

  61. Gao AG et al (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 18(12):1307–1310

    Article  PubMed  CAS  Google Scholar 

  62. Jha S et al (2009) Expression of Dm-AMP1 in rice confers resistance to Magnaporthe oryzae and Rhizoctonia solani. Transgenic Res 18(1):59–69

    Article  PubMed  CAS  Google Scholar 

  63. Tavares PM et al (2008) In vitro activity of the antifungal plant defensin RsAFP2 against Candida isolates and its in vivo efficacy in prophylactic murine models of candidiasis. Antimicrob Agents Chemother 52(12):4522–4525

    Article  PubMed  CAS  Google Scholar 

  64. Kaur J, Sagaram US, Shah D (2011) Can plant defensins be used to engineer durable commercially useful fungal resistance in crop plants? Fungal Biol Rev 25(3):128–135

    Article  Google Scholar 

  65. Almeida MS et al (2002) Solution structure of Pisum sativum defensin 1 by high resolution NMR: plant defensins, identical backbone with different mechanisms of action. J Mol Biol 315(4):749–757

    Article  PubMed  CAS  Google Scholar 

  66. Lay FT et al (2003) The three-dimensional solution structure of NaD1, a new floral defensin from Nicotiana alata and its application to a homology model of the crop defense protein alfAFP. J Mol Biol 325(1):175–188

    Article  PubMed  CAS  Google Scholar 

  67. Liu YJ et al (2006) Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids. Proteins 63(4):777–786

    Article  PubMed  CAS  Google Scholar 

  68. Fant F, Vranken WF, Borremans FA (1999) The three-dimensional solution structure of Aesculus hippocastanum antimicrobial protein 1 determined by 1H nuclear magnetic resonance. Proteins 37(3):388–403

    Article  PubMed  CAS  Google Scholar 

  69. Fant F et al (1998) Determination of the three-dimensional solution structure of Raphanus sativus antifungal protein 1 by 1H NMR. J Mol Biol 279(1):257–270

    Article  PubMed  CAS  Google Scholar 

  70. Broekaert WF et al (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108(4):1353–1358

    Article  PubMed  CAS  Google Scholar 

  71. Lay FT, Brugliera F, Anderson MA (2003) Isolation and properties of floral defensins from ornamental tobacco and petunia. Plant Physiol 131(3):1283–1293

    Article  PubMed  CAS  Google Scholar 

  72. Thevissen K et al (1996) Fungal membrane responses induced by plant defensins and thionins. J Biol Chem 271(25):15018–15025

    Article  PubMed  CAS  Google Scholar 

  73. Thevissen K et al (1997) Specific, high affinity binding sites for an antifungal plant defensin on Neurospora crassa hyphae and microsomal membranes. J Biol Chem 272(51):32176–32181

    Article  PubMed  CAS  Google Scholar 

  74. Thevissen K et al (2000) Specific binding sites for an antifungal plant defensin from Dahlia (Dahlia merckii) on fungal cells are required for antifungal activity. Mol Plant Microbe Interact 13(1):54–61

    Article  PubMed  CAS  Google Scholar 

  75. Thevissen K, Terras FR, Broekaert WF (1999) Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl Environ Microbiol 65(12):5451–5458

    PubMed  CAS  Google Scholar 

  76. Aerts AM et al. (2012) The antifungal activity of RsAFP2, a plant defensin from Raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J Mol Microbiol Biotechnol (in press)

  77. Thevissen K et al (2003) DmAMP1, an antifungal plant defensin from dahlia (Dahlia merckii), interacts with sphingolipids from Saccharomyces cerevisiae. FEMS Microbiol Lett 226(1):169–173

    Article  PubMed  CAS  Google Scholar 

  78. Thevissen K et al (2004) Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem 279(6):3900–3905

    Article  PubMed  CAS  Google Scholar 

  79. Aerts AM et al (2009) The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans. FEBS Lett 583(15):2513–2516

    Article  PubMed  CAS  Google Scholar 

  80. Aerts AM et al (2011) The antifungal plant defensin HsAFP1 from Heuchera sanguinea induces apoptosis in Candida albicans. Front Microbiol 2:47

    Article  PubMed  CAS  Google Scholar 

  81. Thevissen K et al (2012) The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans. Mol Microbiol 84(1):166–180

    Article  PubMed  CAS  Google Scholar 

  82. Ramamoorthy V et al (2007) Glucosylceramide synthase is essential for alfalfa defensin-mediated growth inhibition but not for pathogenicity of Fusarium graminearum. Mol Microbiol 66(3):771–786

    Article  PubMed  CAS  Google Scholar 

  83. Spelbrink RG et al (2004) Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. Plant Physiol 135(4):2055–2067

    Article  PubMed  CAS  Google Scholar 

  84. Ramamoorthy V et al (2007) Two mitogen-activated protein kinase signalling cascades mediate basal resistance to antifungal plant defensins in Fusarium graminearum. Cell Microbiol 9(6):1491–1506

    Article  PubMed  CAS  Google Scholar 

  85. van der Weerden NL, Lay FT, Anderson MA (2008) The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae. J Biol Chem 283(21):14445–14452

    Article  PubMed  CAS  Google Scholar 

  86. van der Weerden NL, Hancock RE, Anderson MA (2010) Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process. J Biol Chem 285(48):37513–37520

    Article  PubMed  CAS  Google Scholar 

  87. Lobo DS et al (2007) Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle. Biochemistry 46(4):987–996

    Article  PubMed  CAS  Google Scholar 

  88. Kader JC (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–654

    Article  PubMed  CAS  Google Scholar 

  89. Thoma S, Kaneko Y, Somerville C (1993) A non-specific lipid transfer protein from Arabidopsis is a cell wall protein. Plant J 3(3):427–436

    Article  PubMed  CAS  Google Scholar 

  90. Cammue BP et al (1995) A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol 109(2):445–455

    Article  PubMed  CAS  Google Scholar 

  91. Cheng CS et al (2004) Binding mechanism of nonspecific lipid transfer proteins and their role in plant defense. Biochemistry 43(43):13628–13636

    Article  PubMed  CAS  Google Scholar 

  92. Regente MC et al (2005) The cytotoxic properties of a plant lipid transfer protein involve membrane permeabilization of target cells. Lett Appl Microbiol 40(3):183–189

    Article  PubMed  CAS  Google Scholar 

  93. Zottich U et al (2011) Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with alpha-amylase inhibitor properties. Biochim Biophys Acta 1810(4):375–383

    Article  PubMed  CAS  Google Scholar 

  94. Diz MS et al (2011) Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel alpha-amylase inhibitory properties. Physiol Plant 142(3):233–246

    Article  PubMed  CAS  Google Scholar 

  95. Tailor RH et al (1997) A novel family of small cysteine-rich antimicrobial peptides from seed of Impatiens balsamina is derived from a single precursor protein. J Biol Chem 272(39):24480–24487

    Article  PubMed  CAS  Google Scholar 

  96. Patel SU et al (1998) Structural studies of Impatiens balsamina antimicrobial protein (Ib-AMP1). Biochemistry 37(4):983–990

    Article  PubMed  CAS  Google Scholar 

  97. Thevissen K et al (2005) Antifungal activity of synthetic peptides derived from Impatiens balsamina antimicrobial peptides Ib-AMP1 and Ib-AMP4. Peptides 26(7):1113–1119

    Article  PubMed  CAS  Google Scholar 

  98. Lee DG et al (1999) Antifungal mechanism of a cysteine-rich antimicrobial peptide, Ib-AMP1, from Impatiens balsamina against Candida albicans. Biotechnol Lett 21:1047–1050

    Article  CAS  Google Scholar 

  99. Wang P et al (2009) Antimicrobial specificity and mechanism of action of disulfide-removed linear analogs of the plant-derived Cys-rich antimicrobial peptide Ib-AMP1. Peptides 30(12):2144–2149

    Article  PubMed  CAS  Google Scholar 

  100. Segura A et al (1999) Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant Microbe Interact 12(1):16–23

    Article  PubMed  CAS  Google Scholar 

  101. Berrocal-Lobo M et al (2002) Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol 128(3):951–961

    Article  PubMed  CAS  Google Scholar 

  102. Huang RH et al (2004) Solution structure of Eucommia antifungal peptide: a novel structural model distinct with a five-disulfide motif. Biochemistry 43(20):6005–6012

    Article  PubMed  CAS  Google Scholar 

  103. Broekaert WF et al (1992) Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry 31(17):4308–4314

    Article  PubMed  CAS  Google Scholar 

  104. Koo JC et al (2004) Pn-AMP1, a plant defense protein, induces actin depolarization in yeasts. Plant Cell Physiol 45(11):1669–1680

    Article  PubMed  CAS  Google Scholar 

  105. Kiba A et al (2003) C-terminal domain of a hevein-like protein from Wasabia japonica has potent antimicrobial activity. Plant Cell Physiol 44(3):296–303

    Article  PubMed  CAS  Google Scholar 

  106. Van den Bergh KP et al (2002) Five disulfide bridges stabilize a hevein-type antimicrobial peptide from the bark of spindle tree (Euonymus europaeus L.). FEBS Lett 530(1–3):181–185

    Article  PubMed  Google Scholar 

  107. Yokoyama S et al (2009) The chitin-binding capability of Cy-AMP1 from cycad is essential to antifungal activity. J Pept Sci 15(7):492–497

    Article  PubMed  CAS  Google Scholar 

  108. Andreev YA et al (2012) Genes encoding hevein-like defense peptides in wheat: distribution, evolution, and role in stress response. Biochimie 94(4):1009–1016

    Article  PubMed  CAS  Google Scholar 

  109. Rees DC, Lipscomb WN (1982) Refined crystal structure of the potato inhibitor complex of carboxypeptidase A at 2.5 Å resolution. J Mol Biol 160(3):475–498

    Article  PubMed  CAS  Google Scholar 

  110. Cammue BP et al (1992) Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L. seeds. J Biol Chem 267(4):2228–2233

    PubMed  CAS  Google Scholar 

  111. Gao GH et al (2001) Solution structure of PAFP-S: a new knottin-type antifungal peptide from the seeds of Phytolacca americana. Biochemistry 40(37):10973–10978

    Article  PubMed  CAS  Google Scholar 

  112. Yount NY, Yeaman MR (2004) Multidimensional signatures in antimicrobial peptides. Proc Natl Acad Sci USA 101(19):7363–7368

    Article  PubMed  CAS  Google Scholar 

  113. Yeaman MR, Yount NY (2007) Unifying themes in host defence effector polypeptides. Nat Rev Microbiol 5(9):727–740

    Article  PubMed  CAS  Google Scholar 

  114. Chouabe C et al (2011) New mode of action for a knottin protein bioinsecticide: pea albumin 1 subunit b (PA1b) is the first peptidic inhibitor of V-ATPase. J Biol Chem 286(42):36291–36296

    Article  PubMed  CAS  Google Scholar 

  115. Robotham JM et al (2005) Ana o 3, an important cashew nut (Anacardium occidentale L.) allergen of the 2S albumin family. J Allergy Clin Immunol 115(6):1284–1290

    Article  PubMed  CAS  Google Scholar 

  116. Puumalainen TJ et al (2006) Napins, 2S albumins, are major allergens in oilseed rape and turnip rape. J Allergy Clin Immunol 117(2):426–432

    Article  PubMed  CAS  Google Scholar 

  117. Wang X, Bunkers GJ (2000) Potent heterologous antifungal proteins from cheeseweed (Malva parviflora). Biochem Biophys Res Commun 279(2):669–673

    Article  PubMed  CAS  Google Scholar 

  118. Agizzio AP et al (2003) A 2S albumin-homologous protein from passion fruit seeds inhibits the fungal growth and acidification of the medium by Fusarium oxysporum. Arch Biochem Biophys 416(2):188–195

    Article  PubMed  CAS  Google Scholar 

  119. Terras FR et al (1992) Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem 267(22):15301–15309

    PubMed  CAS  Google Scholar 

  120. Nolde SB et al (2011) Disulfide-stabilized helical hairpin structure and activity of a novel antifungal peptide EcAMP1 from seeds of barnyard grass (Echinochloa crus-galli). J Biol Chem 286(28):25145–25153

    Article  PubMed  CAS  Google Scholar 

  121. Oparin PB et al (2012) Buckwheat trypsin inhibitor with helical hairpin structure belongs to a new family of plant defence peptides. Biochem J 446(1):69–77

    Article  PubMed  CAS  Google Scholar 

  122. Zhu S (2007) Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of the CSalphabeta defensins. Mol Immunol 45(3):828–838

    Article  PubMed  CAS  Google Scholar 

  123. Yang D, Chertov O, Oppenheim JJ (2001) The role of mammalian antimicrobial peptides and proteins in awakening of innate host defenses and adaptive immunity. Cell Mol Life Sci 58(7):978–989

    Article  PubMed  CAS  Google Scholar 

  124. Fitzgerald DH, Coleman DC, O’Connell BC (2003) Binding, internalisation and degradation of histatin 3 in histatin-resistant derivatives of Candida albicans. FEMS Microbiol Lett 220(2):247–253

    Article  PubMed  CAS  Google Scholar 

  125. Raj PA, Marcus E, Sukumaran DK (1998) Structure of human salivary histatin 5 in aqueous and nonaqueous solutions. Biopolymers 45(1):51–67

    Article  PubMed  CAS  Google Scholar 

  126. Conlon JM et al (2003) Isolation of peptides of the brevinin-1 family with potent candidacidal activity from the skin secretions of the frog Rana boylii. J Pept Res 62(5):207–213

    Article  PubMed  CAS  Google Scholar 

  127. Dong J et al (2003) Calcium blocks fungicidal activity of human salivary histatin 5 through disruption of binding with Candida albicans. J Dent Res 82(9):748–752

    Article  PubMed  CAS  Google Scholar 

  128. Li XS et al (2006) Candida albicans cell wall ssa proteins bind and facilitate import of salivary histatin 5 required for toxicity. J Biol Chem 281(32):22453–22463

    Article  PubMed  CAS  Google Scholar 

  129. Kumar R et al (2011) Histatin 5 uptake by Candida albicans utilizes polyamine transporters Dur3 and Dur31 proteins. J Biol Chem 286(51):43748–43758

    Article  PubMed  CAS  Google Scholar 

  130. Jang WS et al (2010) Salivary histatin 5 internalization by translocation, but not endocytosis, is required for fungicidal activity in Candida albicans. Mol Microbiol 77(2):354–370

    Article  PubMed  CAS  Google Scholar 

  131. Helmerhorst EJ et al (1999) The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem 274(11):7286–7291

    Article  PubMed  CAS  Google Scholar 

  132. Edgerton M et al (1998) Candidacidal activity of salivary histatins. Identification of a histatin 5-binding protein on Candida albicans. J Biol Chem 273(32):20438–20447

    Article  PubMed  CAS  Google Scholar 

  133. Helmerhorst EJ, Troxler RF, Oppenheim FG (2001) The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. Proc Natl Acad Sci USA 98(25):14637–14642

    Article  PubMed  CAS  Google Scholar 

  134. Koshlukova SE et al (1999) Salivary histatin 5 induces non-lytic release of ATP from Candida albicans leading to cell death. J Biol Chem 274(27):18872–18889

    Article  PubMed  CAS  Google Scholar 

  135. Koshlukova SE et al (2000) Released ATP is an extracellular cytotoxic mediator in salivary histatin 5-induced killing of Candida albicans. Infect Immun 68(12):6848–6856

    Article  PubMed  CAS  Google Scholar 

  136. Baev D et al (2004) The TRK1 potassium transporter is the critical effector for killing of Candida albicans by the cationic protein, histatin 5. J Biol Chem 279(53):55060–55072

    Article  PubMed  CAS  Google Scholar 

  137. Wunder D et al (2004) Human salivary histatin 5 fungicidal action does not induce programmed cell death pathways in Candida albicans. Antimicrob Agents Chemother 48(1):110–115

    Article  PubMed  CAS  Google Scholar 

  138. Veerman EC et al (2004) Reactive oxygen species play no role in the candidacidal activity of the salivary antimicrobial peptide histatin 5. Biochem J 381(Pt 2):447–452

    PubMed  CAS  Google Scholar 

  139. Gennaro R, Zanetti M (2000) Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers 55(1):31–49

    Article  PubMed  CAS  Google Scholar 

  140. Wang J et al (2011) Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options. PLoS ONE 6(8):e24030

    Article  PubMed  CAS  Google Scholar 

  141. Benincasa M et al (2006) Fungicidal activity of five cathelicidin peptides against clinically isolated yeasts. J Antimicrob Chemother 58(5):950–959

    Article  PubMed  CAS  Google Scholar 

  142. Skerlavaj B et al (1999) SMAP-29: a potent antibacterial and antifungal peptide from sheep leukocytes. FEBS Lett 463(1–2):58–62

    Article  PubMed  CAS  Google Scholar 

  143. Lee DG et al (2002) Antifungal mechanism of SMAP-29 (1–18) isolated from sheep myeloid mRNA against Trichosporon beigelii. Biochem Biophys Res Commun 295(3):591–596

    Article  PubMed  CAS  Google Scholar 

  144. Park K et al (2002) Structural studies of porcine myeloid antibacterial peptide PMAP-23 and its analogues in DPC micelles by NMR spectroscopy. Biochem Biophys Res Commun 290(1):204–212

    Article  PubMed  CAS  Google Scholar 

  145. Lee DG et al (2001) Fungicidal effect of antimicrobial peptide, PMAP-23, isolated from porcine myeloid against Candida albicans. Biochem Biophys Res Commun 282(2):570–574

    Article  PubMed  CAS  Google Scholar 

  146. Falla TJ, Hancock RE (1997) Improved activity of a synthetic indolicidin analog. Antimicrob Agents Chemother 41(4):771–775

    PubMed  CAS  Google Scholar 

  147. Porcelli F et al (2008) NMR structure of the cathelicidin-derived human antimicrobial peptide LL-37 in dodecylphosphocholine micelles. Biochemistry 47(20):5565–5572

    Article  PubMed  CAS  Google Scholar 

  148. den Hertog AL et al (2005) Candidacidal effects of two antimicrobial peptides: histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane. Biochem J 388(Pt 2):689–695

    Google Scholar 

  149. Henzler-Wildman KA et al (2004) Perturbation of the hydrophobic core of lipid bilayers by the human antimicrobial peptide LL-37. Biochemistry 43(26):8459–8469

    Article  PubMed  CAS  Google Scholar 

  150. Sood R, Kinnunen PK (2008) Cholesterol, lanosterol, and ergosterol attenuate the membrane association of LL-37(W27F) and temporin L. Biochim Biophys Acta 1778(6):1460–1466

    Article  PubMed  CAS  Google Scholar 

  151. Lopez-Garcia B et al (2005) Anti-fungal activity of cathelicidins and their potential role in Candida albicans skin infection. J Invest Dermatol 125(1):108–115

    Article  PubMed  CAS  Google Scholar 

  152. den Hertog AL et al (2006) The human cathelicidin peptide LL-37 and truncated variants induce segregation of lipids and proteins in the plasma membrane of Candida albicans. Biol Chem 387(10–11):1495–1502

    Google Scholar 

  153. Durr UH, Sudheendra US, Ramamoorthy A (2006) LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 1758(9):1408–1425

    Article  PubMed  CAS  Google Scholar 

  154. Fellermann K et al (2003) Crohn’s disease: a defensin deficiency syndrome? Eur J Gastroenterol Hepatol 15(6):627–634

    Article  PubMed  CAS  Google Scholar 

  155. Raj PA, Dentino AR (2002) Current status of defensins and their role in innate and adaptive immunity. FEMS Microbiol Lett 206(1):9–18

    Article  PubMed  CAS  Google Scholar 

  156. Lehrer RI et al (1988) Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations. J Clin Invest 81(6):1829–1835

    Article  PubMed  CAS  Google Scholar 

  157. Wilde CG et al (1989) Purification and characterization of human neutrophil peptide 4, a novel member of the defensin family. J Biol Chem 264(19):11200–11203

    PubMed  CAS  Google Scholar 

  158. Ganz T, Lehrer RI (1995) Defensins. Pharmacol Ther 66(2):191–205

    Article  PubMed  CAS  Google Scholar 

  159. Lehrer RI et al (1985) Correlation of binding of rabbit granulocyte peptides to Candida albicans with candidacidal activity. Infect Immun 49(1):207–211

    PubMed  CAS  Google Scholar 

  160. Edgerton M et al (2000) Salivary histatin 5 and human neutrophil defensin 1 kill Candida albicans via shared pathways. Antimicrob Agents Chemother 44(12):3310–3316

    Article  PubMed  CAS  Google Scholar 

  161. Schroder JM, Harder J (1999) Human beta-defensin-2. Int J Biochem Cell Biol 31(6):645–651

    Article  PubMed  CAS  Google Scholar 

  162. Dhople V, Krukemeyer A, Ramamoorthy A (2006) The human beta-defensin-3, an antibacterial peptide with multiple biological functions. Biochim Biophys Acta 1758(9):1499–1512

    Article  PubMed  CAS  Google Scholar 

  163. Joly S et al (2004) Human beta-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms. J Clin Microbiol 42(3):1024–1029

    Article  PubMed  CAS  Google Scholar 

  164. Ishikawa H, Bae S, Katayama I (2009) Human beta defensin-2 expression by keratinocytes is induces by co culture with Trycophyton rubrum through Toll-like receptors 2 and 4. Open Dermatol J 3:81–85

    Article  CAS  Google Scholar 

  165. Alekseeva L et al (2009) Inducible expression of beta defensins by human respiratory epithelial cells exposed to Aspergillus fumigatus organisms. BMC Microbiol 9:33

    Article  PubMed  CAS  Google Scholar 

  166. Vylkova S et al (2006) Distinct antifungal mechanisms: beta-defensins require Candida albicans Ssa1 protein, while Trk1p mediates activity of cysteine-free cationic peptides. Antimicrob Agents Chemother 50(1):324–331

    Article  PubMed  CAS  Google Scholar 

  167. Argimon S et al (2011) Interaction between the Candida albicans high-osmolarity glycerol (HOG) pathway and the response to human beta-defensins 2 and 3. Eukaryot Cell 10(2):272–275

    Article  PubMed  CAS  Google Scholar 

  168. Vylkova S et al (2007) Histatin 5 initiates osmotic stress response in Candida albicans via activation of the Hog1 mitogen-activated protein kinase pathway. Eukaryot Cell 6(10):1876–1888

    Article  PubMed  CAS  Google Scholar 

  169. O’Rourke SM, Herskowitz I, O’Shea EK (2002) Yeast go the whole HOG for the hyperosmotic response. Trends Genet 18(8):405–412

    Article  PubMed  Google Scholar 

  170. Vylkova S et al (2007) Human beta-defensins kill Candida albicans in an energy-dependent and salt-sensitive manner without causing membrane disruption. Antimicrob Agents Chemother 51(1):154–161

    Article  PubMed  CAS  Google Scholar 

  171. Farnaud S, Evans RW (2003) Lactoferrin—a multifunctional protein with antimicrobial properties. Mol Immunol 40(7):395–405

    Article  PubMed  CAS  Google Scholar 

  172. Lupetti A et al (2000) Candidacidal activities of human lactoferrin peptides derived from the N terminus. Antimicrob Agents Chemother 44(12):3257–3263

    Article  PubMed  CAS  Google Scholar 

  173. Gifford JL, Hunter HN, Vogel HJ (2005) Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol Life Sci 62(22):2588–2598

    Article  PubMed  CAS  Google Scholar 

  174. Viejo-Diaz M, Andres MT, Fierro JF (2005) Different anti-Candida activities of two human lactoferrin-derived peptides, Lfpep and kaliocin-1. Antimicrob Agents Chemother 49(7):2583–2588

    Article  PubMed  CAS  Google Scholar 

  175. Munoz A, Marcos JF (2006) Activity and mode of action against fungal phytopathogens of bovine lactoferricin-derived peptides. J Appl Microbiol 101(6):1199–1207

    Article  PubMed  CAS  Google Scholar 

  176. Chen HL et al (2006) Synthetic porcine lactoferricin with a 20-residue peptide exhibits antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Candida albicans. J Agric Food Chem 54(9):3277–3282

    Article  PubMed  CAS  Google Scholar 

  177. Viejo-Diaz M, Andres MT, Fierro JF (2004) Effects of human lactoferrin on the cytoplasmic membrane of Candida albicans cells related with its candidacidal activity. FEMS Immunol Med Microbiol 42(2):181–185

    Article  PubMed  CAS  Google Scholar 

  178. Yamauchi K et al (1993) Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect Immun 61(2):719–728

    PubMed  CAS  Google Scholar 

  179. Strom MB et al (2001) Increased antibacterial activity of 15-residue murine lactoferricin derivatives. J Pept Res 57(2):127–139

    Article  PubMed  CAS  Google Scholar 

  180. Vorland LH et al (1998) Lactoferricin of bovine origin is more active than lactoferricins of human, murine and caprine origin. Scand J Infect Dis 30(5):513–517

    Article  PubMed  CAS  Google Scholar 

  181. Hwang PM et al (1998) Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochemistry 37(12):4288–4298

    Article  PubMed  CAS  Google Scholar 

  182. Hunter HN et al (2005) Human lactoferricin is partially folded in aqueous solution and is better stabilized in a membrane mimetic solvent. Antimicrob Agents Chemother 49(8):3387–3395

    Article  PubMed  CAS  Google Scholar 

  183. Hoek KS et al (1997) Antibacterial activity in bovine lactoferrin-derived peptides. Antimicrob Agents Chemother 41(1):54–59

    PubMed  CAS  Google Scholar 

  184. Nguyen LT, Schibli DJ, Vogel HJ (2005) Structural studies and model membrane interactions of two peptides derived from bovine lactoferricin. J Pept Sci 11(7):379–389

    Article  PubMed  CAS  Google Scholar 

  185. Viejo-Diaz M et al (2003) Potassium efflux induced by a new lactoferrin-derived peptide mimicking the effect of native human lactoferrin on the bacterial cytoplasmic membrane. Biochemistry (Mosc) 68(2):217–227

    Article  CAS  Google Scholar 

  186. Farnaud S et al (2004) Interactions of lactoferricin-derived peptides with LPS and antimicrobial activity. FEMS Microbiol Lett 233(2):193–199

    Article  PubMed  CAS  Google Scholar 

  187. Haukland HH et al (2001) The antimicrobial peptides lactoferricin B and magainin 2 cross over the bacterial cytoplasmic membrane and reside in the cytoplasm. FEBS Lett 508(3):389–393

    Article  PubMed  CAS  Google Scholar 

  188. Ulvatne H, Vorland LH (2001) Bactericidal kinetics of 3 lactoferricins against Staphylococcus aureus and Escherichia coli. Scand J Infect Dis 33(7):507–511

    Article  PubMed  CAS  Google Scholar 

  189. Ho YH, Sung TC, Chen CS (2012) Lactoferricin B inhibits the phosphorylation of the two-component system response regulators BasR and CreB. Mol Cell Proteomics 11(4):M111.014720

    Article  PubMed  CAS  Google Scholar 

  190. Rinaldi AC (2002) Antimicrobial peptides from amphibian skin: an expanding scenario. Curr Opin Chem Biol 6(6):799–804

    Article  PubMed  CAS  Google Scholar 

  191. Rollins-Smith LA et al (2003) Activities of temporin family peptides against the chytrid fungus (Batrachochytrium dendrobatidis) associated with global amphibian declines. Antimicrob Agents Chemother 47(3):1157–1160

    Article  PubMed  CAS  Google Scholar 

  192. Simmaco M et al (1996) Temporins, antimicrobial peptides from the European red frog Rana temporaria. Eur J Biochem 242(3):788–792

    Article  PubMed  CAS  Google Scholar 

  193. Mangoni ML et al (2000) Structure-function relationships of temporins, small antimicrobial peptides from amphibian skin. Eur J Biochem 267(5):1447–1454

    Article  PubMed  CAS  Google Scholar 

  194. Mangoni ML (2006) Temporins, anti-infective peptides with expanding properties. Cell Mol Life Sci 63(9):1060–1069

    Article  PubMed  CAS  Google Scholar 

  195. Rinaldi AC et al (2001) Effects of temporins on molecular dynamics and membrane permeabilization in lipid vesicles. J Pept Res 58(3):213–220

    Article  PubMed  CAS  Google Scholar 

  196. Pal T et al (2006) Brevinin-1BYa: a naturally occurring peptide from frog skin with broad-spectrum antibacterial and antifungal properties. Int J Antimicrob Agents 27(6):525–529

    Article  PubMed  CAS  Google Scholar 

  197. Bulet P, Stocklin R (2005) Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett 12(1):3–11

    Article  PubMed  CAS  Google Scholar 

  198. Jiggins FM, Kim KW (2005) The evolution of antifungal peptides in Drosophila. Genetics 171(4):1847–1859

    Article  PubMed  CAS  Google Scholar 

  199. Lamberty M et al (1999) Insect immunity. Isolation from the lepidopteran Heliothis virescens of a novel insect defensin with potent antifungal activity. J Biol Chem 274(14):9320–9326

    Article  PubMed  CAS  Google Scholar 

  200. Lamberty M et al (2001) Insect immunity. Constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect. J Biol Chem 276(6):4085–4092

    Article  PubMed  CAS  Google Scholar 

  201. Landon C et al (1997) Solution structure of drosomycin, the first inducible antifungal protein from insects. Protein Sci 6(9):1878–1884

    Article  PubMed  CAS  Google Scholar 

  202. Lamberty M et al (2001) Solution structures of the antifungal heliomicin and a selected variant with both antibacterial and antifungal activities. Biochemistry 40(40):11995–12003

    Article  PubMed  CAS  Google Scholar 

  203. Da Silva P et al (2003) Solution structure of termicin, an antimicrobial peptide from the termite Pseudacanthotermes spiniger. Protein Sci 12(3):438–446

    Article  PubMed  CAS  Google Scholar 

  204. Zhang Z, Zhu S (2010) Functional role of charged residues in drosomycin, a Drosophila antifungal peptide. Dev Comp Immunol 34(9):953–958

    Article  PubMed  CAS  Google Scholar 

  205. Landon C et al (2000) The active site of drosomycin, a small insect antifungal protein, delineated by comparison with the modeled structure of Rs-AFP2, a plant antifungal protein. J Pept Res 56(4):231–238

    Article  PubMed  CAS  Google Scholar 

  206. Fehlbaum P et al (1996) Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc Natl Acad Sci USA 93(3):1221–1225

    Article  PubMed  CAS  Google Scholar 

  207. Mandard N et al (1998) Solution structure of thanatin, a potent bactericidal and fungicidal insect peptide, determined from proton two-dimensional nuclear magnetic resonance data. Eur J Biochem 256(2):404–410

    Article  PubMed  CAS  Google Scholar 

  208. Imamura T et al (2010) Acquired resistance to the rice blast in transgenic rice accumulating the antimicrobial peptide thanatin. Transgenic Res 19(3):415–424

    Article  PubMed  CAS  Google Scholar 

  209. Iijima R, Kurata S, Natori S (1993) Purification, characterization, and cDNA cloning of an antifungal protein from the hemolymph of Sarcophaga peregrina (flesh fly) larvae. J Biol Chem 268(16):12055–12061

    PubMed  CAS  Google Scholar 

  210. Kim DH et al (1998) Bacterial expression of tenecin 3, an insect antifungal protein isolated from Tenebrio molitor, and its efficient purification. Mol Cells 8(6):786–789

    PubMed  CAS  Google Scholar 

  211. Lee SY et al (1995) Purification and cDNA cloning of an antifungal protein from the hemolymph of Holotrichia diomphalia larvae. Biol Pharm Bull 18(8):1049–1052

    Article  PubMed  CAS  Google Scholar 

  212. Kim DH et al (2001) Internalization of tenecin 3 by a fungal cellular process is essential for its fungicidal effect on Candida albicans. Eur J Biochem 268(16):4449–4458

    Article  PubMed  CAS  Google Scholar 

  213. Ekengren S, Hultmark D (1999) Drosophila cecropin as an antifungal agent. Insect Biochem Mol Biol 29(11):965–972

    Article  PubMed  CAS  Google Scholar 

  214. DeLucca AJ et al (1997) Fungicidal activity of cecropin A. Antimicrob Agents Chemother 41(2):481–483

    PubMed  CAS  Google Scholar 

  215. De Lucca AJ et al (2000) d-cecropin B: proteolytic resistance, lethality for pathogenic fungi and binding properties. Med Mycol 38(4):301–308

    PubMed  Google Scholar 

  216. Landon C et al (2006) Solution structures of stomoxyn and spinigerin, two insect antimicrobial peptides with an alpha-helical conformation. Biopolymers 81(2):92–103

    Article  PubMed  CAS  Google Scholar 

  217. Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84(15):5449–5453

    Article  PubMed  CAS  Google Scholar 

  218. Barbault F et al (2003) Solution structure of Alo-3: a new knottin-type antifungal peptide from the insect Acrocinus longimanus. Biochemistry 42(49):14434–14442

    Article  PubMed  CAS  Google Scholar 

  219. Brown SE et al (2008) The discovery and analysis of a diverged family of novel antifungal moricin-like peptides in the wax moth Galleria mellonella. Insect Biochem Mol Biol 38(2):201–212

    Article  PubMed  CAS  Google Scholar 

  220. Hemmi H et al (2002) Solution structure of moricin, an antibacterial peptide, isolated from the silkworm Bombyx mori. FEBS Lett 518(1–3):33–38

    Article  PubMed  CAS  Google Scholar 

  221. Destoumieux D et al (1999) Recombinant expression and range of activity of penaeidins, antimicrobial peptides from penaeid shrimp. Eur J Biochem 266(2):335–346

    Article  PubMed  CAS  Google Scholar 

  222. Cuthbertson BJ et al (2002) Diversity of the penaeidin antimicrobial peptides in two shrimp species. Immunogenetics 54(6):442–445

    Article  PubMed  CAS  Google Scholar 

  223. Cuthbertson BJ et al (2005) Solution structure of synthetic penaeidin-4 with structural and functional comparisons with penaeidin-3. J Biol Chem 280(16):16009–16018

    Article  PubMed  CAS  Google Scholar 

  224. Yang Y et al (2003) Solution structure of the recombinant penaeidin-3, a shrimp antimicrobial peptide. J Biol Chem 278(38):36859–36867

    Article  PubMed  CAS  Google Scholar 

  225. Cuthbertson BJ et al (2004) A new class (penaeidin class 4) of antimicrobial peptides from the Atlantic white shrimp (Litopenaeus setiferus) exhibits target specificity and an independent proline-rich-domain function. Biochem J 381(Pt 1):79–86

    PubMed  CAS  Google Scholar 

  226. Destoumieux D et al (2000) Penaeidins, antimicrobial peptides with chitin-binding activity, are produced and stored in shrimp granulocytes and released after microbial challenge. J Cell Sci 113(Pt 3):461–469

    PubMed  CAS  Google Scholar 

  227. Cuthbertson BJ, Bullesbach EE, Gross PS (2006) Discovery of synthetic penaeidin activity against antibiotic-resistant fungi. Chem Biol Drug Des 68(2):120–127

    Article  PubMed  CAS  Google Scholar 

  228. Tassanakajon A et al (2011) Cationic antimicrobial peptides in penaeid shrimp. Mar Biotechnol 13(4):639–657

    Article  PubMed  CAS  Google Scholar 

  229. Ohta M et al (1992) Mechanisms of antibacterial action of tachyplesins and polyphemusins, a group of antimicrobial peptides isolated from horseshoe crab hemocytes. Antimicrob Agents Chemother 36(7):1460–1465

    Article  PubMed  CAS  Google Scholar 

  230. Tincu JA, Taylor SW (2004) Antimicrobial peptides from marine invertebrates. Antimicrob Agents Chemother 48(10):3645–3654

    Article  PubMed  CAS  Google Scholar 

  231. Powers JP et al (2006) The antimicrobial peptide polyphemusin localizes to the cytoplasm of Escherichia coli following treatment. Antimicrob Agents Chemother 50(4):1522–1524

    Article  PubMed  CAS  Google Scholar 

  232. Osaki T et al (1999) Horseshoe crab hemocyte-derived antimicrobial polypeptides, tachystatins, with sequence similarity to spider neurotoxins. J Biol Chem 274(37):26172–26178

    Article  PubMed  CAS  Google Scholar 

  233. Fujitani N et al (2002) Structure of the antimicrobial peptide tachystatin A. J Biol Chem 277(26):23651–23657

    Article  PubMed  CAS  Google Scholar 

  234. Saito T et al (1995) A novel big defensin identified in horseshoe crab hemocytes: isolation, amino acid sequence, and antibacterial activity. J Biochem (Tokyo) 117(5):1131–1137

    CAS  Google Scholar 

  235. Destoumieux-Garzon D et al (2001) Crustacean immunity. Antifungal peptides are generated from the C terminus of shrimp hemocyanin in response to microbial challenge. J Biol Chem 276(50):47070–47077

    Article  PubMed  CAS  Google Scholar 

  236. Lopez-Abarrategui C et al (2012) Functional characterization of a synthetic hydrophilic antifungal peptide derived from the marine snail Cenchritis muricatus. Biochimie 94(4):968–974

    Article  PubMed  CAS  Google Scholar 

  237. Silva PI Jr, Daffre S, Bulet P (2000) Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family. J Biol Chem 275(43):33464–33470

    Article  PubMed  CAS  Google Scholar 

  238. Mandard N et al (2002) The solution structure of gomesin, an antimicrobial cysteine-rich peptide from the spider. Eur J Biochem 269(4):1190–1198

    Article  PubMed  CAS  Google Scholar 

  239. Lorenzini DM et al (2003) Molecular cloning, expression analysis and cellular localization of gomesin, an anti-microbial peptide from hemocytes of the spider Acanthoscurria gomesiana. Insect Biochem Mol Biol 33(10):1011–1016

    Article  PubMed  CAS  Google Scholar 

  240. Fazio MA et al (2006) Biological and structural characterization of new linear gomesin analogues with improved therapeutic indices. Biopolymers 88(3):386–400

    Article  CAS  Google Scholar 

  241. Domingues TM, Riske KA, Miranda A (2010) Revealing the lytic mechanism of the antimicrobial peptide gomesin by observing giant unilamellar vesicles. Langmuir (ACS J Surf Colloids) 26(13):11077–11084

    Article  CAS  Google Scholar 

  242. Soletti RC et al (2010) Peptide gomesin triggers cell death through l-type channel calcium influx, MAPK/ERK, PKC and PI3K signaling and generation of reactive oxygen species. Chem Biol Interact 186(2):135–143

    Article  PubMed  CAS  Google Scholar 

  243. Mygind PH et al (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437(7061):975–980

    Article  PubMed  CAS  Google Scholar 

  244. Campos-Olivas R et al (1995) NMR solution structure of the antifungal protein from Aspergillus giganteus: evidence for cysteine pairing isomerism. Biochemistry 34(9):3009–3021

    Article  PubMed  CAS  Google Scholar 

  245. Moreno AB, Del Pozo Martinez A, San Segundo B (2006) Biotechnologically relevant enzymes and proteins. Antifungal mechanism of the Aspergillus giganteus AFP against the rice blast fungus Magnaporthe grisea. Appl Microbiol Biotechnol 72(5):883–895

    Article  PubMed  CAS  Google Scholar 

  246. Martinez Del Pozo A et al (2002) The antifungal protein AFP of Aspergillus giganteus is an oligonucleotide/oligosaccharide binding (OB) fold-containing protein that produces condensation of DNA. J Biol Chem 277(48):46179–46183

    Article  PubMed  CAS  Google Scholar 

  247. Kaiserer L et al (2003) Characterization of the Penicillium chrysogenum antifungal protein PAF. Arch Microbiol 180(3):204–210

    Article  PubMed  CAS  Google Scholar 

  248. Oberparleiter C et al (2003) Active internalization of the Penicillium chrysogenum antifungal protein PAF in sensitive Aspergilli. Antimicrob Agents Chemother 47(11):3598–3601

    Article  PubMed  CAS  Google Scholar 

  249. Leiter E et al (2005) Antifungal protein PAF severely affects the integrity of the plasma membrane of Aspergillus nidulans and induces an apoptosis-like phenotype. Antimicrob Agents Chemother 49(6):2445–2453

    Article  PubMed  CAS  Google Scholar 

  250. Schmitt MJ, Breinig F (2006) Yeast viral killer toxins: lethality and self-protection. Nat Rev Microbiol 4(3):212–221

    Article  PubMed  CAS  Google Scholar 

  251. Breinig F, Tipper DJ, Schmitt MJ (2002) Kre1p, the plasma membrane receptor for the yeast K1 viral toxin. Cell 108(3):395–405

    Article  PubMed  CAS  Google Scholar 

  252. Eisfeld K et al (2000) Endocytotic uptake and retrograde transport of a virally encoded killer toxin in yeast. Mol Microbiol 37(4):926–940

    Article  PubMed  CAS  Google Scholar 

  253. Kasahara S et al (1994) Involvement of cell wall beta-glucan in the action of HM-1 killer toxin. FEBS Lett 348(1):27–32

    Article  PubMed  CAS  Google Scholar 

  254. Guyard C et al (2002) Characterization of a Williopsis saturnus var. mrakii high molecular weight secreted killer toxin with broad-spectrum antimicrobial activity. Antimicrob Agents Chemother 49(6):961–971

    Article  CAS  Google Scholar 

  255. Takasuka T et al (1995) Cell wall synthesis specific cytocidal effect of Hansenula mrakii toxin-1 on Saccharomyces cerevisiae. Cell Mol Biol Res 41(6):575–581

    PubMed  CAS  Google Scholar 

  256. Gage MJ et al (2001) KP4 fungal toxin inhibits growth in Ustilago maydis by blocking calcium uptake. Mol Microbiol 41(4):775–785

    Article  PubMed  CAS  Google Scholar 

  257. Allen A et al (2011) Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut. Plant Biotechnol J 9(8):857–864

    Article  PubMed  CAS  Google Scholar 

  258. Osusky M et al (2000) Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nat Biotechnol 18(11):1162–1166

    Article  PubMed  CAS  Google Scholar 

  259. Jach G et al (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J (Cell Mol Biol) 8(1):97–109

    Article  CAS  Google Scholar 

  260. Muramoto N et al (2012) Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriata in leaves and storage roots. Plant Cell Rep 31(6):987–997

    Article  PubMed  CAS  Google Scholar 

  261. Li Z et al (2011) Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Funct Integr Genomics 11(1):63–70

    Article  PubMed  CAS  Google Scholar 

  262. Rossi DC et al (2012) Therapeutic use of a cationic antimicrobial peptide from the spider Acanthoscurria gomesiana in the control of experimental candidiasis. BMC Microbiol 12:28

    Article  PubMed  CAS  Google Scholar 

  263. Kondori N et al (2011) Fungicidal activity of human lactoferrin-derived peptides based on the antimicrobial alphabeta region. Int J Antimicrob Agents 37(1):51–57

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole L. van der Weerden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Weerden, N.L., Bleackley, M.R. & Anderson, M.A. Properties and mechanisms of action of naturally occurring antifungal peptides. Cell. Mol. Life Sci. 70, 3545–3570 (2013). https://doi.org/10.1007/s00018-013-1260-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1260-1

Keywords

Navigation