Skip to main content

Advertisement

Log in

The unique features of follicular T cell subsets

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The germinal center (GC) reaction is critical for humoral immunity, but also contributes adversely to a variety of autoimmune diseases. While the major protective function of GCs is mediated by plasma cells and memory B cells, follicular helper T (TFH) cells represent a specialized T cell subset that provides essential help to the antigen-specific B cells in the form of membrane-bound ligands and secreted factors such as IL-21. Recent studies have revealed that TFH cells are capable of considerable functional diversity as well as possessing the ability to form memory cells. The molecular basis of this plasticity and heterogeneity is only now emerging. It has also become apparent that several other populations of follicular T cells exist, including natural killer T cells and regulatory T cells. In this review we will discuss the function of follicular T cells and interaction of these populations within the GC response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Allen CD, Cyster JG (2008) Follicular dendritic cell networks of primary follicles and germinal centers: phenotype and function. Semin Immunol 20:14–25

    PubMed  CAS  Google Scholar 

  2. Jacobson EB, Caporale LH, Thorbecke GJ (1974) Effect of thymus cell injections on germinal center formation in lymphoid tissues of nude (thymusless) mice. Cell Immunol 13:416–430

    PubMed  CAS  Google Scholar 

  3. Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M, Förster R (2000) Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 192:1545–1552

    PubMed  CAS  Google Scholar 

  4. Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B (2000) CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med 192:1553–1562

    PubMed  CAS  Google Scholar 

  5. Reinhold Förster TE, Kremmer E, Lipp M (1994) Expression of the G-protein–coupled receptor BLR1 defines mature, recirculating B cells and a subset of T-helper memory cells. Blood 84:830–840

    Google Scholar 

  6. Walker LS, Gulbranson-Judge A, Flynn S, Brocker T, Raykundalia C, Goodall M, Förster R, Lipp M, Lane P (1999) Compromised OX40 function in Cd28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers. J Exp Med 190:1115–1122

    PubMed  CAS  Google Scholar 

  7. Ansel KM, McHeyzer-Williams LJ, Ngo VN, McHeyzer-Williams MG, Cyster JG (1999) In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J Exp Med 190:1123–1134

    PubMed  CAS  Google Scholar 

  8. Fazilleau N, Mcheyzer-Williams LJ, Rosen H, Mcheyzer-Williams MG (2009) The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat Immunol 10:375–384

    PubMed  CAS  Google Scholar 

  9. Tubo NJ, Pagan AJ, Taylor JJ, Nelson RW, Linehan JL, Ertelt JM, Huseby ES, Way SS, Jenkins MK (2013) Single naive CD4+ T cells from a diverse repertoire produce different effector cell types during infection. Cell 153:785–796

    PubMed  CAS  Google Scholar 

  10. Baumjohann D, Preite S, Reboldi A, Ronchi F, Ansel KM, Lanzavecchia A, Sallusto F (2013) Persistent antigen and germinal center B cells sustain T follicular helper cell responses and phenotype. Immunity 38:596–605

    PubMed  CAS  Google Scholar 

  11. Deenick EK, Chan A, Ma CS, Gatto D, Schwartzberg PL, Brink R, Tangye SG (2010) Follicular helper T cell differentiation requires continuous antigen presentation that is independent of unique B cell signaling. Immunity 33:241–253

    PubMed  CAS  Google Scholar 

  12. Dv Essen, Kikutani H, Gray D (1995) CD40 ligand-transduced co-stimulation of T cells in the development of helper function. Nature 378:620–623

    Google Scholar 

  13. Foy TM, Laman JD, Ledbetter JA, Aruffo A, Claassen E, Noelle RJ (1994) Gp39-CD40 interactions are essential for germinal center formation and the development of B cell memory. J Exp Med 180:157–163

    PubMed  CAS  Google Scholar 

  14. Arpin C, Déchanet J, Van Kooten C, Merville P, Grouard G, Brière F, Banchereau J, Liu YJ (1995) Generation of memory B cells and plasma cells in vitro. Science 268:720–722

    PubMed  CAS  Google Scholar 

  15. Liu YJ, Joshua DE, Williams GT, Smith CA, Gordon J, MacLennan IC (1989) Mechanism of antigen-driven selection in germinal centres. Nature 342:929–931

    PubMed  CAS  Google Scholar 

  16. Agematsu K, Nagumo H, Shinozaki K, Hokibara S, Yasui K, Terada K, Kawamura N, Toba T, Nonoyama S, Ochs HD, Komiyama A (1998) Absence of IgD-CD27(+) memory B cell population in X-linked hyper-IgM syndrome. J Clin Invest 102:853–860

    PubMed  CAS  Google Scholar 

  17. Allen RC, Armitage RJ, Conley ME, Rosenblatt H, Jenkins NA, Copeland NG, Bedell MA, Edelhoff S, Disteche CM, Simoneaux DK (1993) CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science 259:990–993

    PubMed  CAS  Google Scholar 

  18. DiSanto JP, Bonnefoy JY, Gauchatt JF, Fischer A, De Saint Basile G (1993) CD40 ligand mutations in X-linked immunodeficiency with hyper-IgM. Nature 361:541–543

    PubMed  CAS  Google Scholar 

  19. Longo NS, Lugar PL, Yavuz S, Zhang W, Krijger PHL, Russ DE, Jima DD, Dave SS, Grammer AC, Lipsky PE (2009) Analysis of somatic hypermutation in X-linked hyper-IgM syndrome shows specific deficiencies in mutational targeting. Blood 113:3706–3715

    PubMed  CAS  Google Scholar 

  20. Korthäuer U, Graf D, Mages HW, Brière F, Padayachee M, Malcolm S, Ugazio AG, Notarangelo LD, Levinsky RJ, Kroczek RA (1993) Defective expression of T cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature 361:539–541

    PubMed  Google Scholar 

  21. Gaspal FMC, Kim M-Y, McConnell FM, Raykundalia C, Bekiaris V, Lane PJL (2005) Mice deficient in OX40 and CD30 signals lack memory antibody responses because of deficient CD4 T cell memory. J Immunol 174:3891–3896

    PubMed  CAS  Google Scholar 

  22. Flynn S, Toellner KM, Raykundalia C, Goodall M, Lane P (1998) CD4 T cell cytokine differentiation: the B cell activation molecule, OX40 ligand, instructs CD4 T cells to express interleukin 4 and upregulates expression of the chemokine receptor, Blr-1. J Exp Med 188:297–304

    PubMed  CAS  Google Scholar 

  23. Morimoto S, Kanno Y, Tanaka Y, Tokano Y, Hashimoto H, Jacquot S, Morimoto C, Schlossman SF, Yagita H, Okumura K, Kobata T (2000) CD134L engagement enhances human B cell Ig production: cD154/CD40, CD70/CD27, and CD134/CD134L interactions coordinately regulate T cell-dependent B cell responses. J Immunol 164:4097–4104

    PubMed  CAS  Google Scholar 

  24. Dorfman DM, Brown JA, Shahsafaei A, Freeman GJ (2006) Programmed death-1 (PD-1) is a marker of germinal center-associated T cells and angioimmunoblastic T cell lymphoma. Am J Surg Pathol 30:802–810

    PubMed  Google Scholar 

  25. Haynes NM, Allen CDC, Lesley R, Ansel KM, Killeen N, Cyster JG (2007) Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J Immunol 179:5099–5108

    PubMed  CAS  Google Scholar 

  26. Good-Jacobson KL, Szumilas CG, Chen L, Sharpe AH, Tomayko MM, Shlomchik MJ (2010) PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. Nat Immunol 11:535–542

    PubMed  CAS  Google Scholar 

  27. Akiba H, Takeda K, Kojima Y, Usui Y, Harada N, Yamazaki T, Ma J, Tezuka K, Yagita H, Okumura K (2005) The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J Immunol 175:2340–2348

    PubMed  CAS  Google Scholar 

  28. Nurieva RI, Chung Y, Hwang D, Yang XO, Kang HS, Ma L, Wang Yh, Watowich SS, Jetten AM, Tian Q, Dong C (2008) Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29:138–149

    PubMed  CAS  Google Scholar 

  29. Warnatz K, Bossaller L, Salzer U, Skrabl-Baumgartner A, Schwinger W, Van der Burg M, Van Dongen JJM, Orlowska-Volk M, Knoth R, Durandy A, Draeger R, Schlesier M, Peter HH, Grimbacher B (2006) Human ICOS deficiency abrogates the germinal center reaction and provides a monogenic model for common variable immunodeficiency. Blood 107:3045–3052

    PubMed  CAS  Google Scholar 

  30. Choi YS, Kageyama R, Eto D, Escobar TC, Johnston RJ, Monticelli L, Lao C, Crotty S (2011) ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34:932–946

    PubMed  CAS  Google Scholar 

  31. Xu H, Li X, Liu D, Li J, Zhang X, Chen X, Hou S, Peng L, Xu C, Liu W, Zhang L, Qi H (2013) Follicular T-helper cell recruitment governed by bystander B cells and ICOS-driven motility. Nature 496:523–527

    PubMed  CAS  Google Scholar 

  32. Ferguson SE, Han S, Kelsoe G, Thompson CB (1996) CD28 is required for germinal center formation. J Immunol 156:4576–4581

    PubMed  CAS  Google Scholar 

  33. Shahinian A, Pfeffer K, Lee KP, Kündig TM, Kishihara K, Wakeham A, Kawai K, Ohashi PS, Thompson CB, Mak TW (1993) Differential T cell costimulatory requirements in CD28-deficient mice. Science 261:609–612

    PubMed  CAS  Google Scholar 

  34. Salek-Ardakani S, Choi YS, Rafii-El-Idrissi Benhnia M, Flynn R, Arens R, Shoenberger S, Crotty S, Croft M, Salek-Ardakani S (2011) B cell-specific expression of B7-2 is required for follicular Th cell function in response to vaccinia virus. J Immunol 186:5294–5303

    PubMed  CAS  Google Scholar 

  35. Borriello F, Sethna MP, Boyd SD, Schweitzer AN, Tivol EA, Jacoby D, Strom TB, Simpson EM, Freeman GJ, Sharpe AH (1997) B7-1 and B7-2 have overlapping, critical roles in immunoglobulin class switching and germinal center formation. Immunity 6:303–313

    PubMed  CAS  Google Scholar 

  36. Good-Jacobson KL, Song E, Anderson S, Sharpe AH, Shlomchik MJ (2012) CD80 expression on B cells regulates murine T follicular helper development, germinal center B cell survival, and plasma cell generation. J Immunol 188:4217–4225

    PubMed  CAS  Google Scholar 

  37. Cannons JL, Qi H, Lu KT, Dutta M, Gomez-Rodriguez J, Cheng J, Wakeland EK, Germain RN, Schwartzberg PL (2010) Optimal germinal center responses require a multistage T cell: B cell adhesion process involving integrins, SLAM-associated protein, and CD84. Immunity 32:253–265

    PubMed  CAS  Google Scholar 

  38. Crotty S, Kersh EN, Cannons J, Schwartzberg PL, Ahmed R (2003) SAP is required for generating long-term humoral immunity. Nature 421:282–287

    PubMed  CAS  Google Scholar 

  39. Coffey AJ, Brooksbank RA, Brandau O, Oohashi T, Howell GR, Bye JM, Cahn AP, Durham J, Heath P, Wray P, Pavitt R, Wilkinson J, Leversha M, Huckle E, Shaw-Smith CJ, Dunham A, Rhodes S, Schuster V, Porta G, Yin L, Serafini P, Sylla B, Zollo M, Franco B, Bolino A, Seri M, Lanyi A, Davis JR, Webster D, Harris A, Lenoir G, de St Basile G, Jones A, Behloradsky BH, Achatz H, Murken J, Fassler R, Sumegi J, Romeo G, Vaudin M, Ross MT, Meindl A, Bentley DR (1998) Host response to EBV infection in X-linked lymphoproliferaltive disease results from mutations in an SH2-domain encoding gene. Nat Genet 20:129–135

    PubMed  CAS  Google Scholar 

  40. Qi H, Cannons JL, Klauschen F, Schwartzberg PL, Germain RN (2008) SAP-controlled T-B cell interactions underlie germinal centre formation. Nature 455:764–769

    PubMed  CAS  Google Scholar 

  41. Kageyama R, Cannons JL, Zhao F, Yusuf I, Lao C, Locci M, Schwartzberg PL, Crotty S (2012) The receptor Ly108 functions as a SAP adaptor-dependent on-off switch for T cell help to B cells and NKT cell development. Immunity 36:986–1002

    PubMed  CAS  Google Scholar 

  42. Nurieva RI, Chung Y, Martinez GJ, Yang XO, Tanaka S, Matskevitch TD, Wang Y-h, Dong C (2009) Bcl6 mediates the development of T follicular helper cells. Science 325:1001–1005

    PubMed  CAS  Google Scholar 

  43. Yu D, Rao S, Tsai LM, Lee SK, He Y, Sutcliffe EL, Srivastava M, Linterman M, Zheng L, Simpson N, Ellyard JI, Parish IA, Ma CS, Li Q-J, Parish CR, Mackay CR, Vinuesa CG (2009) The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31:457–468

    PubMed  CAS  Google Scholar 

  44. Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D, Barnett B, Dent AL, Craft J, Crotty S (2009) Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325:1006–1010

    PubMed  CAS  Google Scholar 

  45. Kitano M, Moriyama S, Ando Y, Hikida M, Mori Y, Kurosaki T, Okada T (2011) Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity. Immunity 34:961–972

    PubMed  CAS  Google Scholar 

  46. Goenka R, Barnett LG, Silver JS, O’Neill PJ, Hunter CA, Cancro MP, Laufer TM (2011) Cutting edge: dendritic cell-restricted antigen presentation initiates the follicular helper T cell program but cannot complete ultimate effector differentiation. J Immunol 187:1091–1095

    PubMed  CAS  Google Scholar 

  47. Kerfoot SM, Yaari G, Patel JR, Johnson KL, Gonzalez DG, Kleinstein SH, Haberman AM (2011) Germinal center B cell and T follicular helper cell development initiates in the interfollicular zone. Immunity 34:947–960

    PubMed  CAS  Google Scholar 

  48. Baumjohann D, Okada T, Ansel KM (2011) Cutting edge: distinct waves of BCL6 expression during T follicular helper cell development. J Immunol 187:2089–2092

    PubMed  CAS  Google Scholar 

  49. Lüthje K, Kallies A, Shimohakamada Y, Belz GT, Light A, Tarlinton DM, Nutt SL (2012) The development and fate of follicular helper T cells defined by an IL-21 reporter mouse. Nat Immunol 13:491–498

    PubMed  Google Scholar 

  50. Crotty S, Johnston RJ, Schoenberger SP (2010) Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation. Nat Immunol 11:114–120

    PubMed  CAS  Google Scholar 

  51. Huang C, Hatzi K, Melnick A (2013) Lineage-specific functions of Bcl-6 in immunity and inflammation are mediated by distinct biochemical mechanisms. Nat Immunol 14:380–388

    PubMed  CAS  Google Scholar 

  52. Linterman MA, Beaton L, Yu D, Ramiscal RR, Srivastava M, Hogan JJ, Verma NK, Smyth MJ, Rigby RJ, Vinuesa CG (2010) IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J Exp Med 207:353–363

    PubMed  CAS  Google Scholar 

  53. Bollig N, Brüstle A, Kellner K, Ackermann W, Abass E, Raifer H, Camara B, Brendel C, Giel G, Bothur E, Huber M, Paul C, Elli A, Kroczek RA, Nurieva RI, Dong C, Jacob R, Mak TW, Lohoff M (2012) Transcription factor IRF4 determines germinal center formation through follicular T-helper cell differentiation. Proc Natl Acad Sci USA 109:8664–8669

    PubMed  CAS  Google Scholar 

  54. Kwon H, Thierry-Mieg D, Thierry-Mieg J, Kim H-P, Oh J, Tunyaplin C, Carotta S, Donovan CE, Goldman ML, Tailor P, Ozato K, Levy DE, Nutt SL, Calame K, Leonard WJ (2009) Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors. Immunity 31:941–952

    PubMed  CAS  Google Scholar 

  55. Parrish-Novak J, Dillon SR, Nelson A, Hammond A, Sprecher C, Gross JA, Johnston J, Madden K, Xu W, West J, Schrader S, Burkhead S, Heipel M, Brandt C, Kuijper JL, Kramer J, Conklin D, Presnell SR, Berry J, Shiota F, Bort S, Hambly K, Mudri S, Clegg C, Moore M, Grant FJ, Lofton-Day C, Gilbert T, Rayond F, Ching A, Yao L, Smith D, Webster P, Whitmore T, Maurer M, Kaushansky K, Holly RD, Foster D (2000) Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408:57–63

    PubMed  CAS  Google Scholar 

  56. Coquet JM, Kyparissoudis K, Pellicci DG, Besra G, Berzins SP, Smyth MJ, Godfrey DI (2007) IL-21 is produced by NKT cells and modulates NKT cell activation and cytokine production. J Immunol 178:2827–2834

    PubMed  CAS  Google Scholar 

  57. Harada M, Magara-Koyanagi K, Watarai H, Nagata Y, Ishii Y, Kojo S, Horiguchi S, Okamoto Y, Nakayama T, Suzuki N, Yeh WC, Akira S, Kitamura H, Ohara O, Seino Ki, Taniguchi M (2006) IL-21-induced B cell apoptosis mediated by natural killer T cells suppresses IgE responses. J Exp Med 203:2929–2937

    PubMed  CAS  Google Scholar 

  58. Chang P–P, Barral P, Fitch J, Pratama A, Ma CS, Kallies A, Hogan JJ, Cerundolo V, Tangye SG, Bittman R, Nutt SL, Brink R, Godfrey DI, Batista FD, Vinuesa CG (2012) Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses. Nat Immunol 13:35–43

    CAS  Google Scholar 

  59. Chtanova T, Tangye SG, Newton R, Frank N, Hodge MR, Rolph MS, Mackay CR (2004) T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J Immunol 173:68–78

    PubMed  CAS  Google Scholar 

  60. Kim H-P, Korn LL, Gamero AM, Leonard WJ (2005) Calcium-dependent activation of interleukin-21 gene expression in T cells. J Biol Chem 280:25291–25297

    PubMed  CAS  Google Scholar 

  61. Chen G, Hardy K, Bunting K, Daley S, Ma L, Shannon MF (2010) Regulation of the IL-21 gene by the NF-κappaB transcription factor c-Rel. J Immunol 185:2350–2359

    PubMed  CAS  Google Scholar 

  62. Nurieva RI, Yang XO, Martinez G, Zhang Y, Panopoulos AD, Ma L, Schluns K, Tian Q, Watowich SS, Jetten AM, Dong C (2007) Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448:480–483

    PubMed  CAS  Google Scholar 

  63. Dienz O, Eaton SM, Bond JP, Neveu W, Moquin D, Noubade R, Briso EM, Charland C, Leonard WJ, Ciliberto G, Teuscher C, Haynes L, Rincon M (2009) The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J Exp Med 206:69–78

    PubMed  CAS  Google Scholar 

  64. Batten M, Ramamoorthi N, Kljavin NM, Ma CS, Cox JH, Dengler HS, Danilenko DM, Caplazi P, Wong M, Fulcher DA, Cook MC, King C, Tangye SG, de Sauvage FJ, Ghilardi N (2010) IL-27 supports germinal center function by enhancing IL-21 production and the function of T follicular helper cells. J Exp Med 207:2895–2906

    PubMed  CAS  Google Scholar 

  65. Ma CS, Suryani S, Avery DT, Chan A, Nanan R, Santner-Nanan B, Deenick EK, Tangye SG (2009) Early commitment of naive human CD4+ T cells to the T follicular helper (TFH) cell lineage is induced by IL-12. Immunol Cell Biol 87:590–600

    PubMed  CAS  Google Scholar 

  66. Ma CS, Avery D, Chan A, Batten M, Bustamante J, Boisson-Dupuis S, Arkwright PD, Kreins AY, Averbuch D, Engelhard D, Magdorf K, Kilic SS, Minegishi Y, Nonoyama S, French MA, Choo S, Smart JM, Peake J, Wong M, Gray P, Cook MC, Fulcher DA, Casanova JL, Deenick EK, Tangye SG (2012) Functional STAT3 deficiency compromises the generation of human T follicular helper cells. Blood 119:3997–4008

    PubMed  CAS  Google Scholar 

  67. Hiramatsu Y, Suto A, Kashiwakuma D, Kanari H, Kagami Si, Ikeda K, Hirose K, Watanabe N, Grusby MJ, Iwamoto I, Nakajima H (2010) c-Maf activates the promoter and enhancer of the IL-21 gene, and TGF-β inhibits c-Maf-induced IL-21 production in CD4+ T cells. J Leukoc Biol 87:703–712

    PubMed  CAS  Google Scholar 

  68. Pot C, Jin H, Awasthi A, Liu SM, Lai C-Y, Madan R, Sharpe AH, Karp CL, Miaw S-C, Ho I-C, Kuchroo VK (2009) Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. J Immunol 183:797–801

    PubMed  CAS  Google Scholar 

  69. Bauquet AT, Jin H, Paterson AM, Mitsdoerffer M, Ho I-C, Sharpe AH, Kuchroo VK (2009) The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat Immunol 10:167–175

    PubMed  CAS  Google Scholar 

  70. Rolf J, Bell SE, Kovesdi D, Janas ML, Soond DR, Webb LMC, Santinelli S, Saunders T, Hebeis B, Killeen N, Okkenhaug K, Turner M (2010) Phosphoinositide 3-kinase activity in T cells regulates the magnitude of the germinal center reaction. J Immunol 185:4042–4052

    PubMed  CAS  Google Scholar 

  71. Ise W, Kohyama M, Schraml BU, Zhang T, Schwer B, Basu U, Alt FW, Tang J, Oltz EM, Murphy TL, Murphy KM (2011) The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells. Nat Immunol 12:536–543

    PubMed  CAS  Google Scholar 

  72. Schraml BU, Hildner K, Ise W, Lee W-L, Smith WA-E, Solomon B, Sahota G, Sim J, Mukasa R, Cemerski S, Hatton RD, Stormo GD, Weaver CT, Russell JH, Murphy TL, Murphy KM (2009) The AP-1 transcription factor Batf controls T(H)17 differentiation. Nature 460:405–409

    PubMed  CAS  Google Scholar 

  73. Huber M, Brüstle A, Reinhard K, Guralnik A, Walter G, Mahiny A, van Löw E, Lohoff M (2008) IRF4 is essential for IL-21-mediated induction, amplification, and stabilization of the Th17 phenotype. Proc Natl Acad Sci USA 105:20846–20851

    PubMed  CAS  Google Scholar 

  74. Chen Q, Yang W, Gupta S, Biswas P, Smith P, Bhagat G, Pernis AB (2008) IRF-4-binding protein inhibits interleukin-17 and interleukin-21 production by controlling the activity of IRF-4 transcription factor. Immunity 29:899–911

    PubMed  CAS  Google Scholar 

  75. Biswas PS, Gupta S, Stirzaker RA, Kumar V, Jessberger R, Lu TT, Bhagat G, Pernis AB (2012) Dual regulation of IRF4 function in T and B cells is required for the coordination of T-B cell interactions and the prevention of autoimmunity. J Exp Med 209:581–596

    PubMed  CAS  Google Scholar 

  76. Ciofani M, Madar A, Galan C, Sellars M, Mace K, Pauli F, Agarwal A, Huang W, Parkurst CN, Muratet M, Newberry KM, Meadows S, Greenfield A, Yang Y, Jain P, Kirigin FK, Birchmeier C, Wagner EF, Murphy KM, Myers RM, Bonneau R, Littman DR (2012) A validated regulatory network for Th17 cell specification. Cell 151:289–303

    PubMed  CAS  Google Scholar 

  77. Glasmacher E, Agrawal S, Chang AB, Murphy TL, Zeng W, Vander Lugt B, Khan AA, Ciofani M, Spooner CJ, Rutz S, Hackney J, Nurieva R, Escalante CR, Ouyang W, Littman DR, Murphy KM, Singh H (2012) A genomic regulatory element that directs assembly and function of immune-specific AP-1-IRF complexes. Science 338:975–980

    PubMed  CAS  Google Scholar 

  78. Li P, Spolski R, Liao W, Wang L, Murphy TL, Murphy KM, Leonard WJ (2012) BATF-JUN is critical for IRF4-mediated transcription in T cells. Nature 490:543–546

    PubMed  CAS  Google Scholar 

  79. Johnston RJ, Choi YS, Diamond JA, Yang JA, Crotty S (2012) STAT5 is a potent negative regulator of TFH cell differentiation. J Exp Med 209:243–250

    PubMed  CAS  Google Scholar 

  80. Nurieva RI, Podd A, Chen Y, Alekseev AM, Yu M, Qi X, Huang H, Wen R, Wang J, Li HS, Watowich SS, Qi H, Dong C, Wang D (2012) STAT5 protein negatively regulates T follicular helper (TFH) cell generation and function. J Biol Chem 287:11234–11239

    PubMed  CAS  Google Scholar 

  81. Oestreich KJ, Mohn SE, Weinmann AS (2012) Molecular mechanisms that control the expression and activity of Bcl-6 in TH1 cells to regulate flexibility with a TFH-like gene profile. Nat Immunol 13:405–411

    PubMed  CAS  Google Scholar 

  82. Kashiwakuma D, Suto A, Hiramatsu Y, Ikeda K, Takatori H, Suzuki K, Kagami S, Hirose K, Watanabe N, Iwamoto I, Nakajima H (2010) B and T lymphocyte attenuator suppresses IL-21 production from follicular Th cells and subsequent humoral immune responses. J Immunol 185:2730–2736

    PubMed  CAS  Google Scholar 

  83. Lu KT, Kanno Y, Cannons JL, Handon R, Bible P, Elkahloun AG, Anderson SM, Wei L, Sun H, O’Shea JJ, Schwartzberg PL (2011) Functional and epigenetic studies reveal multistep differentiation and plasticity of in vitro-generated and in vivo-derived follicular T helper cells. Immunity 35:622–632

    PubMed  CAS  Google Scholar 

  84. Ozaki K, Spolski R, Feng CG, Qi C-F, Cheng J, Sher A, Morse HC, Liu C, Schwartzberg PL, Leonard WJ (2002) A critical role for IL-21 in regulating immunoglobulin production. Science 298:1630–1634

    PubMed  CAS  Google Scholar 

  85. Vogelzang A, McGuire HM, Yu D, Sprent J, Mackay CR, King C (2008) A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity 29:127–137

    PubMed  CAS  Google Scholar 

  86. Zotos D, Coquet JM, Zhang Y, Light A, D’Costa K, Kallies A, Corcoran LM, Godfrey DI, Toellner KM, Smyth MJ, Nutt SL, Tarlinton DM (2010) IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J Exp Med 207:365–378

    PubMed  CAS  Google Scholar 

  87. King IL, Mohrs K, Mohrs M (2010) A nonredundant role for IL-21 receptor signaling in plasma cell differentiation and protective type 2 immunity against gastrointestinal helminth infection. J Immunol 185:6138–6145

    PubMed  CAS  Google Scholar 

  88. Rankin AL, MacLeod H, Keegan S, Andreyeva T, Lowe L, Bloom L, Collins M, Nickerson-Nutter C, Young D, Guay H (2011) IL-21 receptor is critical for the development of memory B cell responses. J Immunol 186:667–674

    PubMed  CAS  Google Scholar 

  89. Eto D, Lao C, DiToro D, Barnett B, Escobar TC, Kageyama R, Yusuf I, Crotty S (2011) IL-21 and IL-6 are critical for different aspects of B cell immunity and redundantly induce optimal follicular helper CD4 T cell (TFH) differentiation. PLoS One 6:e17739

    PubMed  CAS  Google Scholar 

  90. Karnowski A, Chevrier S, Belz GT, Mount A, Emslie D, D’Costa K, Tarlinton DM, Kallies A, Corcoran LM (2012) B and T cells collaborate in antiviral responses via IL-6, IL-21, and transcriptional activator and coactivator, Oct2 and OBF-1. J Exp Med 209:2049–2064

    PubMed  CAS  Google Scholar 

  91. Mehta DS, Wurster AL, Whitters MJ, Young DA, Collins M, Grusby MJ (2003) IL-21 induces the apoptosis of resting and activated primary B cells. J Immunol 170:4111–4118

    PubMed  CAS  Google Scholar 

  92. Jin H, Carrio R, Yu A, Malek TR (2004) Distinct activation signals determine whether IL-21 induces B cell costimulation, growth arrest, or Bim-dependent apoptosis. J Immunol 173:657–665

    PubMed  CAS  Google Scholar 

  93. Ettinger R, Sims GP, Fairhurst A-M, Robbins R, da Silva YS, Spolski R, Leonard WJ, Lipsky PE (2005) IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. J Immunol 175:7867–7879

    PubMed  CAS  Google Scholar 

  94. Ozaki K, Spolski R, Ettinger R, Kim H-P, Wang G, Qi C-F, Hwu P, Shaffer DJ, Akilesh S, Roopenian DC, Morse HC, Lipsky PE, Leonard WJ (2004) Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol 173:5361–5371

    PubMed  CAS  Google Scholar 

  95. Good KL, Bryant VL, Tangye SG (2006) Kinetics of human B cell behavior and amplification of proliferative responses following stimulation with IL-21. J Immunol 177:5236–5247

    PubMed  CAS  Google Scholar 

  96. Jourdan M, Caraux A, De Vos J, Fiol G, Larroque M, Cognot C, Bret C, Duperray C, Hose D, Klein B (2009) An in vitro model of differentiation of memory B cells into plasma blasts and plasma cells including detailed phenotypic and molecular characterization. Blood 114:5173–5181

    PubMed  CAS  Google Scholar 

  97. Avery DT, Bryant VL, Ma CS, De Waal Malefyt R, Tangye SG (2008) IL-21-induced isotype switching to IgG and IgA by human naive B cells is differentially regulated by IL-4. J Immunol 181:1767–1779

    PubMed  CAS  Google Scholar 

  98. Basso K, Schneider C, Shen Q, Holmes AB, Setty M, Leslie C, Dalla-Favera R (2012) BCL6 positively regulates AID and germinal center gene expression via repression of miR-155. J Exp Med 209:2455–2465

    PubMed  CAS  Google Scholar 

  99. Reinhardt RL, Liang H-E, Locksley RM (2009) Cytokine-secreting follicular T cells shape the antibody repertoire. Nat Immunol 10:385–393

    PubMed  CAS  Google Scholar 

  100. Zaretsky AG, Taylor JJ, King IL, Marshall FA, Mohrs M, Pearce EJ (2009) T follicular helper cells differentiate from Th2 cells in response to helminth antigens. J Exp Med 206:991–999

    CAS  Google Scholar 

  101. Nutt SL, Tarlinton DM (2011) Germinal center B and follicular helper T cells: siblings, cousins or just good friends? Nat Immunol 131:472–477

    Google Scholar 

  102. Odegard JM, Marks BR, DiPlacido LD, Poholek AC, Kono DH, Dong C, Flavell RA, Craft J (2008) ICOS-dependent extra follicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity. J Exp Med 205:2873–2886

    PubMed  CAS  Google Scholar 

  103. Lee SK, Rigby RJ, Zotos D, Tsai LM, Kawamoto S, Marshall JL, Ramiscal RR, Chan TD, Gatto D, Brink R, Yu D, Fagarasan S, Tarlinton DM, Cunningham AF, Vinuesa CG (2011) B cell priming for extra follicular antibody responses requires Bcl-6 expression by T cells. J Exp Med 208:1377–1388

    PubMed  CAS  Google Scholar 

  104. King IL, Fortier A, Tighe M, Dibble J, Watts GFM, Veerapen N, Haberman AM, Besra GS, Mohrs M, Brenner MB, Leadbetter EA (2011) Invariant natural killer T cells direct B cell responses to cognate lipid antigen in an IL-21-dependent manner. Nat Immunol 13:44–50

    PubMed  Google Scholar 

  105. Lim HW, Hillsamer P, Kim CH (2004) Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell-driven B cell responses. J Clin Invest 114:1640–1649

    PubMed  CAS  Google Scholar 

  106. Linterman MA, Pierson W, Lee SK, Kallies A, Kawamoto S, Rayner TF, Srivastava M, Divekar DP, Beaton L, Hogan JJ, Fagarasan S, Liston A, Smith KGC, Vinuesa CG (2011) Foxp3+ follicular regulatory T cells control the germinal center response. Nat Med 17:975–982

    PubMed  CAS  Google Scholar 

  107. Chung Y, Tanaka S, Chu F, Nurieva RI, Martinez GJ, Rawal S, Wang Yh, Lim H, Reynolds JM, Zhou X-h, Fan H-m, Liu Z-m, Neelapu SS, Dong C (2011) Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat Med 17:983–988

    PubMed  CAS  Google Scholar 

  108. Josefowicz SZ, Lu L-F, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Ann Rev Immunol 30:531–564

    CAS  Google Scholar 

  109. Cretney E, Xin A, Shi W, Minnich M, Masson F, Miasari M, Belz GT, Smyth GK, Busslinger M, Nutt SL, Kallies A (2011) The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat Immunol 12:304–311

    PubMed  CAS  Google Scholar 

  110. Fahey LM, Wilson EB, Elsaesser H, Fistonich CD, McGavern DB, Brooks DG (2011) Viral persistence redirects CD4 T cell differentiation toward T follicular helper cells. J Exp Med 208:987–999

    PubMed  CAS  Google Scholar 

  111. Tsuji M, Komatsu N, Kawamoto S, Suzuki K, Kanagawa O, Honjo T, Hori S, Fagarasan S (2009) Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer’s patches. Science 323:1488–1492

    PubMed  CAS  Google Scholar 

  112. Hirota K, Turner JE, Villa M, Duarte JH, Demengeot J, Steinmetz OM, Stockinger B (2013) Plasticity of TH17 cells in Peyer’s patches is responsible for the induction of T cell-dependent IgA responses. Nat Immunol 14:372–379

    PubMed  CAS  Google Scholar 

  113. Suto A, Kashiwakuma D, Kagami S, Hirose K, Watanabe N, Yokote K, Saito Y, Nakayama T, Grusby MJ, Iwamoto I, Nakajima H (2008) Development and characterization of IL-21-producing CD4+ T cells. J Exp Med 205:1369–1379

    PubMed  CAS  Google Scholar 

  114. Nakayamada S, Kanno Y, Takahashi H, Jankovic D, Lu KT, Johnson TA, Sun HW, Vahedi G, Hakim O, Handon R, Schwartzberg PL, Hager GL, O’Shea JJ (2011) Early Th1 cell differentiation is marked by a Tfh cell-like transition. Immunity 35:919–931

    PubMed  CAS  Google Scholar 

  115. Fazilleau N, Eisenbraun MD, Malherbe L, Ebright JN, Pogue-Caley RR, Mcheyzer-Williams LJ, Mcheyzer-Williams MG (2007) Lymphoid reservoirs of antigen-specific memory T helper cells. Nat Immunol 8:753–761

    PubMed  CAS  Google Scholar 

  116. Pepper M, Pagan AJ, Igyarto BZ, Taylor JJ, Jenkins MK (2011) Opposing signals from the Bcl6 transcription factor and the interleukin-2 receptor generate T helper 1 central and effector memory cells. Immunity 35:583–595

    PubMed  CAS  Google Scholar 

  117. Weber JP, Fuhrmann F, Hutloff A (2012) T-follicular helper cells survive as long-term memory cells. Eur J Immunol 42:1981–1988

    PubMed  CAS  Google Scholar 

  118. Chevalier N, Jarrossay D, Ho E, Avery DT, Ma CS, Yu D, Sallusto F, Tangye SG, Mackay CR (2011) CXCR5 expressing human central memory CD4 T cells and their relevance for humoral immune responses. J Immunol 186:5556–5568

    PubMed  CAS  Google Scholar 

  119. Morita R, Schmitt N, Bentebibel S-E, Ranganathan R, Bourdery L, Zurawski G, Foucat E, Dullaers M, Oh S, Sabzghabaei N, Lavecchio EM, Punaro M, Pascual V, Banchereau J, Ueno H (2011) Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34:108–121

    PubMed  CAS  Google Scholar 

  120. Simpson N, Gatenby PA, Wilson A, Malik S, Fulcher DA, Tangye SG, Manku H, Vyse TJ, Roncador G, Huttley GA, Goodnow CC, Vinuesa CG, Cook MC (2010) Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis Rheum 62:234–244

    PubMed  CAS  Google Scholar 

  121. Terrier B, Costedoat-Chalumeau N, Garrido M, Geri G, Rosenzwajg M, Musset L, Klatzmann D, Saadoun D, Cacoub P (2012) Interleukin 21 correlates with T cell and B cell subset alterations in systemic lupus erythematosus. J Rheumatol 39:1819–1828

    PubMed  CAS  Google Scholar 

  122. Ma J, Zhu C, Ma B, Tian J, Baidoo SE, Mao C, Wu W, Chen J, Tong J, Yang M, Jiao Z, Xu H, Lu L, Wang S (2012) Increased frequency of circulating follicular helper T cells in patients with rheumatoid arthritis. Clin Dev Immunol 2012:827480

    PubMed  Google Scholar 

  123. Zhu C, Ma J, Liu Y, Tong J, Tian J, Chen J, Tang X, Xu H, Lu L, Wang S (2012) Increased frequency of follicular helper T cells in patients with autoimmune thyroid disease. J Clin Endocrinol Metab 97:943–950

    PubMed  CAS  Google Scholar 

  124. Liu R, Wu Q, Su D, Che N, Chen H, Geng L, Chen J, Chen W, Li X, Sun L (2012) A regulatory effect of IL-21 on T follicular helper-like cell and B cell in rheumatoid arthritis. Arthritis Res Ther 14:R255

    PubMed  CAS  Google Scholar 

  125. Li XY, Wu ZB, Ding J, Zheng ZH, Li XY, Chen LN, Zhu P (2012) Role of the frequency of blood CD4(+) CXCR5(+) CCR6(+) T cells in autoimmunity in patients with Sjogren’s syndrome. Biochem Biophys Res Commun 422:238–244

    PubMed  CAS  Google Scholar 

  126. Wong CK, Wong PT, Tam LS, Li EK, Chen DP, Lam CW (2010) Elevated production of B cell chemokine CXCL13 is correlated with systemic lupus erythematosus disease activity. J Clin Immunol 30:45–52

    PubMed  CAS  Google Scholar 

  127. Grammer AC, Slota R, Fischer R, Gur H, Girschick H, Yarboro C, Illei GG, Lipsky PE (2003) Abnormal germinal center reactions in systemic lupus erythematosus demonstrated by blockade of CD154-CD40 interactions. J Clin Invest 112:1506–1520

    PubMed  CAS  Google Scholar 

  128. Murphy E, Roths J (1979) A Y chromosome associated factor in strain BXSB producing accelerated autoimmunity and lymphoproliferation. Arthritis Rheum 22:1188–1194

    PubMed  CAS  Google Scholar 

  129. Pisitkun P, Deane JA, Difilippantonio MJ, Tarasenko T, Satterthwaite AB, Bolland S (2006) Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312:1669–1672

    PubMed  CAS  Google Scholar 

  130. Bubier JA, Sproule TJ, Foreman O, Spolski R, Shaffer DJ, Morse HC, Leonard WJ, Roopenian DC (2009) A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice. Proc Natl Acad Sci USA 106:1518–1523

    PubMed  CAS  Google Scholar 

  131. Rankin AL, Guay H, Herber D, Bertino SA, Duzanski TA, Carrier Y, Keegan S, Senices M, Stedman N, Ryan M, Bloom L, Medley Q, Collins M, Nickerson-Nutter C, Craft J, Young D, Dunussi-Joannopoulos K (2012) IL-21 receptor is required for the systemic accumulation of activated B and T lymphocytes in MRL/MpJ-Fas(lpr/lpr)/J mice. J Immunol 188:1656–1667

    PubMed  CAS  Google Scholar 

  132. Herber D, Brown TP, Liang S, Young DA, Collins M, Dunussi-Joannopoulos K (2007) IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21R.Fc reduces disease progression. J Immunol 178:3822–3830

    PubMed  CAS  Google Scholar 

  133. Vinuesa CG, Cook MC, Angelucci C, Athanasopoulos V, Rui L, Hill KM, Yu D, Domaschenz H, Whittle B, Lambe T, Roberts IS, Copley RR, Bell JI, Cornall RJ, Goodnow CC (2005) A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435:452–458

    PubMed  CAS  Google Scholar 

  134. Linterman MA, Rigby RJ, Wong RK, Yu D, Brink R, Cannons JL, Schwartzberg PL, Cook MC, Walters GD, Vinuesa CG (2009) Follicular helper T cells are required for systemic autoimmunity. J Exp Med 206:561–576

    PubMed  CAS  Google Scholar 

  135. Bertossi A, Aichinger M, Sansonetti P, Lech M, Neff F, Pal M, Wunderlich FT, Anders H-J, Klein L, Schmidt-Supprian M (2011) Loss of Roquin induces early death and immune deregulation but not autoimmunity. J Exp Med 208:1749–1756

    PubMed  CAS  Google Scholar 

  136. Pratama A, Ramiscal RR, Silva DG, Das SK, Athanasopoulos V, Fitch J, Botelho NK, Chang PP, Hu X, Hogan JJ, Mana P, Bernal D, Korner H, Yu D, Goodnow CC, Cook MC, Vinuesa CG (2013) Roquin-2 shares functions with its paralog Roquin-1 in the repression of mRNAs controlling T follicular helper cells and systemic inflammation. Immunity 38:669–680

    PubMed  CAS  Google Scholar 

  137. Vogel KU, Edelmann SL, Jeltsch KM, Bertossi A, Heger K, Heinz GA, Zoller J, Warth SC, Hoefig KP, Lohs C, Neff F, Kremmer E, Schick J, Repsilber D, Geerlof A, Blum H, Wurst W, Heikenwalder M, Schmidt-Supprian M, Heissmeyer V (2013) Roquin paralogs 1 and 2 redundantly repress the Icos and OX40 costimulator mRNAs and control follicular helper T cell differentiation. Immunity 38:655–668

    PubMed  CAS  Google Scholar 

  138. Ellyard JI, Chia T, Rodriguez-Pinilla S-M, Martin JL, Hu X, Navarro-Gonzalez M, Garcia JF, Delfau-Larue M-H, Montes-Moreno S, Gaulard P, Cook MC, Walters G, Piris MA, Vinuesa CG (2012) Heterozygosity for Roquinsan leads to angioimmunoblastic T-cell lymphoma-like tumors in mice. Blood 120:812–821

    PubMed  Google Scholar 

  139. Grogg KL (2005) Angioimmunoblastic T-cell lymphoma: a neoplasm of germinal-center T-helper cells? Blood 106:1501–1502

    PubMed  CAS  Google Scholar 

  140. de Leval L, Rickman DS, Thielen C, Reynies Ad, Huang YL, Delsol G, Lamant L, Leroy K, Briere J, Molina T, Berger F, Gisselbrecht C, Xerri L, Gaulard P (2007) The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 109:4952–4963

    PubMed  Google Scholar 

  141. Cairns RA, Iqbal J, Lemonnier F, Kucuk C, de Leval L, Jais JP, Parrens M, Martin A, Xerri L, Brousset P, Chan LC, Chan WC, Gaulard P, Mak TW (2012) IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood 119:1901–1903

    PubMed  CAS  Google Scholar 

  142. Lemonnier F, Couronné L, Parrens M, Jais JP, Travert M, Lamant L, Tournillac O, Rousset T, Fabiani B, Cairns RA, Mak T, Bastard C, Bernard OA, de Leval L, Gaulard P (2012) Recurrent TET2 mutations in peripheral T cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood 120:1466–1469

    PubMed  CAS  Google Scholar 

  143. Ringler DJ, Wyand MS, Walsh DG, MacKey JJ, Chalifoux LV, Popovic M, Minassian AA, Sehgal PK, Daniel MD, Desrosiers RC, King NW (1989) Cellular localization of simian immunodeficiency virus in lymphoid tissues: I. Immunohistochemistry and electron microscopy. Am J Pathol 134:373–383

    PubMed  CAS  Google Scholar 

  144. Moir S, Fauci AS (2009) B cells in HIV infection and disease. Nat Rev Immunol 9:235–245

    PubMed  CAS  Google Scholar 

  145. Moir S, Ho J, Malaspina A, Wang W, DiPoto AC, O’Shea MA, Roby G, Kottilil S, Arthos J, Proschan MA, Chun TW, Fauci AS (2008) Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J Exp Med 205:1797–1805

    PubMed  CAS  Google Scholar 

  146. Petrovas C, Yamamoto T, Gerner MY, Boswell KL, Wloka K, Smith EC, Ambrozak DR, Sandler NG, Timmer KJ, Sun X, Pan L, Poholek A, Rao SS, Brenchley JM, Alam SM, Tomaras GD, Roederer M, Douek DC, Seder RA, Germain RN, Haddad EK, Koup RA (2012) CD4 T follicular helper cell dynamics during SIV infection. J Clin Invest 122:3281–3294

    PubMed  CAS  Google Scholar 

  147. Lindqvist M, Van Lunzen J, Soghoian DZ, Kuhl BD, Ranasinghe S, Kranias G, Flanders MD, Cutler S, Yudanin N, Muller MI, Davis I, Farber D, Hartjen P, Haag F, Alter G, Schulze zur Wiesch J, Streeck H (2012) Expansion of HIV-specific T follicular helper cells in chronic HIV infection. J Clin Invest 122:3271–3280

    PubMed  CAS  Google Scholar 

  148. Perreau M, Savoye AL, De Crignis E, Corpataux JM, Cubas R, Haddad EK, De Leval L, Graziosi C, Pantaleo G (2013) Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. J Exp Med 210:143–156

    PubMed  CAS  Google Scholar 

  149. Cubas RA, Mudd JC, Savoye AL, Perreau M, van Grevenynghe J, Metcalf T, Connick E, Meditz A, Freeman GJ, Abesada-Terk G Jr, Jacobson JM, Brooks AD, Crotty S, Estes JD, Pantaleo G, Lederman MM, Haddad EK (2013) Inadequate T follicular cell help impairs B cell immunity during HIV infection. Nat Med 19:494–499

    PubMed  CAS  Google Scholar 

  150. Yue FY, Lo C, Sakhdari A, Lee EY, Kovacs CM, Benko E, Liu J, Song H, Jones RB, Sheth P, Chege D, Kaul R, Ostrowski MA (2010) HIV-specific IL-21 producing CD4+ T cells are induced in acute and chronic progressive HIV infection and are associated with relative viral control. J Immunol 185:498–506

    PubMed  CAS  Google Scholar 

  151. Iannello A, Boulassel M-R, Samarani S, Debbeche O, Tremblay C, Toma E, Routy J-P, Ahmad A (2010) Dynamics and consequences of IL-21 production in HIV-infected individuals: a longitudinal and cross-sectional study. J Immunol 184:114–126

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by a grant from the Multiple Myeloma Research Foundation (to S.L.N. and J.T.) and an Australian Research Council Future Fellowship (to S.L.N.). This work was made possible through Victorian State Government Operational Infrastructure Support and Australian Government NHMRC Independent Research Institute Infrastructure Support (IRIIS) scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen L. Nutt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tellier, J., Nutt, S.L. The unique features of follicular T cell subsets. Cell. Mol. Life Sci. 70, 4771–4784 (2013). https://doi.org/10.1007/s00018-013-1420-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1420-3

Keywords

Navigation