Skip to main content
Log in

MEK1 transduces the prion protein N2 fragment antioxidant effects

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The prion protein (PrPC) when mis-folded is causally linked with a group of fatal neurodegenerative diseases called transmissible spongiform encephalopathies or prion diseases. PrPC normal function is still incompletely defined with such investigations complicated by PrPC post-translational modifications, such as internal cleavage, which feasibly could change, activate, or deactivate the function of this protein. Oxidative stress induces β-cleavage and the N-terminal product of this cleavage event, N2, demonstrates a cellular protective response against oxidative stress. The mechanisms by which N2 mediates cellular antioxidant protection were investigated within an in vitro cell model. N2 protection was regulated by copper binding to the octarepeat domain, directing the route of internalisation, which stimulated MEK1 signalling. Precise membrane interactions of N2, determined by copper saturation, and involving both the copper-co-ordinating octarepeat region and the structure conferred upon the N-terminal polybasic region by the proline motif, were essential for the correct engagement of this pathway. The phenomenon of PrPC post-translational modification, such as cleavage and copper co-ordination, as a molecular “switch” for activation or deactivation of certain functions provides new insight into the apparent multi-functionality of PrPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haigh CL, Brown DR (2006) Prion protein reduces both oxidative and non-oxidative copper toxicity. J Neurochem 98(3):677–689. doi:10.1111/j.1471-4159.2006.03906.x

    Article  CAS  PubMed  Google Scholar 

  2. Brown DR, Schulz-Schaeffer WJ, Schmidt B, Kretzschmar HA (1997) Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp Neurol 146(1):104–112. doi:10.1006/exnr.1997.6505

    Article  CAS  PubMed  Google Scholar 

  3. Klamt F, Dal-Pizzol F, Conte da Frota ML Jr, Walz R, Andrades ME, da Silva EG, Brentani RR, Izquierdo I, Fonseca Moreira JC (2001) Imbalance of antioxidant defense in mice lacking cellular prion protein. Free Radic Biol Med 30(10):1137–1144

    Article  CAS  PubMed  Google Scholar 

  4. Rachidi W, Vilette D, Guiraud P, Arlotto M, Riondel J, Laude H, Lehmann S, Favier A (2003) Expression of prion protein increases cellular copper binding and antioxidant enzyme activities but not copper delivery. J Biol Chem 278(11):9064–9072. doi:10.1074/jbc.M211830200

    Article  CAS  PubMed  Google Scholar 

  5. Senator A, Rachidi W, Lehmann S, Favier A, Benboubetra M (2004) Prion protein protects against DNA damage induced by paraquat in cultured cells. Free Radic Biol Med 37(8):1224–1230. doi:10.1016/j.freeradbiomed.2004.07.006

    Article  CAS  PubMed  Google Scholar 

  6. Watt NT, Routledge MN, Wild CP, Hooper NM (2007) Cellular prion protein protects against reactive-oxygen-species-induced DNA damage. Free Radic Biol Med 43(6):959–967. doi:10.1016/j.freeradbiomed.2007.06.004

    Article  CAS  PubMed  Google Scholar 

  7. Chiarini LB, Freitas AR, Zanata SM, Brentani RR, Martins VR, Linden R (2002) Cellular prion protein transduces neuroprotective signals. EMBO J 21(13):3317–3326. doi:10.1093/emboj/cdf324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Harris DA, Huber MT, van Dijken P, Shyng SL, Chait BT, Wang R (1993) Processing of a cellular prion protein: identification of N- and C-terminal cleavage sites. Biochemistry 32(4):1009–1016

    Article  CAS  PubMed  Google Scholar 

  9. Chen SG, Teplow DB, Parchi P, Teller JK, Gambetti P, Autilio-Gambetti L (1995) Truncated forms of the human prion protein in normal brain and in prion diseases. J Biol Chem 270(32):19173–19180

    Article  CAS  PubMed  Google Scholar 

  10. Haigh CL, Marom SY, Collins SJ (2010) Copper, endoproteolytic processing of the prion protein and cell signalling. Front Biosci (Landmark Ed) 15:1086–1104

    Article  CAS  Google Scholar 

  11. McMahon HE (2012) Prion processing: a double-edged sword? Biochem Soc Trans 40(4):735–738. doi:10.1042/bst20120031

    Article  CAS  PubMed  Google Scholar 

  12. Brazier MW, Lewis V, Ciccotosto GD, Klug GM, Lawson VA, Cappai R, Ironside JW, Masters CL, Hill AF, White AR, Collins S (2006) Correlative studies support lipid peroxidation is linked to PrP(res) propagation as an early primary pathogenic event in prion disease. Brain Res Bull 68(5):346–354. doi:10.1016/j.brainresbull.2005.09.010

    Article  CAS  PubMed  Google Scholar 

  13. Yadavalli R, Guttmann RP, Seward T, Centers AP, Williamson RA, Telling GC (2004) Calpain-dependent endoproteolytic cleavage of PrPSc modulates scrapie prion propagation. J Biol Chem 279(21):21948–21956. doi:10.1074/jbc.M400793200

    Article  CAS  PubMed  Google Scholar 

  14. Watt NT, Taylor DR, Gillott A, Thomas DA, Perera WS, Hooper NM (2005) Reactive oxygen species-mediated beta-cleavage of the prion protein in the cellular response to oxidative stress. J Biol Chem 280(43):35914–35921. doi:10.1074/jbc.M507327200

    Article  CAS  PubMed  Google Scholar 

  15. Haigh CL, McGlade AR, Lewis V, Masters CL, Lawson VA, Collins SJ (2011) Acute exposure to prion infection induces transient oxidative stress progressing to be cumulatively deleterious with chronic propagation in vitro. Free Radic Biol Med 51(3):594–608. doi:10.1016/j.freeradbiomed.2011.03.035

    Article  CAS  PubMed  Google Scholar 

  16. Sinclair L, Lewis V, Collins SJ, Haigh CL (2013) Cytosolic caspases mediate mislocalised SOD2 depletion in an in vitro model of chronic prion infection. Dis Model Mech 6(4):952–963. doi:10.1242/dmm.010678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. McMahon HE, Mange A, Nishida N, Creminon C, Casanova D, Lehmann S (2001) Cleavage of the amino terminus of the prion protein by reactive oxygen species. J Biol Chem 276(3):2286–2291. doi:10.1074/jbc.M007243200

    Article  CAS  PubMed  Google Scholar 

  18. Westergard L, Turnbaugh JA, Harris DA (2011) A nine amino acid domain is essential for mutant prion protein toxicity. J Neurosci 31(39):14005–14017. doi:10.1523/jneurosci.1243-11.2011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Sonati T, Reimann RR, Falsig J, Baral PK, O’Connor T, Hornemann S, Yaganoglu S, Li B, Herrmann US, Wieland B, Swayampakula M, Rahman MH, Das D, Kav N, Riek R, Liberski PP, James MN, Aguzzi A (2013) The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature 501(7465):102–106. doi:10.1038/nature12402

    Article  CAS  PubMed  Google Scholar 

  20. Lawson VA, Priola SA, Meade-White K, Lawson M, Chesebro B (2004) Flexible N-terminal region of prion protein influences conformation of protease-resistant prion protein isoforms associated with cross-species scrapie infection in vivo and in vitro. J Biol Chem 279(14):13689–13695. doi:10.1074/jbc.M303697200

    Article  CAS  PubMed  Google Scholar 

  21. Lawson VA, Priola SA, Wehrly K, Chesebro B (2001) N-terminal truncation of prion protein affects both formation and conformation of abnormal protease-resistant prion protein generated in vitro. J Biol Chem 276(38):35265–35271. doi:10.1074/jbc.M103799200

    Article  CAS  PubMed  Google Scholar 

  22. Turnbaugh JA, Unterberger U, Saa P, Massignan T, Fluharty BR, Bowman FP, Miller MB, Supattapone S, Biasini E, Harris DA (2012) The N-terminal, polybasic region of PrP(C) dictates the efficiency of prion propagation by binding to PrP(Sc). J Neurosci 32(26):8817–8830. doi:10.1523/jneurosci.1103-12.2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Guillot-Sestier MV, Sunyach C, Druon C, Scarzello S, Checler F (2009) The alpha-secretase-derived N-terminal product of cellular prion, N1, displays neuroprotective function in vitro and in vivo. J Biol Chem 284(51):35973–35986. doi:10.1074/jbc.M109.051086

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Haigh CL, Drew SC, Boland MP, Masters CL, Barnham KJ, Lawson VA, Collins SJ (2009) Dominant roles of the polybasic proline motif and copper in the PrP23-89-mediated stress protection response. J Cell Sci 122(Pt 10):1518–1528. doi:10.1242/jcs.043604

    Article  CAS  PubMed  Google Scholar 

  25. Chen S, Yadav SP, Surewicz WK (2010) Interaction between human prion protein and amyloid-beta (Abeta) oligomers: role OF N-terminal residues. J Biol Chem 285(34):26377–26383. doi:10.1074/jbc.M110.145516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Younan ND, Sarell CJ, Davies P, Brown DR, Viles JH (2013) The cellular prion protein traps Alzheimer’s Abeta in an oligomeric form and disassembles amyloid fibers. FASEB J 27(5):1847–1858. doi:10.1096/fj.12-222588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Guillot-Sestier MV, Sunyach C, Ferreira ST, Marzolo MP, Bauer C, Thevenet A, Checler F (2012) Alpha-Secretase-derived fragment of cellular prion, N1, protects against monomeric and oligomeric amyloid beta (Abeta)-associated cell death. J Biol Chem 287(7):5021–5032. doi:10.1074/jbc.M111.323626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Fluharty BR, Biasini E, Stravalaci M, Sclip A, Diomede L, Balducci C, La Vitola P, Messa M, Colombo L, Forloni G, Borsello T, Gobbi M, Harris DA (2013) An N-terminal fragment of the prion protein binds to amyloid-beta oligomers and inhibits their neurotoxicity in vivo. J Biol Chem 288(11):7857–7866. doi:10.1074/jbc.M112.423954

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Karas JA, Boland M, Haigh C, Johanssen V, Hill A, Barnham K, Collins S, Scanlon D (2012) Microwave synthesis of prion protein fragments up to 111 amino acids in length generates biologically active peptides. Int J Pept Res Ther 18(1):21–29. doi:10.1007/s10989-011-9275-7

    Article  CAS  Google Scholar 

  30. Greil CS, Vorberg IM, Ward AE, Meade-White KD, Harris DA, Priola SA (2008) Acute cellular uptake of abnormal prion protein is cell type and scrapie-strain independent. Virology 379(2):284–293. doi:10.1016/j.virol.2008.07.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Haigh CL, Brown DR (2008) Investigation of PrPC metabolism and function in live cells : methods for studying individual cells and cell populations. Methods Mol Biol (Clifton, NJ) 459:21–34. doi:10.1007/978-1-59745-234-2_2

  32. Haigh CL, Lewis VA, Vella LJ, Masters CL, Hill AF, Lawson VA, Collins SJ (2009) PrPC-related signal transduction is influenced by copper, membrane integrity and the alpha cleavage site. Cell Res 19(9):1062–1078. doi:10.1038/cr.2009.86

    Article  CAS  PubMed  Google Scholar 

  33. Chen CS, Gee KR (2000) Redox-dependent trafficking of 2,3,4,5, 6-pentafluorodihydrotetramethylrosamine, a novel fluorogenic indicator of cellular oxidative activity. Free Radic Biol Med 28(8):1266–1278

    Article  CAS  PubMed  Google Scholar 

  34. Zeng F, Watt NT, Walmsley AR, Hooper NM (2003) Tethering the N-terminus of the prion protein compromises the cellular response to oxidative stress. J Neurochem 84(3):480–490

    Article  CAS  PubMed  Google Scholar 

  35. Dupiereux I, Falisse-Poirrier N, Zorzi W, Watt NT, Thellin O, Zorzi D, Pierard O, Hooper NM, Heinen E, Elmoualij B (2008) Protective effect of prion protein via the N-terminal region in mediating a protective effect on paraquat-induced oxidative injury in neuronal cells. J Neurosci Res 86(3):653–659. doi:10.1002/jnr.21506

    Article  CAS  PubMed  Google Scholar 

  36. Nunziante M, Gilch S, Schatzl HM (2003) Essential role of the prion protein N terminus in subcellular trafficking and half-life of cellular prion protein. J Biol Chem 278(6):3726–3734. doi:10.1074/jbc.M206313200

    Article  CAS  PubMed  Google Scholar 

  37. Taylor DR, Watt NT, Perera WS, Hooper NM (2005) Assigning functions to distinct regions of the N-terminus of the prion protein that are involved in its copper-stimulated, clathrin-dependent endocytosis. J Cell Sci 118(Pt 21):5141–5153. doi:10.1242/jcs.02627

    Article  CAS  PubMed  Google Scholar 

  38. Sunyach C, Jen A, Deng J, Fitzgerald KT, Frobert Y, Grassi J, McCaffrey MW, Morris R (2003) The mechanism of internalization of glycosylphosphatidylinositol-anchored prion protein. EMBO J 22(14):3591–3601. doi:10.1093/emboj/cdg344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Americo TA, Chiarini LB, Linden R (2007) Signaling induced by hop/STI-1 depends on endocytosis. Biochem Biophys Res Commun 358(2):620–625. doi:10.1016/j.bbrc.2007.04.202

    Article  CAS  PubMed  Google Scholar 

  40. Caetano FA, Lopes MH, Hajj GN, Machado CF, Pinto Arantes C, Magalhaes AC, Vieira Mde P, Americo TA, Massensini AR, Priola SA, Vorberg I, Gomez MV, Linden R, Prado VF, Martins VR, Prado MA (2008) Endocytosis of prion protein is required for ERK1/2 signaling induced by stress-inducible protein 1. J Neurosci 28(26):6691–6702. doi:10.1523/jneurosci.1701-08.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Zanata SM, Lopes MH, Mercadante AF, Hajj GN, Chiarini LB, Nomizo R, Freitas AR, Cabral AL, Lee KS, Juliano MA, de Oliveira E, Jachieri SG, Burlingame A, Huang L, Linden R, Brentani RR, Martins VR (2002) Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J 21(13):3307–3316. doi:10.1093/emboj/cdf325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Pauly PC, Harris DA (1998) Copper stimulates endocytosis of the prion protein. J Biol Chem 273(50):33107–33110

    Article  CAS  PubMed  Google Scholar 

  43. Perera WS, Hooper NM (2001) Ablation of the metal ion-induced endocytosis of the prion protein by disease-associated mutation of the octarepeat region. Curr Biol 11(7):519–523

    Article  CAS  PubMed  Google Scholar 

  44. Haigh CL, Edwards K, Brown DR (2005) Copper binding is the governing determinant of prion protein turnover. Mol Cell Neurosci 30(2):186–196. doi:10.1016/j.mcn.2005.07.001

    Article  CAS  PubMed  Google Scholar 

  45. Jackson GS, Murray I, Hosszu LL, Gibbs N, Waltho JP, Clarke AR, Collinge J (2001) Location and properties of metal-binding sites on the human prion protein. Proc Natl Acad Sci USA 98(15):8531–8535. doi:10.1073/pnas.151038498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Hesketh S, Sassoon J, Knight R, Brown DR (2008) Elevated manganese levels in blood and CNS in human prion disease. Mol Cell Neurosci 37(3):590–598. doi:10.1016/j.mcn.2007.12.008

    Article  CAS  PubMed  Google Scholar 

  47. Hesketh S, Sassoon J, Knight R, Hopkins J, Brown DR (2007) Elevated manganese levels in blood and central nervous system occur before onset of clinical signs in scrapie and bovine spongiform encephalopathy. J Anim Sci 85(6):1596–1609. doi:10.2527/jas.2006-714

    Article  CAS  PubMed  Google Scholar 

  48. Gauczynski S, Peyrin JM, Haik S, Leucht C, Hundt C, Rieger R, Krasemann S, Deslys JP, Dormont D, Lasmezas CI, Weiss S (2001) The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J 20(21):5863–5875. doi:10.1093/emboj/20.21.5863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Hundt C, Peyrin JM, Haik S, Gauczynski S, Leucht C, Rieger R, Riley ML, Deslys JP, Dormont D, Lasmezas CI, Weiss S (2001) Identification of interaction domains of the prion protein with its 37-kDa/67-kDa laminin receptor. EMBO J 20(21):5876–5886. doi:10.1093/emboj/20.21.5876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Gauczynski S, Nikles D, El-Gogo S, Papy-Garcia D, Rey C, Alban S, Barritault D, Lasmezas CI, Weiss S (2006) The 37-kDa/67-kDa laminin receptor acts as a receptor for infectious prions and is inhibited by polysulfated glycanes. J Infect Dis 194(5):702–709. doi:10.1086/505914

    Article  CAS  PubMed  Google Scholar 

  51. Morel E, Andrieu T, Casagrande F, Gauczynski S, Weiss S, Grassi J, Rousset M, Dormont D, Chambaz J (2005) Bovine prion is endocytosed by human enterocytes via the 37 kDa/67 kDa laminin receptor. Am J Pathol 167(4):1033–1042. doi:10.1016/s0002-9440(10)61192-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Kolodziejczak D, Da Costa Dias B, Zuber C, Jovanovic K, Omar A, Beck J, Vana K, Mbazima V, Richt J, Brenig B, Weiss SF (2010) Prion interaction with the 37-kDa/67-kDa laminin receptor on enterocytes as a cellular model for intestinal uptake of prions. J Mol Biol 402(2):293–300. doi:10.1016/j.jmb.2010.06.055

    Article  CAS  PubMed  Google Scholar 

  53. Pflanz H, Vana K, Mitteregger G, Renner-Muller I, Pace C, Kuchenhoff H, Kretzschmar HA, Wolf E, Weiss S (2009) Scrapie-infected transgenic mice expressing a laminin receptor decoy mutant reveal a prolonged incubation time associated with low levels of PrPRes. J Mol Biol 388(4):721–729. doi:10.1016/j.jmb.2009.03.045

    Article  CAS  PubMed  Google Scholar 

  54. Parkyn CJ, Vermeulen EG, Mootoosamy RC, Sunyach C, Jacobsen C, Oxvig C, Moestrup S, Liu Q, Bu G, Jen A, Morris RJ (2008) LRP1 controls biosynthetic and endocytic trafficking of neuronal prion protein. J Cell Sci 121(Pt 6):773–783. doi:10.1242/jcs.021816

    Article  CAS  PubMed  Google Scholar 

  55. Cheng F, Lindqvist J, Haigh CL, Brown DR, Mani K (2006) Copper-dependent co-internalization of the prion protein and glypican-1. J Neurochem 98(5):1445–1457. doi:10.1111/j.1471-4159.2006.03981.x

    Article  CAS  PubMed  Google Scholar 

  56. Taylor DR, Whitehouse IJ, Hooper NM (2009) Glypican-1 mediates both prion protein lipid raft association and disease isoform formation. PLoS Pathog 5(11):e1000666. doi:10.1371/journal.ppat.1000666

    Article  PubMed Central  PubMed  Google Scholar 

  57. Beraldo FH, Arantes CP, Santos TG, Queiroz NG, Young K, Rylett RJ, Markus RP, Prado MA, Martins VR (2010) Role of alpha7 nicotinic acetylcholine receptor in calcium signaling induced by prion protein interaction with stress-inducible protein 1. J Biol Chem 285(47):36542–36550. doi:10.1074/jbc.M110.157263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Boland MP, Hatty CR, Separovic F, Hill AF, Tew DJ, Barnham KJ, Haigh CL, James M, Masters CL, Collins SJ (2010) Anionic phospholipid interactions of the prion protein N terminus are minimally perturbing and not driven solely by the octapeptide repeat domain. J Biol Chem 285(42):32282–32292. doi:10.1074/jbc.M110.123398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Osiecka KM, Nieznanska H, Skowronek KJ, Karolczak J, Schneider G, Nieznanski K (2009) Prion protein region 23-32 interacts with tubulin and inhibits microtubule assembly. Proteins 77(2):279–296. doi:10.1002/prot.22435

    Article  CAS  PubMed  Google Scholar 

  60. Barros JC, Marshall CJ (2005) Activation of either ERK1/2 or ERK5 MAP kinase pathways can lead to disruption of the actin cytoskeleton. J Cell Sci 118(Pt 8):1663–1671. doi:10.1242/jcs.02308

    Article  CAS  PubMed  Google Scholar 

  61. Zawlik I, Witusik M, Hulas-Bigoszewska K, Piaskowski S, Szybka M, Golanska E, Liberski PP, Rieske P (2006) Regulation of PrPC expression: nerve growth factor (NGF) activates the prion gene promoter through the MEK1 pathway in PC12 cells. Neurosci Lett 400(1–2):58–62. doi:10.1016/j.neulet.2006.02.021

    Article  CAS  PubMed  Google Scholar 

  62. Cichon AC, Brown DR (2014) Nrf-2 regulation of prion protein expression is independent of oxidative stress. Mol Cell Neurosci 63c:31–37. doi:10.1016/j.mcn.2014.09.001

  63. Schneider B, Mutel V, Pietri M, Ermonval M, Mouillet-Richard S, Kellermann O (2003) NADPH oxidase and extracellular regulated kinases 1/2 are targets of prion protein signaling in neuronal and nonneuronal cells. Proc Natl Acad Sci USA 100(23):13326–13331. doi:10.1073/pnas.2235648100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Thellung S, Villa V, Corsaro A, Pellistri F, Venezia V, Russo C, Aceto A, Robello M, Florio T (2007) ERK1/2 and p38 MAP kinases control prion protein fragment 90-231-induced astrocyte proliferation and microglia activation. Glia 55(14):1469–1485. doi:10.1002/glia.20559

    Article  PubMed  Google Scholar 

  65. Lewis V, Haigh CL, Masters CL, Hill AF, Lawson VA, Collins SJ (2012) Prion subcellular fractionation reveals infectivity spectrum, with a high titre-low PrPRes level disparity. Mol Neurodegener 7:18. doi:10.1186/1750-1326-7-18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Dron M, Moudjou M, Chapuis J, Salamat MK, Bernard J, Cronier S, Langevin C, Laude H (2010) Endogenous proteolytic cleavage of disease-associated prion protein to produce C2 fragments is strongly cell- and tissue-dependent. J Biol Chem 285(14):10252–10264. doi:10.1074/jbc.M109.083857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr Victoria Lawson for her support and helpful discussions. The CF10 cells were a kind gift to Dr Victoria Lawson from Dr Suzette Priola (National Institute of Health, USA). This work was supported by an NH&MRC program grant (#628946) and SJC is supported by an NH&MRC Practitioner Fellowship (#APP100581).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. L. Haigh or S. J. Collins.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haigh, C.L., McGlade, A.R. & Collins, S.J. MEK1 transduces the prion protein N2 fragment antioxidant effects. Cell. Mol. Life Sci. 72, 1613–1629 (2015). https://doi.org/10.1007/s00018-014-1777-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1777-y

Keywords

Navigation