Skip to main content

Advertisement

Log in

Retinoic acid maintains human skeletal muscle progenitor cells in an immature state

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Muscle satellite cells are resistant to cytotoxic agents, and they express several genes that confer resistance to stress, thus allowing efficient dystrophic muscle regeneration after transplantation. However, once they are activated, this capacity to resist to aggressive agents is diminished resulting in massive death of transplanted cells. Although cell immaturity represents a survival advantage, the signalling pathways involved in the control of the immature state remain to be explored. Here, we show that incubation of human myoblasts with retinoic acid impairs skeletal muscle differentiation through activation of the retinoic-acid receptor family of nuclear receptor. Conversely, pharmacologic or genetic inactivation of endogenous retinoic-acid receptors improved myoblast differentiation. Retinoic acid inhibits the expression of early and late muscle differentiation markers and enhances the expression of myogenic specification genes, such as PAX7 and PAX3. These results suggest that the retinoic-acid-signalling pathway might maintain myoblasts in an undifferentiated/immature stage. To determine the relevance of these observations, we characterised the retinoic-acid-signalling pathways in freshly isolated satellite cells in mice and in siMYOD immature human myoblasts. Our analysis reveals that the immature state of muscle progenitors is correlated with high expression of several genes of the retinoic-acid-signalling pathway both in mice and in human. Taken together, our data provide evidences for an important role of the retinoic-acid-signalling pathway in the regulation of the immature state of muscle progenitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dumont NA, Wang YX, Rudnicki MA (2015) Intrinsic and extrinsic mechanisms regulating satellite cell function. Development 142:1572–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, Guenou H, Malissen B, Tajbakhsh S, Galy A (2011) Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138:3647–3656

    Article  CAS  PubMed  Google Scholar 

  3. Lepper C, Partridge TA, Fan CM (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138:3639–3646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chang NC, Rudnicki MA (2014) Satellite cells: the architects of skeletal muscle. Curr Top Dev Biol 107:161–181

    Article  CAS  PubMed  Google Scholar 

  5. Chang NC, Chevalier FP, Rudnicki MA (2016) Satellite cells in muscular dystrophy—lost in polarity. Trends Mol Med 22:479–496

    Article  CAS  PubMed  Google Scholar 

  6. Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR (2004) Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166:347–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang YX, Dumont NA, Rudnicki MA (2014) Muscle stem cells at a glance. J Cell Sci

  8. Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM (1989) Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature 337:176–179

    Article  CAS  PubMed  Google Scholar 

  9. Gussoni E, Blau HM, Kunkel LM (1997) The fate of individual myoblasts after transplantation into muscles of DMD patients. Nat Med 3:970–977

    Article  CAS  PubMed  Google Scholar 

  10. Mendell JR, Kissel JT, Amato AA, King W, Signore L, Prior TW, Sahenk Z, Benson S, McAndrew PE, Rice R et al (1995) Myoblast transfer in the treatment of Duchenne’s muscular dystrophy. N Engl J Med 333:832–838

    Article  CAS  PubMed  Google Scholar 

  11. Tremblay JP, Malouin F, Roy R, Huard J, Bouchard JP, Satoh A, Richards CL (1993) Results of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy. Cell Transplant 2:99–112

    CAS  PubMed  Google Scholar 

  12. Beauchamp JR, Morgan JE, Pagel CN, Partridge TA (1999) Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol 144:1113–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309:2064–2067

    Article  CAS  PubMed  Google Scholar 

  14. Ikemoto M, Fukada S, Uezumi A, Masuda S, Miyoshi H, Yamamoto H, Wada MR, Masubuchi N, Miyagoe-Suzuki Y, Takeda S (2007) Autologous transplantation of SM/C-2.6(+) satellite cells transduced with micro-dystrophin CS1 cDNA by lentiviral vector into mdx mice. Mol Ther 15:2178–2185

    Article  CAS  PubMed  Google Scholar 

  15. Bjornson CR, Cheung TH, Liu L, Tripathi PV, Steeper KM, Rando TA (2012) Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells 30:232–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mourikis P, Sambasivan R, Castel D, Rocheteau P, Bizzarro V, Tajbakhsh S (2012) A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells 30:243–252

    Article  CAS  PubMed  Google Scholar 

  17. Huang P, Chandra V, Rastinejad F (2014) Retinoic acid actions through mammalian nuclear receptors. Chem Rev 114:233–254

    Article  CAS  PubMed  Google Scholar 

  18. Rochette-Egly C, Germain P (2009) Dynamic and combinatorial control of gene expression by nuclear retinoic acid receptors (RARs). Nucl Recept Signal 7:e005

    PubMed  PubMed Central  Google Scholar 

  19. Hauksdottir H, Farboud B, Privalsky ML (2003) Retinoic acid receptors beta and gamma do not repress, but instead activate target gene transcription in both the absence and presence of hormone ligand. Mol Endocrinol 17:373–385

    Article  CAS  PubMed  Google Scholar 

  20. Albagli-Curiel O, Carnac G, Vandromme M, Vincent S, Crepieux P, Bonnieu A (1993) Serum-induced inhibition of myogenesis is differentially relieved by retinoic acid and triiodothyronine in C2 murine muscle cells. Differentiation 52:201–210

    Article  CAS  PubMed  Google Scholar 

  21. Amengual J, Ribot J, Bonet ML, Palou A (2008) Retinoic acid treatment increases lipid oxidation capacity in skeletal muscle of mice. Obesity (Silver Spring) 16:585–591

    Article  CAS  Google Scholar 

  22. Maden M, Graham A, Zile M, Gale E (2000) Abnormalities of somite development in the absence of retinoic acid. Int J Dev Biol 44:151–159

    CAS  PubMed  Google Scholar 

  23. Hamade A, Deries M, Begemann G, Bally-Cuif L, Genet C, Sabatier F, Bonnieu A, Cousin X (2006) Retinoic acid activates myogenesis in vivo through Fgf8 signalling. Dev Biol 289:127–140

    Article  CAS  PubMed  Google Scholar 

  24. Reijntjes S, Francis-West P, Mankoo BS (2010) Retinoic acid is both necessary for and inhibits myogenic commitment and differentiation in the chick limb. Int J Dev Biol 54:125–134

    Article  CAS  PubMed  Google Scholar 

  25. Jean E, Laoudj-Chenivesse D, Notarnicola C, Rouger K, Serratrice N, Bonnieu A, Gay S, Bacou F, Duret C, Carnac G (2011) Aldehyde dehydrogenase activity promotes survival of human muscle precursor cells. J Cell Mol Med 15:119–133

    Article  PubMed  Google Scholar 

  26. Vauchez K, Marolleau JP, Schmid M, Khattar P, Chapel A, Catelain C, Lecourt S, Larghero J, Fiszman M, Vilquin JT (2009) Aldehyde dehydrogenase activity identifies a population of human skeletal muscle cells with high myogenic capacities. Mol Ther 17:1948–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vella JB, Thompson SD, Bucsek MJ, Song M, Huard J (2011) Murine and human myogenic cells identified by elevated aldehyde dehydrogenase activity: implications for muscle regeneration and repair. PLoS One 6:e29226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. El Haddad M, Jean E, Turki A, Hugon G, Vernus B, Bonnieu A, Passerieux E, Hamade A, Mercier J, Laoudj-Chenivesse D, Carnac G (2012) Glutathione peroxidase 3, a new retinoid target gene, is crucial for human skeletal muscle precursor cell survival. J Cell Sci 125:6147–6156

    Article  PubMed  Google Scholar 

  29. Sambasivan R, Gayraud-Morel B, Dumas G, Cimper C, Paisant S, Kelly RG, Tajbakhsh S (2009) Distinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates. Dev Cell 16:810–821

    Article  CAS  PubMed  Google Scholar 

  30. Germain P, Gaudon C, Pogenberg V, Sanglier S, Van Dorsselaer A, Royer CA, Lazar MA, Bourguet W, Gronemeyer H (2009) Differential action on coregulator interaction defines inverse retinoid agonists and neutral antagonists. Chem Biol 16:479–489

    Article  CAS  PubMed  Google Scholar 

  31. Samarut E, Rochette-Egly C (2012) Nuclear retinoic acid receptors: conductors of the retinoic acid symphony during development. Mol Cell Endocrinol 348:348–360

    Article  CAS  PubMed  Google Scholar 

  32. Kedishvili NY (2013) Enzymology of retinoic acid biosynthesis and degradation. J Lipid Res 54:1744–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Asakura A, Hirai H, Kablar B, Morita S, Ishibashi J, Piras BA, Christ AJ, Verma M, Vineretsky KA, Rudnicki MA (2007) Increased survival of muscle stem cells lacking the MyoD gene after transplantation into regenerating skeletal muscle. Proc Natl Acad Sci USA 104:16552–16557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rudnicki MA, Braun T, Hinuma S, Jaenisch R (1992) Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell 71:383–390

    Article  CAS  PubMed  Google Scholar 

  35. Shea KL, Xiang W, LaPorta VS, Licht JD, Keller C, Basson MA, Brack AS (2010) Sprouty1 regulates reversible quiescence of a self-renewing adult muscle stem cell pool during regeneration. Cell Stem Cell 6:117–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Abou-Khalil R, Le Grand F, Pallafacchina G, Valable S, Authier FJ, Rudnicki MA, Gherardi RK, Germain S, Chretien F, Sotiropoulos A, Lafuste P, Montarras D, Chazaud B (2009) Autocrine and paracrine angiopoietin 1/Tie-2 signaling promotes muscle satellite cell self-renewal. Cell Stem Cell 5:298–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Di Rocco A, Uchibe K, Larmour C, Berger R, Liu M, Barton ER, Iwamoto M (2015) Selective retinoic acid receptor gamma agonists promote repair of injured skeletal muscle in mouse. Am J Pathol 185:2495–2504

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pallafacchina G, Francois S, Regnault B, Czarny B, Dive V, Cumano A, Montarras D, Buckingham M (2010) An adult tissue-specific stem cell in its niche: A gene profiling analysis of in vivo quiescent and activated muscle satellite cells. Stem Cell Res

  39. Li WC, Yu WY, Quinlan JM, Burke ZD, Tosh D (2005) The molecular basis of transdifferentiation. J Cell Mol Med 9:569–582

    Article  CAS  PubMed  Google Scholar 

  40. Hewitt J, Lu X, Gilbert L, Nanes MS (2008) The muscle transcription factor MyoD promotes osteoblast differentiation by stimulation of the Osterix promoter. Endocrinology 149:3698–3707

    Article  CAS  PubMed  Google Scholar 

  41. Xiao Y, Grieshammer U, Rosenthal N (1995) Regulation of a muscle-specific transgene by retinoic acid. J Cell Biol 129:1345–1354

    Article  CAS  PubMed  Google Scholar 

  42. Robson LG, Kara T, Crawley A, Tickle C (1994) Tissue and cellular patterning of the musculature in chick wings. Development 120:1265–1276

    CAS  PubMed  Google Scholar 

  43. Langille RM, Paulsen DF, Solursh M (1989) Differential effects of physiological concentrations of retinoic acid in vitro on chondrogenesis and myogenesis in chick craniofacial mesenchyme. Differentiation 40:84–92

    Article  CAS  PubMed  Google Scholar 

  44. Mok GF, Cardenas R, Anderton H, Campbell KH, Sweetman D (2014) Interactions between FGF18 and retinoic acid regulate differentiation of chick embryo limb myoblasts. Dev Biol 396:214–223

    Article  CAS  PubMed  Google Scholar 

  45. Downie D, Antipatis C, Delday MI, Maltin CA, Sneddon AA (2005) Moderate maternal vitamin A deficiency alters myogenic regulatory protein expression and perinatal organ growth in the rat. Am J Physiol Regul Integr Comp Physiol 288:R73–R79

    Article  CAS  PubMed  Google Scholar 

  46. Kitzmann M, Carnac G, Vandromme M, Primig M, Lamb N, Fernandez A (1998) The muscle regulatory factors MyoD and myf-5 undergo distinct cell cycle-specific expression in muscle cells. J Cell Biol 142:1447–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Olguin HC, Olwin BB (2004) Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev Biol 275:375–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fukada S, Uezumi A, Ikemoto M, Masuda S, Segawa M, Tanimura N, Yamamoto H, Miyagoe-Suzuki Y, Takeda S (2007) Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 25:2448–2459

    Article  CAS  PubMed  Google Scholar 

  49. Riederer I, Negroni E, Bencze M, Wolff A, Aamiri A, Di Santo JP, Silva-Barbosa SD, Butler-Browne G, Savino W, Mouly V (2011) Slowing down differentiation of engrafted human myoblasts into immunodeficient mice correlates with increased proliferation and migration. Mol Ther 20:146–154

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bencze M, Negroni E, Vallese D, Yacoub-Youssef H, Chaouch S, Wolff A, Aamiri A, Di Santo JP, Chazaud B, Butler-Browne G, Savino W, Mouly V, Riederer I (2012) Proinflammatory macrophages enhance the regenerative capacity of human myoblasts by modifying their kinetics of proliferation and differentiation. Mol Ther 20:2168–2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lesault PF, Theret M, Magnan M, Cuvellier S, Niu Y, Gherardi RK, Tremblay JP, Hittinger L, Chazaud B (2012) Macrophages improve survival, proliferation and migration of engrafted myogenic precursor cells into MDX skeletal muscle. PLoS One 7:e46698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329:1078–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shiokawa D, Kobayashi T, Tanuma S (2002) Involvement of DNase gamma in apoptosis associated with myogenic differentiation of C2C12 cells. J Biol Chem 277:31031–31037

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by CNRS, INSERM, and by Montpellier University Grants. M. El Haddad was supported by a Ph.D. studentship from the Centre Hospitalier Regional Universitaire of Montpellier and the University of Montpellier. We thank Dr. Pierre Germain (Centre de Biochimie Structurale, CNRS UMR5048/INSERM U1054, Montpellier, France) for his helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Carnac.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 474 kb)

Supplementary material 2 (PDF 1009 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Haddad, M., Notarnicola, C., Evano, B. et al. Retinoic acid maintains human skeletal muscle progenitor cells in an immature state. Cell. Mol. Life Sci. 74, 1923–1936 (2017). https://doi.org/10.1007/s00018-016-2445-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2445-1

Keywords

Navigation