Skip to main content
Log in

Melatonin, clock genes and mitochondria in sepsis

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

After the characterization of the central pacemaker in the suprachiasmatic nucleus, the expression of clock genes was identified in several peripheral tissues including the immune system. The hierarchical control from the central clock to peripheral clocks extends to other functions including endocrine, metabolic, immune, and mitochondrial responses. Increasing evidence links the disruption of the clock genes expression with multiple diseases and aging. Chronodisruption is associated with alterations of the immune system, immunosenescence, impairment of energy metabolism, and reduction of pineal and extrapineal melatonin production. Regarding sepsis, a condition coursing with an exaggerated response of innate immunity, experimental and clinical data showed an alteration of circadian rhythms that reflects the loss of the normal oscillation of the clock. Moreover, recent data point to that some mediators of the immune system affects the normal function of the clock. Under specific conditions, this control disappears reactivating the immune response. So, it seems that clock gene disruption favors the innate immune response, which in turn induces the expression of proinflammatory mediators, causing a further alteration of the clock. Here, the clock control of the mitochondrial function turns off, leading to a bioenergetic decay and formation of reactive oxygen species that, in turn, activate the inflammasome. This arm of the innate immunity is responsible for the huge increase of interleukin-1β and entrance into a vicious cycle that could lead to the death of the patient. The broken clock is recovered by melatonin administration, that is accompanied by the normalization of the innate immunity and mitochondrial homeostasis. Thus, this review emphasizes the connection between clock genes, innate immunity and mitochondria in health and sepsis, and the role of melatonin to maintain clock homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche JD, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med 45:486–552

    Article  PubMed  Google Scholar 

  2. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315:801–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P, Angus DC, Reinhart K, International Forum of Acute Care Trialists (2016) Assessment of global incidence and mortality of hospital-treated sepsis. current estimates and limitations. Am J Respir Crit Care Med 193:259–272

    Article  CAS  PubMed  Google Scholar 

  4. Hattori Y, Hattori K, Suzuki T, Matsuda N (2017) Recent advances in the pathophysiology and molecular basis of sepsis-associated organ dysfunction: novel therapeutic implications and challenges. Pharmacol Ther. doi:10.1016/j.pharmthera.2017.02.040

    PubMed  Google Scholar 

  5. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  CAS  PubMed  Google Scholar 

  6. Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145

    Article  CAS  PubMed  Google Scholar 

  7. Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R (2001) Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2:947–950

    Article  CAS  PubMed  Google Scholar 

  8. Poltorak A, Smirnova I, He X, Liu MY, Van Huffel C, McNally O, Birdwell D, Alejos E, Silva M, Du X, Thompson P, Chan EK, Ledesma J, Roe B, Clifton S, Vogel SN, Beutler B (1998) Genetic and physical mapping of the Lps locus: identification of the toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol Dis 24:340–355

    Article  CAS  PubMed  Google Scholar 

  9. Fujihara M, Muroi M, Tanamoto K, Suzuki T, Azuma H, Ikeda H (2003) Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol Ther 100:171–194

    Article  CAS  PubMed  Google Scholar 

  10. Zingarelli B, Hake PW, O’Connor M, Denenberg A, Kong S, Aronow BJ (2003) Absence of poly(ADP-ribose)polymerase-1 alters nuclear factor-kappa B activation and gene expression of apoptosis regulators after reperfusion injury. Mol Med 9:143–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaisho T, Takeuchi O, Kawai T, Hoshino K, Akira S (2001) Endotoxin-induced maturation of MyD88-deficient dendritic cells. J Immunol 166:5688–5694

    Article  CAS  PubMed  Google Scholar 

  12. Seki E, Tsutsui H, Nakano H, Tsuji N, Hoshino K, Adachi O, Adachi K, Futatsugi S, Kuida K, Takeuchi O, Okamura H, Fujimoto J, Akira S, Nakanishi K (2001) Lipopolysaccharide-induced IL-18 secretion from murine Kupffer cells independently of myeloid differentiation factor 88 that is critically involved in induction of production of IL-12 and IL-1beta. J Immunol 166:2651–2657

    Article  CAS  PubMed  Google Scholar 

  13. Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-kappaB signaling pathways. Nat Immunol 12:695–708

    Article  CAS  PubMed  Google Scholar 

  14. Ghosh S, May MJ, Kopp EB (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260

    Article  CAS  PubMed  Google Scholar 

  15. Perkins ND, Gilmore TD (2006) Good cop, bad cop: the different faces of NF-kappaB. Cell Death Differ 13:759–772

    Article  CAS  PubMed  Google Scholar 

  16. Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25:6680–6684

    Article  CAS  PubMed  Google Scholar 

  17. Chen ZJ (2012) Ubiquitination in signaling to and activation of IKK. Immunol Rev 246:95–106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Acharyya A, Villalta A, Bakkar N, Bupha-Intr T, Janssen PML, Carathers M, Li ZW, Beg AA, Ghosh S, Sahenk Z, Weinstein M, Gardner KL, Rafael-Fortney JA, Karin M, Tidball JG, Baldwin AS, Guttridge DC (2007) Interplay of IKK/NFkB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. J Clin Investig 117:889–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW (2004) Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kunsch C, Ruben SM, Rosen CA (1992) Selection of optimal kappa B/Rel DNA-binding motifs: interaction of both subunits of NF-kappa B with DNA is required for transcriptional activation. Mol Cell Biol 12:4412–4421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Abraham E (2003) Nuclear factor-kappaB and its role in sepsis-associated organ failure. J Infect Dis 187:S364–S369

    Article  CAS  PubMed  Google Scholar 

  22. Tak PP, Firestein GS (2001) NF-kappaB: a key role in inflammatory diseases. J Clin Investig 107:7–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu SF, Malik AB (2006) NF-kappa B activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol 290:L622–L645

    Article  CAS  PubMed  Google Scholar 

  24. Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 21:103–115

    Article  CAS  PubMed  Google Scholar 

  25. Webster NR, Nunn JF (1988) Molecular structure of free radicals and their importance in biological reactions. Br J Anaesth 60:98–108

    Article  CAS  PubMed  Google Scholar 

  26. Shen HM, Pervaiz S (2006) TNF receptor superfamily-induced cell death: redox-dependent execution. FASEB J 20:1589–1598

    Article  CAS  PubMed  Google Scholar 

  27. Hughes G, Murphy MP, Ledgerwood EC (2005) Mitochondrial reactive oxygen species regulate the temporal activation of nuclear factor kappaB to modulate tumour necrosis factor-induced apoptosis: evidence from mitochondria-targeted antioxidants. Biochem J 389:83–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blaser H, Dostert C, Mak TW, Brenner D (2016) TNF and ROS crosstalk in inflammation. Trends Cell Biol 26:249–261

    Article  CAS  PubMed  Google Scholar 

  29. Rhee SG, Yang KS, Kang SW, Woo HA, Chang TS (2005) Controlled elimination of intracellular H(2)O(2): regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxid Redox Signal 7:619–626

    Article  CAS  PubMed  Google Scholar 

  30. Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA (2005) Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol 17:183–189

    Article  CAS  PubMed  Google Scholar 

  31. Zhou LZ, Johnson AP, Rando TA (2001) NF kappa B and AP-1 mediate transcriptional responses to oxidative stress in skeletal muscle cells. Free Radic Biol Med 31:1405–1416

    Article  CAS  PubMed  Google Scholar 

  32. Horton JW (2003) Free radicals and lipid peroxidation mediated injury in burn trauma: the role of antioxidant therapy. Toxicology 189:75–88

    Article  CAS  PubMed  Google Scholar 

  33. Lanone S, Mebazaa A, Heymes C, Henin D, Poderoso JJ, Panis Y, Zedda C, Billiar T, Payen D, Aubier M, Boczkowski J (2000) Muscular contractile failure in septic patients: role of the inducible nitric oxide synthase pathway. Am J Respir Crit Care Med 162:2308–2315

    Article  CAS  PubMed  Google Scholar 

  34. Lundberg JO, Weitzberg E (2005) NO generation from nitrite and its role in vascular control. Arterioscler Thromb Vasc Biol 25:915–922

    Article  CAS  PubMed  Google Scholar 

  35. Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HS, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632

    Article  CAS  PubMed  Google Scholar 

  36. Cadenas E, Poderoso JJ, Antunes F, Boveris A (2000) Analysis of the pathways of nitric oxide utilization in mitochondria. Free Radic Res 33:747–756

    Article  CAS  PubMed  Google Scholar 

  37. Escames G, Leon J, Macias M, Khaldy H, Acuña-Castroviejo D (2003) Melatonin counteracts lipopolysaccharide-induced expression and activity of mitochondrial nitric oxide synthase in rats. FASEB J 17:932–934

    CAS  PubMed  Google Scholar 

  38. Garcia JA, Ortiz F, Miana J, Doerrier C, Fernandez-Ortiz M, Rusanova I, Escames G, Garcia JJ, Acuna-Castroviejo D (2017) Contribution of inducible and neuronal nitric oxide synthases to mitochondrial damage and melatonin rescue in LPS-treated mice. J Physiol Biochem 73:235–244

    Article  CAS  PubMed  Google Scholar 

  39. Saito Y, Nishio K, Ogawa Y, Kimata J, Kinumi T, Yoshida Y, Noguchi N, Niki E (2006) Turning point in apoptosis/necrosis induced by hydrogen peroxide. Free Radic Res 40:619–630

    Article  CAS  PubMed  Google Scholar 

  40. Nakajima S, Kitamura M (2013) Bidirectional regulation of NF-kappaB by reactive oxygen species: a role of unfolded protein response. Free Radic Biol Med 65:162–174

    Article  CAS  PubMed  Google Scholar 

  41. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426

    Article  CAS  PubMed  Google Scholar 

  42. Inohara Chamaillard, McDonald C, Nunez G (2005) NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem 74:355–383

    Article  CAS  PubMed  Google Scholar 

  43. Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265

    Article  CAS  PubMed  Google Scholar 

  44. Tattoli I, Travassos LH, Carneiro LA, Magalhaes JG, Girardin SE (2007) The Nodosome: Nod1 and Nod2 control bacterial infections and inflammation. Semin Immunopathol 29:289–301

    Article  CAS  PubMed  Google Scholar 

  45. Escames G, Lopez LC, Garcia JA, Garcia-Corzo L, Ortiz F, Acuña-Castroviejo D (2012) Mitochondrial DNA and inflammatory diseases. Hum Genet 131:161–173

    Article  CAS  PubMed  Google Scholar 

  46. de Torre-Minguela C, Mesa Del Castillo P, Pelegrin P (2017) The NLRP3 and pyrin inflammasomes: implications in the pathophysiology of autoinflammatory diseases. Front Immunol 8:43

    PubMed  PubMed Central  Google Scholar 

  47. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832

    Article  CAS  PubMed  Google Scholar 

  48. Tschopp J, Schroder K (2010) NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10:210–215

    Article  CAS  PubMed  Google Scholar 

  49. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225

    Article  CAS  PubMed  Google Scholar 

  51. Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP, Fitzgerald KA, Ryter SW, Choi AM (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12:222–230

    Article  CAS  PubMed  Google Scholar 

  52. Brown GC (1992) Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J 284:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Boveris A, Costa LE, Poderoso JJ, Carreras MC, Cadenas E (2000) Regulation of mitochondrial respiration by oxygen and nitric oxide. Ann N Y Acad Sci 899:121–135

    Article  CAS  PubMed  Google Scholar 

  54. Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc 41:445–502

    Article  CAS  PubMed  Google Scholar 

  55. Diehl AM, Hoek JB (1999) Mitochondrial uncoupling: role of uncoupling protein anion carriers and relationship to thermogenesis and weight control “the benefits of losing control”. J Bioenerg Biomembr 31:493–506

    Article  CAS  PubMed  Google Scholar 

  56. Woyda-Ploszczyca AM, Jarmuszkiewicz W (2017) The conserved regulation of mitochondrial uncoupling proteins: from unicellular eukaryotes to mammals. Biochim Biophys Acta 1858:21–33

    Article  CAS  PubMed  Google Scholar 

  57. Solmonson A, Mills EM (2016) Uncoupling proteins and the molecular mechanisms of thyroid thermogenesis. Endocrinology 157:455–462

    Article  CAS  PubMed  Google Scholar 

  58. Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80:315–360

    CAS  PubMed  Google Scholar 

  59. Cardoso S, Correia S, Carvalho C, Candeias E, Placido AI, Duarte AI, Seica RM, Moreira PI (2015) Perspectives on mitochondrial uncoupling proteins-mediated neuroprotection. J Bioenerg Biomembr 47:119–131

    Article  CAS  PubMed  Google Scholar 

  60. Acuña Castroviejo D, Lopez LC, Escames G, Lopez A, Garcia JA, Reiter RJ (2011) Melatonin-mitochondria interplay in health and disease. Curr Top Med Chem 11:221–240

    Article  PubMed  Google Scholar 

  61. Bombicino SS, Iglesias DE, Zaobornyj T, Boveris A, Valdez LB (2016) Mitochondrial nitric oxide production supported by reverse electron transfer. Arch Biochem Biophys 607:8–19

    Article  CAS  PubMed  Google Scholar 

  62. Escames G, Lopez LC, Tapias V, Utrilla P, Reiter RJ, Hitos AB, Leon J, Rodriguez MI, Acuña-Castroviejo D (2006) Melatonin counteracts inducible mitochondrial nitric oxide synthase-dependent mitochondrial dysfunction in skeletal muscle of septic mice. J Pineal Res 40:71–78

    Article  CAS  PubMed  Google Scholar 

  63. Escames G, Lopez LC, Ortiz F, Lopez A, Garcia JA, Ros E, Acuña-Castroviejo D (2007) Attenuation of cardiac mitochondrial dysfunction by melatonin in septic mice. FEBS J 274:2135–2147

    Article  CAS  PubMed  Google Scholar 

  64. Ortiz F, Garcia JA, Acuña-Castroviejo D, Doerrier C, Lopez A, Venegas C, Volt H, Luna-Sanchez M, Lopez LC, Escames G (2014) The beneficial effects of melatonin against heart mitochondrial impairment during sepsis: inhibition of iNOS and preservation of nNOS. J Pineal Res 56:71–81

    Article  CAS  PubMed  Google Scholar 

  65. Brown GC (2001) Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta 1504:46–57

    Article  CAS  PubMed  Google Scholar 

  66. Acuña-Castroviejo D, Escames G, Lopez LC, Hitos AB, Leon J (2005) Melatonin and nitric oxide: two required antagonists for mitochondrial homeostasis. Endocrine 27:159–168

    Article  PubMed  Google Scholar 

  67. Lopez LC, Escames G, Tapias V, Utrilla P, Leon J, Acuña-Castroviejo D (2006) Identification of an inducible nitric oxide synthase in diaphragm mitochondria from septic mice: its relation with mitochondrial dysfunction and prevention by melatonin. Int J Biochem Cell Biol 38:267–278

    Article  CAS  PubMed  Google Scholar 

  68. Poderoso JJ, Carreras MC, Lisdero C, Riobo N, Schopfer F, Boveris A (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328:85–92

    Article  CAS  PubMed  Google Scholar 

  69. Brown GC, Borutaite V (2004) Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim Biophys Acta 1658:44–49

    Article  CAS  PubMed  Google Scholar 

  70. Escames G, Lopez LC, Ortiz F, Ros E, Acuña-Castroviejo D (2006) Age-dependent lipopolysaccharide-induced iNOS expression and multiorgan failure in rats: effects of melatonin treatment. Exp Gerontol 41:1165–1173

    Article  CAS  PubMed  Google Scholar 

  71. Taanman JW (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1410:103–123

    Article  CAS  PubMed  Google Scholar 

  72. Bohr VA, Anson RM (1999) Mitochondrial DNA repair pathways. J Bioenerg Biomembr 31:391–398

    Article  CAS  PubMed  Google Scholar 

  73. Sanz A (2016) Mitochondrial reactive oxygen species: do they extend or shorten animal lifespan? Biochim Biophys Acta 1857:1116–1126

    Article  CAS  PubMed  Google Scholar 

  74. Boveris A, Cadenas E (2000) Mitochondrial production of hydrogen peroxide regulation by nitric oxide and the role of ubisemiquinone. IUBMB Life 50:245–250

    Article  CAS  PubMed  Google Scholar 

  75. West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, Walsh MC, Choi Y, Shadel GS, Ghosh S (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472:476–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Diebold L, Chandel NS (2016) Mitochondrial ROS regulation of proliferating cells. Free Radic Biol Med 100:86–93

    Article  CAS  PubMed  Google Scholar 

  77. Jones RM, Neish AS (2016) Redox signaling mediated by the gut microbiota. Free Radical Biol Med 105:41–47

    Article  CAS  Google Scholar 

  78. Sakai K, Matsumoto K, Nishikawa T, Suefuji M, Nakamaru K, Hirashima Y, Kawashima J, Shirotani T, Ichinose K, Brownlee M, Araki E (2003) Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic beta-cells. Biochem Biophys Res Commun 300:216–222

    Article  CAS  PubMed  Google Scholar 

  79. Nicholls DG (2005) Mitochondria and calcium signaling. Cell Calcium 38:311–317

    Article  CAS  PubMed  Google Scholar 

  80. Dawson TM, Dawson VL (2017) Mitochondrial mechanisms of neuronal cell death: potential therapeutics. Annu Rev Pharmacol Toxicol 57:437–454

    Article  CAS  PubMed  Google Scholar 

  81. Horbay R, Bilyy R (2016) Mitochondrial dynamics during cell cycling. Apoptosis 21:1327–1335

    Article  CAS  PubMed  Google Scholar 

  82. Garcia JA, Volt H, Venegas C, Doerrier C, Escames G, Lopez LC, Acuña-Castroviejo D (2015) Disruption of the NF-kappaB/NLRP3 connection by melatonin requires retinoid-related orphan receptor-alpha and blocks the septic response in mice. FASEB J 29:3863–3875

    Article  CAS  PubMed  Google Scholar 

  83. Diaz-Casado ME, Lima E, Garcia JA, Doerrier C, Aranda P, Sayed RK, Guerra-Librero A, Escames G, Lopez LC, Acuña-Castroviejo D (2016) Melatonin rescues zebrafish embryos from the parkinsonian phenotype restoring the parkin/PINK1/DJ-1/MUL1 network. J Pineal Res 61:96–107

    Article  CAS  PubMed  Google Scholar 

  84. Meissner F, Molawi K, Zychlinsky A (2008) Superoxide dismutase 1 regulates caspase-1 and endotoxic shock. Nat Immunol 9:866–872

    Article  CAS  PubMed  Google Scholar 

  85. Sarkar A, Duncan M, Hart J, Hertlein E, Guttridge DC, Wewers MD (2006) ASC directs NF-kappaB activation by regulating receptor interacting protein-2 (RIP2) caspase-1 interactions. J Immunol 176:4979–4986

    Article  CAS  PubMed  Google Scholar 

  86. Watanabe A, Sohail MA, Gomes DA, Hashmi A, Nagata J, Sutterwala FS, Mahmood S, Jhandier MN, Shi Y, Flavell RA, Mehal WZ (2009) Inflammasome-mediated regulation of hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 296:G1248–G1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cassel SL, Joly S, Sutterwala FS (2009) The NLRP3 inflammasome: a sensor of immune danger signals. Semin Immunol 21:194–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Latz E (2010) NOX-free inflammasome activation. Blood 116:1393–1394

    Article  CAS  PubMed  Google Scholar 

  89. Imaeda AB, Watanabe A, Sohail MA, Mahmood S, Mohamadnejad M, Sutterwala FS, Flavell RA, Mehal WZ (2009) Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J Clin Investig 119:305–314

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhu P, Duan L, Chen J, Xiong A, Xu Q, Zhang H, Zheng F, Tan Z, Gong F, Fang M (2011) Gene silencing of NALP3 protects against liver ischemia-reperfusion injury in mice. Hum Gene Ther 22:853–864

    Article  CAS  PubMed  Google Scholar 

  91. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11:136–140

    Article  CAS  PubMed  Google Scholar 

  92. Chen G, Li X, Huang M, Zhou X, Li Y, Mao X, Bai J (2016) The Role of thioredoxin-1 in suppression sepsis through inhibiting mitochonrial-induced apoptosis in spleen. Shock (in press)

  93. Hoegen T, Tremel N, Klein M, Angele B, Wagner H, Kirschning C, Pfister HW, Fontana A, Hammerschmidt S, Koedel U (2011) The NLRP3 inflammasome contributes to brain injury in pneumococcal meningitis and is activated through ATP-dependent lysosomal cathepsin B release. J Immunol 187:5440–5451

    Article  CAS  PubMed  Google Scholar 

  94. Tschopp J (2011) Mitochondria: sovereign of inflammation? Eur J Immunol 41:1196–1202

    Article  CAS  PubMed  Google Scholar 

  95. Martinon F (2012) Dangerous liaisons: mitochondrial DNA meets the NLRP3 inflammasome. Immunity 36:313–315

    Article  CAS  PubMed  Google Scholar 

  96. Volt H, Garcia JA, Doerrier C, Diaz-Casado ME, Guerra-Librero A, Lopez LC, Escames G, Tresguerres JA, Acuña-Castroviejo D (2016) Same molecule but different expression: aging and sepsis trigger NLRP3 inflammasome activation, a target of melatonin. J Pineal Res 60:193–205

    Article  CAS  PubMed  Google Scholar 

  97. Haneklaus M, O’Neill LA, Coll RC (2013) Modulatory mechanisms controlling the NLRP3 inflammasome in inflammation: recent developments. Curr Opin Immunol 25:40–45

    Article  CAS  PubMed  Google Scholar 

  98. Buhr ED, Takahashi JS (2013) Molecular components of the mammalian circadian clock. Handb Exp Pharmacol 217:3–27

    Article  CAS  Google Scholar 

  99. Reiter RJ (1993) The melatonin rhythm: both a clock and a calendar. Experientia 49:654–664

    Article  CAS  PubMed  Google Scholar 

  100. Moore RY, Speh JC, Card JP (1995) The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells. J Comp Neurol 352:351–366

    Article  CAS  PubMed  Google Scholar 

  101. Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Harrington ME (1997) The ventral lateral geniculate nucleus and the intergeniculate leaflet: interrelated structures in the visual and circadian systems. Neurosci Biobehav Rev 21:705–727

    Article  CAS  PubMed  Google Scholar 

  103. Rosenwasser AM, Turek FW (2015) Neurobiology of circadian rhythm regulation. Sleep Med Clin 10:403–412

    Article  PubMed  Google Scholar 

  104. Perreau-Lenz S, Pevet P, Buijs RM, Kalsbeek A (2004) The biological clock: the bodyguard of temporal homeostasis. Chronobiol Int 21:1–25

    Article  PubMed  Google Scholar 

  105. Kalsbeek A, Palm IF, La Fleur SE, Scheer FA, Perreau-Lenz S, Ruiter M, Kreier F, Cailotto C, Buijs RM (2006) SCN outputs and the hypothalamic balance of life. J Biol Rhythms 21:458–469

    Article  CAS  PubMed  Google Scholar 

  106. Perreau-Lenz S, Kalsbeek A, Garidou ML, Wortel J, van der Vliet J, van Heijningen C, Simonneaux V, Pevet P, Buijs RM (2003) Suprachiasmatic control of melatonin synthesis in rats: inhibitory and stimulatory mechanisms. Eur J Neurosci 17:221–228

    Article  PubMed  Google Scholar 

  107. Vriend J, Reiter RJ (2015) Melatonin feedback on clock genes: a theory involving the proteasome. J Pineal Res 58:1–11

    Article  CAS  PubMed  Google Scholar 

  108. Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 68:2112–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Goriki A, Hatanaka F, Myung J, Kim JK, Yoritaka T, Tanoue S, Abe T, Kiyonari H, Fujimoto K, Kato Y, Todo T, Matsubara A, Forger D, Takumi T (2014) A novel protein, CHRONO, functions as a core component of the mammalian circadian clock. PLoS Biol 12:e1001839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Kondratova AA, Kondratov RV (2012) The circadian clock and pathology of the ageing brain. Nat Rev Neurosci 13:325–335

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Takahashi JS (2015) Molecular components of the circadian clock in mammals. Diabetes Obes Metab 17(Suppl 1):6–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, Kume K, Lee CC, van der Horst GT, Hastings MH, Reppert SM (2000) Interacting molecular loops in the mammalian circadian clock. Science 288:1013–1019

    Article  CAS  PubMed  Google Scholar 

  113. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260

    Article  CAS  PubMed  Google Scholar 

  114. Hirayama J, Sassone-Corsi P (2005) Structural and functional features of transcription factors controlling the circadian clock. Curr Opin Genet Dev 15:548–556

    Article  CAS  PubMed  Google Scholar 

  115. Lowrey PL, Takahashi JS (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genom Hum Genet 5:407–441

    Article  CAS  Google Scholar 

  116. Hughes ME, Hong HK, Chong JL, Indacochea AA, Lee SS, Han M, Takahashi JS, Hogenesch JB (2012) Brain-specific rescue of Clock reveals system-driven transcriptional rhythms in peripheral tissue. PLoS Genet 8:e1002835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Buijs FN, Guzman-Ruiz M, Leon-Mercado L, Basualdo MC, Escobar C, Kalsbeek A, Buijs RM (2017) Suprachiasmatic nucleus interaction with the arcuate nucleus; essential for organizing physiological rhythms. eNeuro 4:e0028

    Article  Google Scholar 

  118. Cermakian N, Westfall S, Kiessling S (2014) Circadian clocks and inflammation: reciprocal regulation and shared mediators. Arch Immunol Ther Exp (Warsz) 62:303–318

    Article  CAS  Google Scholar 

  119. Dimitrov S, Benedict C, Heutling D, Westermann J, Born J, Lange T (2009) Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood 113:5134–5143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sato S, Sakurai T, Ogasawara J, Takahashi M, Izawa T, Imaizumi K, Taniguchi N, Ohno H, Kizaki T (2014) A circadian clock gene, Rev-erbalpha, modulates the inflammatory function of macrophages through the negative regulation of Ccl2 expression. J Immunol 192:407–417

    Article  CAS  PubMed  Google Scholar 

  121. Curtis AM, Bellet MM, Sassone-Corsi P, O’Neill LA (2014) Circadian clock proteins and immunity. Immunity 40:178–186

    Article  CAS  PubMed  Google Scholar 

  122. Nguyen KD, Fentress SJ, Qiu Y, Yun K, Cox JS, Chawla A (2013) Circadian gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory monocytes. Science 341:1483–1488

    Article  CAS  PubMed  Google Scholar 

  123. Stapleton CM, Jaradat M, Dixon D, Kang HS, Kim SC, Liao G, Carey MA, Cristiano J, Moorman MP, Jetten AM (2005) Enhanced susceptibility of staggerer (RORalphasg/sg) mice to lipopolysaccharide-induced lung inflammation. Am J Physiol Lung Cell Mol Physiol 289:L144–L152

    Article  CAS  PubMed  Google Scholar 

  124. Partch CL, Green CB, Takahashi JS (2014) Molecular architecture of the mammalian circadian clock. Trends Cell Biol 24:90–99

    Article  CAS  PubMed  Google Scholar 

  125. Spengler ML, Kuropatwinski KK, Comas M, Gasparian AV, Fedtsova N, Gleiberman AS, Gitlin II, Artemicheva NM, Deluca KA, Gudkov AV, Antoch MP (2012) Core circadian protein CLOCK is a positive regulator of NF-kappaB-mediated transcription. Proc Natl Acad Sci USA 109:E2457–E2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Liu J, Malkani G, Shi X, Meyer M, Cunningham-Runddles S, Ma X, Sun ZS (2006) The circadian clock Period 2 gene regulates gamma interferon production of NK cells in host response to lipopolysaccharide-induced endotoxic shock. Infect Immun 74:4750–4756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Narasimamurthy R, Hatori M, Nayak SK, Liu F, Panda S, Verma IM (2012) Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines. Proc Natl Acad Sci USA 109:12662–12667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bordone L, Guarente L (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 6:298–305

    Article  CAS  PubMed  Google Scholar 

  129. Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Grimaldi B, Nakahata Y, Kaluzova M, Masubuchi S, Sassone-Corsi P (2009) Chromatin remodeling, metabolism and circadian clocks: the interplay of CLOCK and SIRT1. Int J Biochem Cell Biol 41:81–86

    Article  CAS  PubMed  Google Scholar 

  131. Cavadini G, Petrzilka S, Kohler P, Jud C, Tobler I, Birchler T, Fontana A (2007) TNF-alpha suppresses the expression of clock genes by interfering with E-box-mediated transcription. Proc Natl Acad Sci USA 104:12843–12848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Green CB, Takahashi JS, Bass J (2008) The meter of metabolism. Cell 134:728–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang EE, Kay SA (2010) Clocks not winding down: unravelling circadian networks. Nat Rev Mol Cell Biol 11:764–776

    Article  CAS  PubMed  Google Scholar 

  134. Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417:78–83

    Article  CAS  PubMed  Google Scholar 

  135. Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, Fitzgerald GA (2004) BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2:e377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Liu C, Li S, Liu T, Borjigin J, Lin JD (2007) Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447:477–481

    Article  CAS  PubMed  Google Scholar 

  137. Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P (2008) Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett 582:46–53

    Article  CAS  PubMed  Google Scholar 

  138. Aquilano K, Vigilanza P, Baldelli S, Pagliei B, Rotilio G, Ciriolo MR (2010) Peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1alpha) and sirtuin 1 (SIRT1) reside in mitochondria: possible direct function in mitochondrial biogenesis. J Biol Chem 285:21590–21599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Campbell CT, Kolesar JE, Kaufman BA (2012) Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim Biophys Acta 1819:921–929

    Article  CAS  PubMed  Google Scholar 

  140. Tang BL (2016) Sirt1 and the mitochondria. Mol Cells 39:87–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lee I, Bender E, Arnold S, Kadenbach B (2001) New control of mitochondrial membrane potential and ROS formation—a hypothesis. Biol Chem 382:1629–1636

    Article  CAS  PubMed  Google Scholar 

  142. Broussard SR, McCusker RH, Novakofski JE, Strle K, Shen WH, Johnson RW, Dantzer R, Kelley KW (2004) IL-1beta impairs insulin-like growth factor I-induced differentiation and downstream activation signals of the insulin-like growth factor I receptor in myoblasts. J Immunol 172:7713–7720

    Article  CAS  PubMed  Google Scholar 

  143. Radi R, Cassina A, Hodara R, Quijano C, Castro L (2002) Peroxynitrite reactions and formation in mitochondria. Free Radic Biol Med 33:1451–1464

    Article  CAS  PubMed  Google Scholar 

  144. Radi R, Cassina A, Hodara R (2002) Nitric oxide and peroxynitrite interactions with mitochondria. Biol Chem 383:401–409

    Article  CAS  PubMed  Google Scholar 

  145. Li Y, Zhu H, Kuppusamy P, Zweier JL, Trush MA (2016) Mitochondrial electron transport chain-derived superoxide exits macrophages: implications for mononuclear cell-mediated pathophysiological processes. React Oxyg Species 1:81–98

    Google Scholar 

  146. Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP (2006) Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev 20:1868–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. O’Neill JS, Reddy AB (2011) Circadian clocks in human red blood cells. Nature 469:498–503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Hardeland R, Coto-Montes A, Poeggeler B (2003) Circadian rhythms, oxidative stress, and antioxidative defense mechanisms. Chronobiol Int 20:921–962

    Article  CAS  PubMed  Google Scholar 

  149. Kang TH, Sancar A (2009) Circadian regulation of DNA excision repair: implications for chrono-chemotherapy. Cell Cycle 8:1665–1667

    Article  CAS  PubMed  Google Scholar 

  150. Sachdeva UM, Thompson CB (2008) Diurnal rhythms of autophagy: implications for cell biology and human disease. Autophagy 4:581–589

    Article  CAS  PubMed  Google Scholar 

  151. Richards J, Gumz ML (2012) Advances in understanding the peripheral circadian clocks. FASEB J 26:3602–3613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lee HM, Chen R, Kim H, Etchegaray JP, Weaver DR, Lee C (2011) The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proc Natl Acad Sci USA 108:16451–16456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Durgan DJ, Young ME (2010) The cardiomyocyte circadian clock: emerging roles in health and disease. Circ Res 106:647–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sabath E, Salgado-Delgado R, Guerrero-Vargas NN, Guzman-Ruiz MA, del Carmen Basualdo M, Escobar C, Buijs RM (2014) Food entrains clock genes but not metabolic genes in the liver of suprachiasmatic nucleus lesioned rats. FEBS Lett 588:3104–3110

    Article  CAS  PubMed  Google Scholar 

  155. Silver AC, Arjona A, Hughes ME, Nitabach MN, Fikrig E (2012) Circadian expression of clock genes in mouse macrophages, dendritic cells, and B cells. Brain Behav Immun 26:407–413

    Article  CAS  PubMed  Google Scholar 

  156. Fortier EE, Rooney J, Dardente H, Hardy MP, Labrecque N, Cermakian N (2011) Circadian variation of the response of T cells to antigen. J Immunol 187:6291–6300

    Article  CAS  PubMed  Google Scholar 

  157. Buijs RM, Scheer FA, Kreier F, Yi C, Bos N, Goncharuk VD, Kalsbeek A (2006) Organization of circadian functions: interaction with the body. Prog Brain Res 153:341–360

    Article  CAS  PubMed  Google Scholar 

  158. Paschos GK, Ibrahim S, Song WL, Kunieda T, Grant G, Reyes TM, Bradfield CA, Vaughan CH, Eiden M, Masoodi M, Griffin JL, Wang F, Lawson JA, Fitzgerald GA (2012) Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat Med 18:1768–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lerner AB, Case JD, Takahasi Y, Lee TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 80:2587

    Article  CAS  Google Scholar 

  160. Lerner AB, Case JD, Takahashy Y, Lee TH (1960) Structure of melatonin and 5-methoxy-indole-3-acetic acid from bovine pineal gland. J Biol Chem 235:1992–1997

    CAS  PubMed  Google Scholar 

  161. Acuña-Castroviejo D, Escames G, Venegas C, Diaz-Casado ME, Lima-Cabello E, Lopez LC, Rosales-Corral S, Tan DX, Reiter RJ (2014) Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci 71:2997–3025

    Article  PubMed  CAS  Google Scholar 

  162. Venegas C, Garcia JA, Escames G, Ortiz F, Lopez A, Doerrier C, Garcia-Corzo L, Lopez LC, Reiter RJ, Acuña-Castroviejo D (2012) Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J Pineal Res 52:217–227

    Article  CAS  PubMed  Google Scholar 

  163. Jockers R, Delagrange P, Dubocovich ML, Markus RP, Renault N, Tosini G, Cecon E, Zlotos DP (2016) Update on melatonin receptors: IUPHAR review 20. Br J Pharmacol 173:2702–2725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Becker-Andre M, Wiesenberg I, Schaeren-Wiemers N, Andre E, Missbach M, Saurat JH, Carlberg C (1994) Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J Biol Chem 269:28531–28534

    CAS  PubMed  Google Scholar 

  165. Romero MP, Garcia-Perganeda A, Guerrero JM, Osuna C (1998) Membrane-bound calmodulin in Xenopus laevis oocytes as a novel binding site for melatonin. FASEB J 12:1401–1408

    CAS  PubMed  Google Scholar 

  166. Macias M, Escames G, Leon J, Coto A, Sbihi Y, Osuna A, Acuña-Castroviejo D (2003) Calreticulin–melatonin. An unexpected relationship. Eur J Biochem 270:832–840

    Article  CAS  PubMed  Google Scholar 

  167. Martin M, Macias M, Escames G, Leon J, Acuña-Castroviejo D (2000) Melatonin but not vitamins C and E maintains glutathione homeostasis in t-butyl hydroperoxide-induced mitochondrial oxidative stress. FASEB J 14:1677–1679

    CAS  PubMed  Google Scholar 

  168. Tan DX, Manchester LC, Liu X, Rosales-Corral SA, Acuña-Castroviejo D, Reiter RJ (2013) Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J Pineal Res 54:127–138

    Article  CAS  PubMed  Google Scholar 

  169. Tan DX, Manchester LC, Sanchez-Barcelo E, Mediavilla MD, Reiter RJ (2010) Significance of high levels of endogenous melatonin in Mammalian cerebrospinal fluid and in the central nervous system. Curr Neuropharmacol 8:162–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  CAS  PubMed  Google Scholar 

  171. Teclemariam-Mesbah R, Ter Horst GJ, Postema F, Wortel J, Buijs RM (1999) Anatomical demonstration of the suprachiasmatic nucleus-pineal pathway. J Comp Neurol 406:171–182

    Article  CAS  PubMed  Google Scholar 

  172. Klein DC (2007) Arylalkylamine N-acetyltransferase: “the timezyme”. J Biol Chem 282:4233–4237

    Article  CAS  PubMed  Google Scholar 

  173. Ribelayga C, Pevet P, Simonneaux V (2000) HIOMT drives the photoperiodic changes in the amplitude of the melatonin peak of the Siberian hamster. Am J Physiol Regul Integr Comp Physiol 278:R1339–R1345

    CAS  PubMed  Google Scholar 

  174. Cassone VM (1990) Effects of melatonin on vertebrate circadian systems. Trends Neurosci 13:457–464

    Article  CAS  PubMed  Google Scholar 

  175. Castillo-Romero JL, Vives-Montero F, Reiter RJ, Acuña-Castroviejo D (1993) Pineal modulation of the rat caudate-putamen spontaneous neuronal activity: roles of melatonin and vasotocin. J Pineal Res 15:147–152

    Article  CAS  PubMed  Google Scholar 

  176. Escames G, Macias M, Leon J, Garcia J, Khaldy H, Martin M, Vives F, Acuña-Castroviejo D (2001) Calcium-dependent effects of melatonin inhibition of glutamatergic response in rat striatum. J Neuroendocrinol 13:459–466

    Article  CAS  PubMed  Google Scholar 

  177. Escames G, Leon J, Lopez LC, Acuña-Castroviejo D (2004) Mechanisms of N-methyl-d-aspartate receptor inhibition by melatonin in the rat striatum. J Neuroendocrinol 16:929–935

    Article  CAS  PubMed  Google Scholar 

  178. Agez L, Laurent V, Pevet P, Masson-Pevet M, Gauer F (2007) Melatonin affects nuclear orphan receptors mRNA in the rat suprachiasmatic nuclei. Neuroscience 144:522–530

    Article  CAS  PubMed  Google Scholar 

  179. Reppert SM, Weaver DR, Rivkees SA, Stopa EG (1988) Putative melatonin receptors in a human biological clock. Science 242:78–81

    Article  CAS  PubMed  Google Scholar 

  180. Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, Gribkoff VK, Reppert SM (1997) Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 19:91–102

    Article  CAS  PubMed  Google Scholar 

  181. Reiter RJ, Tan DX, Kim SJ, Cruz MH (2014) Delivery of pineal melatonin to the brain and SCN: role of canaliculi, cerebrospinal fluid, tanycytes and Virchow-Robin perivascular spaces. Brain Struct Funct 219:1873–1887

    Article  CAS  PubMed  Google Scholar 

  182. Crespo E, Macias M, Pozo D, Escames G, Martin M, Vives F, Guerrero JM, Acuña-Castroviejo D (1999) Melatonin inhibits expression of the inducible NO synthase II in liver and lung and prevents endotoxemia in lipopolysaccharide-induced multiple organ dysfunction syndrome in rats. FASEB J 13:1537–1546

    CAS  PubMed  Google Scholar 

  183. Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661

    Article  CAS  PubMed  Google Scholar 

  184. Shi D, Xiao X, Wang J, Liu L, Chen W, Fu L, Xie F, Huang W, Deng W (2012) Melatonin suppresses proinflammatory mediators in lipopolysaccharide-stimulated CRL1999 cells via targeting MAPK, NF-kappaB, c/EBPbeta, and p300 signaling. J Pineal Res 53:154–165

    Article  CAS  PubMed  Google Scholar 

  185. Nopparat C, Sinjanakhom P, Govitrapong P (2017) Melatonin reverses H2O2-induced senescence in SH-SY5Y cells by enhancing autophagy via sirtuin 1 deacetylation of the RelA/p65 subunit of NF-kappaB. J Pineal Res. doi:10.1111/jpi.12407

    PubMed  Google Scholar 

  186. Muxel SM, Pires-Lapa MA, Monteiro AW, Cecon E, Tamura EK, Floeter-Winter LM, Markus RP (2012) NF-kappaB drives the synthesis of melatonin in RAW 264.7 macrophages by inducing the transcription of the arylalkylamine-N-acetyltransferase (AA-NAT) gene. PLoS One 7:e52010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Muxel SM, Laranjeira-Silva MF, Carvalho-Sousa CE, Floeter-Winter LM, Markus RP (2016) The RelA/cRel nuclear factor-kappaB (NF-kappaB) dimer, crucial for inflammation resolution, mediates the transcription of the key enzyme in melatonin synthesis in RAW 264.7 macrophages. J Pineal Res 60:394–404

    Article  CAS  PubMed  Google Scholar 

  188. Lin YW, Lee LM, Lee WJ, Chu CY, Tan P, Yang YC, Chen WY, Yang SF, Hsiao M, Chien MH (2016) Melatonin inhibits MMP-9 transactivation and renal cell carcinoma metastasis by suppressing Akt-MAPKs pathway and NF-kappaB DNA-binding activity. J Pineal Res 60:277–290

    Article  CAS  PubMed  Google Scholar 

  189. Arulkumaran N, Deutschman CS, Pinsky MR, Zuckerbraun B, Schumacker PT, Gomez H, Gomez A, Murray P, Kellum JA, Workgroup AX (2016) Mitochondrial function in sepsis. Shock 45:271–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ghafourifar P, Richter C (1997) Nitric oxide synthase activity in mitochondria. FEBS Lett 418:291–296

    Article  CAS  PubMed  Google Scholar 

  191. Kanai AJ, Pearce LL, Clemens PR, Birder LA, VanBibber MM, Choi SY, de Groat WC, Peterson J (2001) Identification of a neuronal nitric oxide synthase in isolated cardiac mitochondria using electrochemical detection. Proc Natl Acad Sci USA 98:14126–14131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Doerrier C, Garcia JA, Volt H, Diaz-Casado ME, Lima-Cabello E, Ortiz F, Luna-Sanchez M, Escames G, Lopez LC, Acuña-Castroviejo D (2015) Identification of mitochondrial deficits and melatonin targets in liver of septic mice by high-resolution respirometry. Life Sci 121:158–165

    Article  CAS  PubMed  Google Scholar 

  193. Doerrier C, Garcia JA, Volt H, Diaz-Casado ME, Luna-Sanchez M, Fernandez-Gil B, Escames G, Lopez LC, Acuña-Castroviejo D (2016) Permeabilized myocardial fibers as model to detect mitochondrial dysfunction during sepsis and melatonin effects without disruption of mitochondrial network. Mitochondrion 27:56–63

    Article  CAS  PubMed  Google Scholar 

  194. Schopfer F, Riobo N, Carreras MC, Alvarez B, Radi R, Boveris A, Cadenas E, Poderoso JJ (2000) Oxidation of ubiquinol by peroxynitrite: implications for protection of mitochondria against nitrosative damage. Biochem J 349:35–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Neri M, Riezzo I, Pomara C, Schiavone S, Turillazzi E (2016) Oxidative-nitrosative stress and myocardial dysfunctions in sepsis: evidence from the literature and postmortem observations. Mediat Inflamm 2016:3423450

    Article  CAS  Google Scholar 

  196. Martin M, Macias M, Escames G, Reiter RJ, Agapito MT, Ortiz GG, Acuña-Castroviejo D (2000) Melatonin-induced increased activity of the respiratory chain complexes I and IV can prevent mitochondrial damage induced by ruthenium red in vivo. J Pineal Res 28:242–248

    Article  CAS  PubMed  Google Scholar 

  197. Martin M, Macias M, Leon J, Escames G, Khaldy H, Acuña-Castroviejo D (2002) Melatonin increases the activity of the oxidative phosphorylation enzymes and the production of ATP in rat brain and liver mitochondria. Int J Biochem Cell Biol 34:348–357

    Article  CAS  PubMed  Google Scholar 

  198. Acuña-Castroviejo D, Escames G, Leon J, Carazo A, Khaldy H (2003) Mitochondrial regulation by melatonin and its metabolites. Adv Exp Med Biol 527:549–557

    Article  PubMed  Google Scholar 

  199. Lopez A, Garcia JA, Escames G, Venegas C, Ortiz F, Lopez LC, Acuña-Castroviejo D (2009) Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production. J Pineal Res 46:188–198

    Article  CAS  PubMed  Google Scholar 

  200. Lowes DA, Almawash AM, Webster NR, Reid VL, Galley HF (2011) Melatonin and structurally similar compounds have differing effects on inflammation and mitochondrial function in endothelial cells under conditions mimicking sepsis. Br J Anaesth 107:193–201

    Article  CAS  PubMed  Google Scholar 

  201. Lopez LC, Escames G, Ortiz F, Ros E, Acuña-Castroviejo D (2006) Melatonin restores the mitochondrial production of ATP in septic mice. Neuro Endocrinol Lett 27:623–630

    CAS  PubMed  Google Scholar 

  202. Reyes-Toso CF, Rebagliati IR, Ricci CR, Linares LM, Albornoz LE, Cardinali DP, Zaninovich A (2006) Effect of melatonin treatment on oxygen consumption by rat liver mitochondria. Amino Acids 31:299–302

    Article  CAS  PubMed  Google Scholar 

  203. Ortiz F, Acuña-Castroviejo D, Doerrier C, Dayoub JC, Lopez LC, Venegas C, Garcia JA, Lopez A, Volt H, Luna-Sanchez M, Escames G (2015) Melatonin blunts the mitochondrial/NLRP3 connection and protects against radiation-induced oral mucositis. J Pineal Res 58:34–49

    Article  CAS  PubMed  Google Scholar 

  204. Rahim I, Djerdjouri B, Sayed RK, Fernández-Ortiz M, Fernández-Gil B, Hidalgo-Gutiérrez A, López LC, Escames G, Reiter RJ, Acuña-Castroviejo D (2017) Melatonin administration to wild-type mice and non-treated NLRP3 mutant mice share similar inhibition of the inflammatory response during sepsis J Pineal Res (in press)

  205. Guerrero-Vargas NN, Salgado-Delgado R, Basualdo Mdel C, Garcia J, Guzman-Ruiz M, Carrero JC, Escobar C, Buijs RM (2014) Reciprocal interaction between the suprachiasmatic nucleus and the immune system tunes down the inflammatory response to lipopolysaccharide. J Neuroimmunol 273:22–30

    Article  CAS  PubMed  Google Scholar 

  206. Ohdo S, Koyanagi S, Suyama H, Higuchi S, Aramaki H (2001) Changing the dosing schedule minimizes the disruptive effects of interferon on clock function. Nat Med 7:356–360

    Article  CAS  PubMed  Google Scholar 

  207. Duhart JM, Leone MJ, Paladino N, Evans JA, Castanon-Cervantes O, Davidson AJ, Golombek DA (2013) Suprachiasmatic astrocytes modulate the circadian clock in response to TNF-alpha. J Immunol 191:4656–4664

    Article  CAS  PubMed  Google Scholar 

  208. Kandalepas PC, Mitchell JW, Gillette MU (2016) Melatonin signal transduction pathways require e-box-mediated transcription of Per1 and Per2 to reset the SCN Clock at dusk. PLoS One 11:e0157824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Bellet MM, Zocchi L, Sassone-Corsi P (2012) The RelB subunit of NFkappaB acts as a negative regulator of circadian gene expression. Cell Cycle 11:3304–3311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Escames G, Acuña-Castroviejo D, Lopez LC, Tan DX, Maldonado MD, Sanchez-Hidalgo M, Leon J, Reiter RJ (2006) Pharmacological utility of melatonin in the treatment of septic shock: experimental and clinical evidence. J Pharm Pharmacol 58:1153–1165

    Article  CAS  PubMed  Google Scholar 

  211. Galley HF, Lowes DA, Allen L, Cameron G, Aucott LS, Webster NR (2014) Melatonin as a potential therapy for sepsis: a phase I dose escalation study and an ex vivo whole blood model under conditions of sepsis. J Pineal Res 56:427–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Andersen LP, Gogenur I, Rosenberg J, Reiter RJ (2016) The safety of melatonin in humans. Clin Drug Investig 36:169–175

    Article  CAS  PubMed  Google Scholar 

  213. Esteban-Zubero E, Alatorre-Jimenez MA, Lopez-Pingarron L, Reyes-Gonzales MC, Almeida-Souza P, Cantin-Golet A, Ruiz-Ruiz FJ, Tan DX, Garcia JJ, Reiter RJ (2016) Melatonin’s role in preventing toxin-related and sepsis-mediated hepatic damage: a review. Pharmacol Res 105:108–120

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partially supported by Grants from the Ministerio de Economía, Industria y Competitividad, y por el Fondo de Desarrollo Regional FEDER, Spain # RD12/0043/0005; PI13-00981; PI16-00519; PI16-00CB16-10-00238), and from the Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía (P07-CTS-03135, P10-CTS-5784, and CTS-101), Spain. CA-F is a Resident Medical Intern, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain; MF-O is supported by a FPU fellowship from the Ministerio de Educación, Cultura y Deporte, Spain; MED-C is supported by a postdoctoral fellowship from the Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía, Spain, and LCL is supported by the “Ramón y Cajal” National Program (Ministerio de Economía y Competitividad, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darío Acuña-Castroviejo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acuña-Castroviejo, D., Rahim, I., Acuña-Fernández, C. et al. Melatonin, clock genes and mitochondria in sepsis. Cell. Mol. Life Sci. 74, 3965–3987 (2017). https://doi.org/10.1007/s00018-017-2610-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2610-1

Keywords

Navigation