Skip to main content

Advertisement

Log in

PHAB toxins: a unique family of predatory sea anemone toxins evolving via intra-gene concerted evolution defines a new peptide fold

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Sea anemone venoms have long been recognized as a rich source of peptides with interesting pharmacological and structural properties, but they still contain many uncharacterized bioactive compounds. Here we report the discovery, three-dimensional structure, activity, tissue localization, and putative function of a novel sea anemone peptide toxin that constitutes a new, sixth type of voltage-gated potassium channel (KV) toxin from sea anemones. Comprised of just 17 residues, κ-actitoxin-Ate1a (Ate1a) is the shortest sea anemone toxin reported to date, and it adopts a novel three-dimensional structure that we have named the Proline-Hinged Asymmetric β-hairpin (PHAB) fold. Mass spectrometry imaging and bioassays suggest that Ate1a serves a primarily predatory function by immobilising prey, and we show this is achieved through inhibition of Shaker-type KV channels. Ate1a is encoded as a multi-domain precursor protein that yields multiple identical mature peptides, which likely evolved by multiple domain duplication events in an actinioidean ancestor. Despite this ancient evolutionary history, the PHAB-encoding gene family exhibits remarkable sequence conservation in the mature peptide domains. We demonstrate that this conservation is likely due to intra-gene concerted evolution, which has to our knowledge not previously been reported for toxin genes. We propose that the concerted evolution of toxin domains provides a hitherto unrecognised way to circumvent the effects of the costly evolutionary arms race considered to drive toxin gene evolution by ensuring efficient secretion of ecologically important predatory toxins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, de la Vega RC (2009) The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genom Hum Genet 10:483–511

    Article  CAS  Google Scholar 

  2. Jenner R, Undheim E (2017) Venom: the secrets of nature’s deadliest weapon. Natural History Museum, London

    Google Scholar 

  3. King GF (2015) Venoms to drugs: venom as a source for the development of human therapeutics. Royal Society of Chemistry, London

    Book  Google Scholar 

  4. Casewell NR, Wuster W, Vonk FJ, Harrison RA, Fry BG (2013) Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol 28:219–229

    Article  Google Scholar 

  5. Van Iten H, Marques AC, Leme JDM, Pacheco MLAF, Simões MG (2014) Origin and early diversification of the phylum Cnidaria Verrill: major developments in the analysis of the taxon’s Proterozoic-Cambrian history. Palaeontology 57:677–690

    Article  Google Scholar 

  6. Frazao B, Vasconcelos V, Antunes A (2012) Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: an overview. Mar Drugs 10:1812–1851

    Article  CAS  Google Scholar 

  7. Jouiaei M, Yanagihara AA, Madio B, Nevalainen TJ, Alewood PF, Fry BG (2015) Ancient venom systems: a review on cnidaria toxins. Toxins 7:2251–2271

    Article  CAS  Google Scholar 

  8. Mikov AN, Kozlov SA (2015) Structural features of cysteine-rich polypeptides from sea anemone venoms. Russian J Bioorg Chem 41:455–466

    Article  CAS  Google Scholar 

  9. Logashina YA, Solstad RG, Mineev KS, Korolkova YV, Mosharova IV, Dyachenko IA, Palikov VA, Palikova YA, Murashev AN, Arseniev AS, Kozlov SA, Stensvag K, Haug T, Andreev YA (2017) New disulfide-stabilized fold provides sea anemone peptide to exhibit both antimicrobial and TRPA1 potentiating properties. Toxins 9:154

    Article  Google Scholar 

  10. Madio B, Undheim EAB, King GF (2017) Revisiting venom of the sea anemone Stichodactyla haddoni: omics techniques reveal the complete toxin arsenal of a well-studied sea anemone genus. J Proteomics 166:83–92

    Article  CAS  Google Scholar 

  11. Tarcha EJ, Olsen CM, Probst P, Peckham D, Munoz-Elias EJ, Kruger JG, Iadonato SP (2017) Safety and pharmacodynamics of dalazatide, a Kv1.3 channel inhibitor, in the treatment of plaque psoriasis: a randomized phase 1b trial. PLoS One 12:e0180762

    Article  Google Scholar 

  12. Orts DJB, Moran Y, Cologna CT, Peigneur S, Madio B, Praher D, Quinton L, De Pauw E, Bicudo JEPW, Tytgat J, de Freitas JC (2013) BcsTx3 is a founder of a novel sea anemone toxin family of potassium channel blocker. FEBS J 280:4839–4852

    Article  CAS  Google Scholar 

  13. Malpezzi EL, de Freitas JC, Muramoto K, Kamiya H (1993) Characterization of peptides in sea anemone venom collected by a novel procedure. Toxicon 31:853–864

    Article  CAS  Google Scholar 

  14. Fukuyama Y, Iwamoto S, Tanaka K (2006) Rapid sequencing and disulfide mapping of peptides containing disulfide bonds by using 1,5-diaminonaphthalene as a reductive matrix. J Mass Spectrom 41:191–201

    Article  CAS  Google Scholar 

  15. Undheim EAB, Sunagar K, Hamilton BR, Jones A, Venter DJ, Fry BG, King GF (2014) Multifunctional warheads: diversification of the toxin arsenal of centipedes via novel multidomain transcripts. J Proteomics 102:1–10

    Article  CAS  Google Scholar 

  16. Mitchell ML, Hamilton BR, Madio B, Morales RAV, Tonkin-Hill GQ, Papenfuss AT, Purcell AW, King GF, Undheim EAB, Norton RS (2017) The use of imaging mass spectrometry to study peptide toxin distribution in Australian sea anemones. Austr J Chem 70:1235–1237

    Article  CAS  Google Scholar 

  17. Hale JE, Butler JP, Gelfanova V, You JS, Knierman MD (2004) A simplified procedure for the reduction and alkylation of cysteine residues in proteins prior to proteolytic digestion and mass spectral analysis. Anal Biochem 333:174–181

    Article  CAS  Google Scholar 

  18. Cock PJ, Gruning BA, Paszkiewicz K, Pritchard L (2013) Galaxy tools and workflows for sequence analysis with applications in molecular plant pathology. PeerJ 1:e167

    Article  Google Scholar 

  19. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST + : architecture and applications. BMC Bioinform 10:421

    Article  Google Scholar 

  20. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  Google Scholar 

  21. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  CAS  Google Scholar 

  22. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589

    Article  CAS  Google Scholar 

  23. Minh BQ, Nguyen MAT, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 30:1188–1195

    Article  CAS  Google Scholar 

  24. Cardoso FC, Dekan Z, Smith JJ, Deuis JR, Vetter I, Herzig V, Alewood PF, King GF, Lewis RJ (2017) Modulatory features of the novel spider toxin mu-TRTX-Df1a isolated from the venom of the spider Davus fasciatus. Br J Pharmacol 174:2528–2544

    Article  CAS  Google Scholar 

  25. Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696

    Article  CAS  Google Scholar 

  26. Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56:227–241

    Article  CAS  Google Scholar 

  27. Guntert P (2004) Automated NMR structure calculation with CYANA. Methods Mol Biol 278:353–378

    CAS  PubMed  Google Scholar 

  28. Tytgat J, Debont T, Carmeliet E, Daenens P (1995) The alpha-dendrotoxin footprint on a mammalian potassium channel. J Biol Chem 270:24776–24781

    Article  CAS  Google Scholar 

  29. Edwards IA, Elliott AG, Kavanagh AM, Zuegg J, Blaskovich MA, Cooper MA (2016) Contribution of amphipathicity and hydrophobicity to the antimicrobial activity and cytotoxicity of β-hairpin peptides. ACS Infect Dis 2:442–450

    Article  CAS  Google Scholar 

  30. Huang YH, Colgrave ML, Clark RJ, Kotze AC, Craik DJ (2010) Lysine-scanning mutagenesis reveals an amendable face of the cyclotide kalata B1 for the optimization of nematocidal activity. J Biol Chem 285:10797–10805

    Article  CAS  Google Scholar 

  31. Torcato IM, Huang YH, Franquelim HG, Gaspar D, Craik DJ, Castanho MA, Troeira Henriques S (2013) Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria. Biochim Biophys Acta 1828:944–955

    Article  CAS  Google Scholar 

  32. Henriques ST, Huang YH, Castanho MA, Bagatolli LA, Sonza S, Tachedjian G, Daly NL, Craik DJ (2012) Phosphatidylethanolamine binding is a conserved feature of cyclotide-membrane interactions. J Biol Chem 287:33629–33643

    Article  CAS  Google Scholar 

  33. Henriques ST, Huang YH, Rosengren KJ, Franquelim HG, Carvalho FA, Johnson A, Sonza S, Tachedjian G, Castanho MA, Daly NL, Craik DJ (2011) Decoding the membrane activity of the cyclotide kalata B1: the importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities. J Biol Chem 286:24231–24241

    Article  CAS  Google Scholar 

  34. Henriques ST, Pattenden LK, Aguilar MI, Castanho MA (2008) PrP(106–126) does not interact with membranes under physiological conditions. Biophys J 95:1877–1889

    Article  CAS  Google Scholar 

  35. Moran Y, Genikhovich G, Gordon D, Wienkoop S, Zenkert C, Ozbek S, Technau U, Gurevitz M (2012) Neurotoxin localization to ectodermal gland cells uncovers an alternative mechanism of venom delivery in sea anemones. Proc Biol Sci 279:1351–1358

    Article  CAS  Google Scholar 

  36. Oliveira JS, Zaharenko AJ, Ferreira WA Jr, Konno K, Shida CS, Richardson M, Lucio AD, Beirao PS, de Freitas JC (2006) BcIV, a new paralyzing peptide obtained from the venom of the sea anemone Bunodosoma caissarum. A comparison with the Na + channel toxin BcIII. Biochim Biophys Acta 1764:1592–1600

    Article  CAS  Google Scholar 

  37. Rodriguez E, Barbeitos MS, Brugler MR, Crowley LM, Grajales A, Gusmao L, Haussermann V, Reft A, Daly M (2014) Hidden among sea anemones: the first comprehensive phylogenetic reconstruction of the order Actiniaria (Cnidaria, Anthozoa, Hexacorallia) reveals a novel group of hexacorals. PLoS One 9:e96998

    Article  Google Scholar 

  38. Moran Y, Weinberger H, Sullivan JC, Reitzel AM, Finnerty JR, Gurevitz M (2008) Concerted evolution of sea anemone neurotoxin genes is revealed through analysis of the Nematostella vectensis genome. Mol Biol Evol 25:737–747

    Article  CAS  Google Scholar 

  39. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB 3rd, Snoeyink J, Richardson JS, Richardson DC (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:375–383

    Article  Google Scholar 

  40. Panteleev PV, Balandin SV, Ivanov VT, Ovchinnikova TV (2017) A therapeutic potential of animal beta-hairpin antimicrobial peptides. Curr Med Chem 24:1724–1746

    Article  CAS  Google Scholar 

  41. Chagot B, Pimentel C, Dai L, Pil J, Tytgat J, Nakajima T, Corzo G, Darbon H, Ferrat G (2005) An unusual fold for potassium channel blockers: NMR structure of three toxins from the scorpion Opisthacanthus madagascariensis. Biochem J 388:263–271

    Article  CAS  Google Scholar 

  42. Osmakov DI, Kozlov SA, Andreev YA, Koshelev SG, Sanamyan NP, Sanamyan KE, Dyachenko IA, Bondarenko DA, Murashev AN, Mineev KS, Arseniev AS, Grishin EV (2013) Sea anemone peptide with uncommon β-hairpin structure inhibits acid-sensing ion channel 3 (ASIC3) and reveals analgesic activity. J Biol Chem 288:23116–23127

    Article  CAS  Google Scholar 

  43. Smith JJ, Hill JM, Little MJ, Nicholson GM, King GF, Alewood PF (2011) Unique scorpion toxin with a putative ancestral fold provides insight into evolution of the inhibitor cystine knot motif. Proc Natl Acad Sci USA 108:10478–10483

    Article  CAS  Google Scholar 

  44. Yang S, Yang F, Wei N, Hong J, Li B, Luo L, Rong M, Yarov-Yarovoy V, Zheng J, Wang K, Lai R (2015) A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1. Nat Commun 6:8297

    Article  CAS  Google Scholar 

  45. Henriques ST, Lawrence N, Chaousis S, Ravipati AS, Cheneval O, Benfield AH, Elliott AG, Kavanagh AM, Cooper MA, Chan LY, Huang YH, Craik DJ (2017) Redesigned spider peptide with improved antimicrobial and anticancer properties. ACS Chem Biol 12:2324–2334

    Article  Google Scholar 

  46. Basulto A, Perez VM, Noa Y, Varela C, Otero AJ, Pico MC (2006) Immunohistochemical targeting of sea anemone cytolysins on tentacles, mesenteric filaments and isolated nematocysts of Stichodactyla helianthus. J Exp Zool Part A Comp Exp Biol 305:253–258

    Article  Google Scholar 

  47. Beckmann A, Ozbek S (2012) The nematocyst: a molecular map of the cnidarian stinging organelle. Int J Dev Biol 56:577–582

    Article  CAS  Google Scholar 

  48. Macrander J, Brugler MR, Daly M (2015) A RNA-seq approach to identify putative toxins from acrorhagi in aggressive and non-aggressive Anthopleura elegantissima polyps. BMC Genom 16:221

    Article  Google Scholar 

  49. Undheim EAB, Hamilton BR, Kurniawan ND, Bowlay G, Cribb BW, Merritt DJ, Fry BG, King GF, Venter DJ (2015) Production and packaging of a biological arsenal: evolution of centipede venoms under morphological constraint. Proc Natl Acad Sci USA 112:4026–4031

    Article  CAS  Google Scholar 

  50. Chintiroglou C, Koukouras A (1992) The feeding habits of three Mediterranean sea anemone species, Anemonia viridis (Forskål), Actinia equina (Linnaeus) and Cereus pedunculatus (Pennant). Helgol Mar Res 46:53–68

    Google Scholar 

  51. Kruger LM, Griffiths CL (1996) Sources of nutrition in intertidal sea anemones from the south-western Cape, South Africa. S Afr J Zool. 31:110–119

    Article  Google Scholar 

  52. Ottaway JR (1978) Population ecology of the intertidal anemone Actinia tenebrosa: pedal locomotion and intraspecific aggression. Austr J Mar Freshw Res 29:787–802

    Article  Google Scholar 

  53. Robson SA, King GF (2006) Domain architecture and structure of the bacterial cell division protein DivIB. Proc Natl Acad Sci USA 103:6700–6705

    Article  CAS  Google Scholar 

  54. Lummis SC, Beene DL, Lee LW, Lester HA, Broadhurst RW, Dougherty DA (2005) Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature 438:248–252

    Article  CAS  Google Scholar 

  55. Andreotti AH (2006) Opening the pore hinges on proline. Nat Chem Biol 2:13–14

    Article  CAS  Google Scholar 

  56. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland

    Google Scholar 

  57. Bende NS, Dziemborowicz S, Mobli M, Herzig V, Gilchrist J, Wagner J, Nicholson GM, King GF, Bosmans F (2014) A distinct sodium channel voltage-sensor locus determines insect selectivity of the spider toxin Dc1a. Nat Commun 5:4350

    Article  CAS  Google Scholar 

  58. Sunagar K, Moran Y (2015) The rise and fall of an evolutionary innovation: contrasting strategies of venom evolution in ancient and young animals. PLoS Genet 11:e1005596

    Article  Google Scholar 

  59. Undheim EAB, Mobli M, King GF (2016) Toxin structures as evolutionary tools: using conserved 3D folds to study the evolution of rapidly evolving peptides. BioEssays 38:539–548

    Article  CAS  Google Scholar 

  60. Brown DD, Wensink PC, Jordan E (1972) A comparison of the ribosomal DNAs of Xenopus laevis and Xenopus mulleri: the evolution of tandem genes. J Mol Biol 63:57–73

    Article  CAS  Google Scholar 

  61. Schüler A, Bornberg-Bauer E (2016) Evolution of protein domain repeats in metazoa. Mol Biol Evol 33:3170–3182

    Article  Google Scholar 

  62. Margres MJ, Bigelow AT, Lemmon EM, Lemmon AR, Rokyta DR (2017) Selection to increase expression, not sequence diversity, precedes gene family origin and expansion in rattlesnake venom. Genetics 206:1569–1580

    Article  Google Scholar 

  63. Honma T, Hasegawa Y, Ishida M, Nagai H, Nagashima Y, Shiomi K (2005) Isolation and molecular cloning of novel peptide toxins from the sea anemone Antheopsis maculata. Toxicon 45:33–41

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian Government (Science Without Borders PhD scholarship to BM), Australian Research Council (DECRA Fellowship DE160101142 to EABU, Future Fellowship FT150100398 to STH, ARC Linkage Grant LP140100832 to BRH and GFK), and National Health & Medical Research Council (Principal Research Fellowship APP1044414 to GFK). We thank Jason Cockington and Gillian Lawrence for maintenance of sea anemones, and Dr. Alun Jones for help with mass spectrometry experiments. Antimicrobial screens were performed by CO-ADD, funded by the Wellcome Trust (UK) and The University of Queensland (Australia). We thank Dr. Lachlan Rash for assistance with ASIC clone acquisition; Prof. John Wood for ASIC1a, ASIC2a, and ASIC3 clones; Prof. Stefan Gründer for the ASIC1b clone; Prof. Alan Goldin for the NaV1.6 clone; and Prof. Frank Bosmans for the NaV1.7 clone.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Glenn F. King or Eivind A. B. Undheim.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1050 kb)

Supplementary material 2 (MP4 11963 kb)

Supplementary material 3 (MP4 16574 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madio, B., Peigneur, S., Chin, Y.K.Y. et al. PHAB toxins: a unique family of predatory sea anemone toxins evolving via intra-gene concerted evolution defines a new peptide fold. Cell. Mol. Life Sci. 75, 4511–4524 (2018). https://doi.org/10.1007/s00018-018-2897-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2897-6

Keywords

Navigation