Skip to main content

Advertisement

Log in

The role of dihydrosphingolipids in disease

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Dihydrosphingolipids refer to sphingolipids early in the biosynthetic pathway that do not contain a C4-trans-double bond in the sphingoid backbone: 3-ketosphinganine (3-ketoSph), dihydrosphingosine (dhSph), dihydrosphingosine-1-phosphate (dhS1P) and dihydroceramide (dhCer). Recent advances in research related to sphingolipid biochemistry have shed light on the importance of sphingolipids in terms of cellular signalling in health and disease. However, dihydrosphingolipids have received less attention and research is lacking especially in terms of their molecular mechanisms of action. This is despite studies implicating them in the pathophysiology of disease, for example dhCer in predicting type 2 diabetes in obese individuals, dhS1P in cardiovascular diseases and dhSph in hepato-renal toxicity. This review gives a comprehensive summary of research in the last 10–15 years on the dihydrosphingolipids, 3-ketoSph, dhSph, dhS1P and dhCer, and their relevant roles in different diseases. It also highlights gaps in research that could be of future interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

3-KR:

3-Ketosphinganine Reductase

4-HPR:

N-(4-Hydroxyphenyl) retinamideFenretinide

γ-TE:

γ-Tocotrienol

ACER3:

Alkaline ceramidase 3

ACSL5:

Acyl-coenzyme A synthase

ACSL5:

Δ20 acyl-coenzyme A synthase lacking exon 20

ADH:

Adiponectin hormone

AHA:

American Heart Association

Akt:

Protein kinase B

AMPK:

AMP activated protein kinase

BMI:

Body mass index

CAD:

Coronary artery disease

cAMP:

Cyclic adenosine 3ʹ,5ʹ-monophosphate

cDase:

Ceramidase

cdk2:

Cyclin dependent kinase 2

Cer:

Ceramide

CERKL:

Ceramide like kinase

CERK:

Ceramide kinase

CerS:

Ceramide synthase

CFTR:

Cystic fibrosis transmembrane conductance regulator

COX-2:

Cyclooxygenase 2

CRF:

Cardiorespiratory fitness

CTGF:

Connective tissue growth factor

CVD:

Cardiovascular disease

Des1:

Dihydroceramide desaturase 1

Des2:

Dihydroceramide desaturase 2

DhCer:

Dihydroceramide

DhSph:

Dihydrosphingosine/Dihydrosphinganine

DhS1P:

Dihydrosphingosine 1 phosphate/dihydrosphinganine 1 phosphate

EAP:

Ethanolamine phosphate

ER:

Endoplasmic reticulum

ERK:

Extracellular signal regulated kinases

FAK:

Focal adhesion kinase

FB1:

Fumonisin B 1

FFA:

Free fatty acid

HDAC2:

Histone deacetylase 2

HDL:

High density lipid

HepG2:

Human hepato-carcinoma cell

HIF1-α:

Hypoxia inducible factor 1-α

HOMA-IR:

Homestasis model of insulin resistance

HSP27:

Heat shock protein 27

HUVEC:

Human umblical endothelial cell

FTY720:

Fingolimod

IL-1:

Interleukin 1

IL-6:

Interleukin 6

JNK:

c-Jun N terminal kinase

LDL:

Low density lipid

LPS:

Lipopolysaccharide

LRS:

Lipidomic risk score

MAPK:

Mitogen activated protein kinases

MI:

Myocardial infarct

MnTBAP:

Manganese(III) tetrakis (4-benzoic acid) porphyrin

MTORC1:

Mammalian target of rapamycin complex 1

NADH:

Nicotinamide adenine nucleotide

NADPH:

Nicotinamide adenine nucleotide phosphate

NAFLD:

Non-alcoholic fatty liver disease

NFATC:

Nuclear factor of activated T cells

NK-kβ:

Nuclear factor kappa light chain enhancer of B cell

Nrf2:

Nuclear factor erythroid related factor 2

PDGF:

Platelet derived growth factor

PDT:

Photodynamic therapy

PeIF2α:

Phosphorylated eukaryotic translation initiation factors 2α

PERK:

PKR like endoplasmic reticulum kinase

PKCα:

Protein kinase Cα

PLD:

Phospholipase D

PPARγ:

Peroxisome proliferator-activated receptor γ

RAR:

Retinoic acid receptor

RMC:

Renal mesengial cell

ROS:

Reactive oxygen species

S6K:

Ribosomal protein S6 kinase

SAFHS:

San Antonio Family Heart Study

SEK-1:

Dual specificity mitogen activated protein kinase kinase 1

SD:

Sprague Dawley

SK 1 and 2:

Sphingosine kinase 1 and 2

S1P:

Sphingosine 1 phosphate

S1PP:

Sphingosine 1 phosphate phophatase

S1PR1–5:

Sphingosine 1 phosphate receptor 1–5

SPL:

Sphingosine 1 phosphate lyase

SPT:

Serine palmitoyltransferase

SPLTC1:

Serine palmitoyltransferase long chain base 1

SPTLC3:

Serine palmitoyltransferase long chain base 3

STEMI:

ST-segment elevation myocardial: infarct

SCC19:

Squamous cell carcinoma cell

T2DM:

Type 2 diabetes mellitus

TNF-α:

Tumour necrosis factor α

VEGF:

Vascular endothelial growth factor

WC:

Waist circumference

References

  1. Young MM, Kester M, Wang H-G (2013) Sphingolipids: regulators of crosstalk between apoptosis and autophagy. J Lipid Res 54(1):5–19. https://doi.org/10.1194/jlr.R031278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC, Mattson MP (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA 101(7):2070–2075. https://doi.org/10.1073/pnas.0305799101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kitatani K, Iwabuchi K, Snider A, Riboni L (2016) Sphingolipids in inflammation: from bench to bedside. Mediators Inflamm 2016:7602526. https://doi.org/10.1155/2016/7602526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ogretmen B (2017) Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer 18:33. https://doi.org/10.1038/nrc.2017.96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Halmer R, Walter S, Fassbender K (2014) Sphingolipids: important players in multiple sclerosis. Cell Physiol Biochem 34(1):111–118. https://doi.org/10.1159/000362988

    Article  CAS  PubMed  Google Scholar 

  6. Russo SB, Ross JS, Cowart LA (2013) Sphingolipids in obesity, Type 2 diabetes, and metabolic disease. Handb Exp Pharmacol 216:373–401. https://doi.org/10.1007/978-3-7091-1511-4_19

    Article  CAS  Google Scholar 

  7. Gulbins E, Petrache I (2013) Sphingolipids in disease. In: Gulbins E, Petrache I (eds) Hand book of experimental pharmacology, vol 216. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1511-4

    Chapter  Google Scholar 

  8. Giles C, Takechi R, Mellett NA, Meikle PJ, Dhaliwal S, Mamo JC (2017) Differential regulation of sphingolipid metabolism in plasma, hippocampus, and cerebral cortex of mice administered sphingolipid modulating agents. J Neurochem 141(3):413–422. https://doi.org/10.1111/jnc.13964

    Article  CAS  PubMed  Google Scholar 

  9. Rodriguez-Cuenca S, Barbarroja N, Vidal-Puig A (2015) Dihydroceramide desaturase 1, the gatekeeper of ceramide induced lipotoxicity. Biochim Biophys Acta Mol Cell Biol Lipids 1851(1):40–50. https://doi.org/10.1016/j.bbalip.2014.09.021

    Article  CAS  Google Scholar 

  10. Levkau B (2013) Cardiovascular effects of sphingosine-1-phosphate (S1P). Handb Exp Pharmacol 216:147–170. https://doi.org/10.1007/978-3-7091-1511-4_8

    Article  CAS  Google Scholar 

  11. Colacios C, Sabourdy F, Andrieu-Abadie N, Ségui B, Levade T (2015) Basics of Sphingolipid Metabolism and Signalling. In: Hannun YA, Luberto C, Mao C, Obeid LM (eds) Bioactive sphingolipids in cancer biology and therapy. Springer, Cham, pp 1–20. https://doi.org/10.1007/978-3-319-20750-6_1

    Chapter  Google Scholar 

  12. Stiban J, Tidhar R, Futerman AH (2010) Ceramide synthases: roles in cell physiology and signaling. Adv Exp Med Biol 688:60–71

    Article  CAS  PubMed  Google Scholar 

  13. Petrache I, Berdyshev EV (2016) Ceramide signaling and metabolism in pathophysiological states of the lung. Annu Rev Physiol 78:463–480. https://doi.org/10.1146/annurev-physiol-021115-105221

    Article  CAS  PubMed  Google Scholar 

  14. Zheng W, Kollmeyer J, Symolon H, Momin A, Munter E, Wang E, Kelly S, Allegood JC, Liu Y, Peng Q, Ramaraju H, Sullards MC, Cabot M, Merrill AH (2006) Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim Biophys Acta Biomembr 1758(12):1864–1884. https://doi.org/10.1016/j.bbamem.2006.08.009

    Article  CAS  Google Scholar 

  15. Casasampere M, Ordonez YF, Pou A, Casas J (2016) Inhibitors of dihydroceramide desaturase 1: therapeutic agents and pharmacological tools to decipher the role of dihydroceramides in cell biology. Chem Phys Lipids 197:33–44. https://doi.org/10.1016/j.chemphyslip.2015.07.025

    Article  CAS  PubMed  Google Scholar 

  16. Siddique MM, Bikman BT, Wang L, Ying L, Reinhardt E, Shui G, Wenk MR, Summers SA (2012) Ablation of dihydroceramide desaturase confers resistance to etoposide-induced apoptosis in vitro. PLoS One 7(9):e44042. https://doi.org/10.1371/journal.pone.0044042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Siddique MM, Li Y, Chaurasia B, Kaddai VA, Summers SA (2015) Dihydroceramides: from bit players to lead actors. J Biol Chem 290(25):15371–15379. https://doi.org/10.1074/jbc.R115.653204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wegner MS, Schiffmann S, Parnham MJ, Geisslinger G, Grosch S (2016) The enigma of ceramide synthase regulation in mammalian cells. Prog Lipid Res 63:93–119. https://doi.org/10.1016/j.plipres.2016.03.006

    Article  CAS  PubMed  Google Scholar 

  19. Cingolani F, Futerman AH, Casas J (2016) Ceramide synthases in biomedical research. Chem Phys Lipids 197:25–32. https://doi.org/10.1016/j.chemphyslip.2015.07.026

    Article  CAS  PubMed  Google Scholar 

  20. Samadi A (2007) Ceramide-induced cell death in lens epithelial cells. Mol Vis 13:1618–1626

    CAS  PubMed  Google Scholar 

  21. Chien CC, Shen SC, Yang LY, Wu CY, Liau JS, Chen YC (2009) Activation of telomerase and cyclooxygenase-2 in PDGF and FGF inhibition of C2-ceramide-induced apoptosis. J Cell Physiol 218(2):405–415. https://doi.org/10.1002/jcp.21613

    Article  CAS  PubMed  Google Scholar 

  22. Wong K, Li X-B, Hunchuk N (1995) N-Acetylsphingosine (C-ceramide) inhibited neutrophil superoxide formation and calcium influx. J Biol Chem 270(7):3056–3062. https://doi.org/10.1074/jbc.270.7.3056

    Article  CAS  PubMed  Google Scholar 

  23. Testai FD, Kilkus JP, Berdyshev E, Gorshkova I, Natarajan V, Dawson G (2014) Multiple sphingolipid abnormalities following cerebral microendothelial hypoxia. J Neurochem 131(4):530–540. https://doi.org/10.1111/jnc.12836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Testai FD, Xu HL, Kilkus J, Suryadevara V, Gorshkova I, Berdyshev E, Pelligrino DA, Dawson G (2015) Changes in the metabolism of sphingolipids after subarachnoid hemorrhage. J Neurosci Res 93(5):796–805. https://doi.org/10.1002/jnr.23542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peterlin BL, Mielke MM, Dickens AM, Chatterjee S, Dash P, Alexander G, Vieira RV, Bandaru VV, Dorskind JM, Tietjen GE, Haughey NH (2015) Interictal, circulating sphingolipids in women with episodic migraine: a case–control study. Neurology 85(14):1214–1223. https://doi.org/10.1212/WNL.0000000000002004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Edvardson S, Yi JK, Jalas C, Xu R, Webb BD, Snider J, Fedick A, Kleinman E, Treff NR, Mao C, Elpeleg O (2016) Deficiency of the alkaline ceramidase ACER3 manifests in early childhood by progressive leukodystrophy. J Med Genet 53(6):389

    Article  CAS  PubMed  Google Scholar 

  27. Park M, Kaddai V, Ching J, Fridianto KT, Sieli RJ, Sugii S, Summers SA (2016) A role for ceramides, but not sphingomyelins, as antagonists of insulin signaling and mitochondrial metabolism in C2C12 myotubes. J Biol Chem 291(46):23978–23988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Veret J, Coant N, Berdyshev EV, Skobeleva A, Therville N, Bailbe D, Gorshkova I, Natarajan V, Portha B, Le Stunff H (2011) Ceramide synthase 4 and de novo production of ceramides with specific N-acyl chain lengths are involved in glucolipotoxicity-induced apoptosis of INS-1 beta-cells. Biochem J 438(1):177–189. https://doi.org/10.1042/BJ20101386

    Article  CAS  PubMed  Google Scholar 

  29. Roomp K, Kristinsson H, Schvartz D, Ubhayasekera K, Sargsyan E, Manukyan L, Chowdhury A, Manell H, Satagopam V, Groebe K, Schneider R, Bergquist J, Sanchez J-C, Bergsten P (2017) Combined lipidomic and proteomic analysis of isolated human islets exposed to palmitate reveals time-dependent changes in insulin secretion and lipid metabolism. PLoS One 12(4):e0176391. https://doi.org/10.1371/journal.pone.0176391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li Y, Park J-S, Deng J-H, Bai Y (2006) Cytochrome c oxidase Subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr 38(5–6):283–291. https://doi.org/10.1007/s10863-006-9052-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hansen ME, Simmons KJ, Tippetts TS, Thatcher MO, Saito RR, Hubbard ST, Trumbull AM, Parker BA, Taylor OJ, Bikman BT (2015) Lipopolysaccharide disrupts mitochondrial physiology in skeletal muscle via disparate effects on sphingolipid metabolism. Shock 44(6):585–592. https://doi.org/10.1097/SHK.0000000000000468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stiban J, Fistere D, Colombini M (2006) Dihydroceramide hinders ceramide channel formation: implications on apoptosis. Apoptosis 11(5):773–780. https://doi.org/10.1007/s10495-006-5882-8

    Article  CAS  PubMed  Google Scholar 

  33. Barbarroja N, Rodriguez-Cuenca S, Nygren H, Camargo A, Pirraco A, Relat J, Cuadrado I, Pellegrinelli V, Medina-Gomez G, Lopez-Pedrera C, Tinahones FJ, Symons JD, Summers SA, Oresic M, Vidal-Puig A (2015) Increased dihydroceramide/ceramide ratio mediated by defective expression of degs1 impairs adipocyte differentiation and function. Diabetes 64(4):1180–1192. https://doi.org/10.2337/db14-0359

    Article  CAS  PubMed  Google Scholar 

  34. McIlroy GD, Tammireddy SR, Maskrey BH, Grant L, Doherty MK, Watson DG, Delibegovic M, Whitfield PD, Mody N (2016) Fenretinide mediated retinoic acid receptor signalling and inhibition of ceramide biosynthesis regulates adipogenesis, lipid accumulation, mitochondrial function and nutrient stress signalling in adipocytes and adipose tissue. Biochem Pharmacol 100:86–97. https://doi.org/10.1016/j.bcp.2015.11.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aye ILMH, Gao X, Weintraub ST, Jansson T, Powell TL (2014) Adiponectin inhibits insulin function in primary trophoblasts by PPARα-mediated ceramide synthesis. Mol Endocrinol 28(4):512–524. https://doi.org/10.1210/me.2013-1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brozinick JT, Hawkins E, Hoang Bui H, Kuo MS, Tan B, Kievit P, Grove K (2013) Plasma sphingolipids are biomarkers of metabolic syndrome in non-human primates maintained on a Western-style diet. Int J Obes 37(8):1064–1070. https://doi.org/10.1038/ijo.2012.191

    Article  CAS  Google Scholar 

  37. Bikman BT, Guan Y, Shui G, Siddique MM, Holland WL, Kim JY, Fabriàs G, Wenk MR, Summers SA (2012) Fenretinide prevents lipid-induced insulin resistance by blocking ceramide biosynthesis. J Biol Chem 287(21):17426–17437. https://doi.org/10.1074/jbc.M112.359950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rico JE, Saed Samii S, Mathews AT, Lovett J, Haughey NJ, McFadden JW (2017) Temporal changes in sphingolipids and systemic insulin sensitivity during the transition from gestation to lactation. PLoS One 12(5):e0176787. https://doi.org/10.1371/journal.pone.0176787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mielke MM, Bandaru VV, Han D, An Y, Resnick SM, Ferrucci L, Haughey NJ (2015) Demographic and clinical variables affecting mid- to late-life trajectories of plasma ceramide and dihydroceramide species. Aging Cell 14(6):1014–1023. https://doi.org/10.1111/acel.12369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Weir JM, Wong G, Barlow CK, Greeve MA, Kowalczyk A, Almasy L, Comuzzie AG, Mahaney MC, Jowett JBM, Shaw J, Curran JE, Blangero J, Meikle PJ (2013) Plasma lipid profiling in a large population-based cohort. J Lipid Res 54(10):2898–2908. https://doi.org/10.1194/jlr.P035808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mamtani M, Meikle PJ, Kulkarni H, Weir JM, Barlow CK, Jowett JB, Bellis C, Dyer TD, Almasy L, Mahaney MC, Duggirala R, Comuzzie AG, Blangero J, Curran JE (2014) Plasma dihydroceramide species associate with waist circumference in mexican american families. Obesity (Silver Spring, MD) 22(3):950–956. https://doi.org/10.1002/oby.20598

    Article  CAS  Google Scholar 

  42. Meikle PJ, Wong G, Barlow CK, Weir JM, Greeve MA, MacIntosh GL, Almasy L, Comuzzie AG, Mahaney MC, Kowalczyk A, Haviv I, Grantham N, Magliano DJ, Jowett JBM, Zimmet P, Curran JE, Blangero J, Shaw J (2013) Plasma lipid profiling shows similar associations with prediabetes and Type 2 diabetes. PLoS One 8(9):e74341. https://doi.org/10.1371/journal.pone.0074341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lopez X, Goldfine AB, Holland WL, Gordillo R, Scherer PE (2013) Plasma ceramides are elevated in female children and adolescents with type 2 diabetes. J Pediatr Endocrinol Metab 26(9–10):995–998. https://doi.org/10.1515/jpem-2012-0407

    Article  CAS  PubMed  Google Scholar 

  44. Racette SB, Evans EM, Weiss EP, Hagberg JM, Holloszy JO (2006) Abdominal adiposity is a stronger predictor of insulin resistance than fitness among 50–95 year olds. Diabetes Care 29(3):673–678

    Article  PubMed  Google Scholar 

  45. Dubé JJ, Amati F, Toledo FGS, Stefanovic-Racic M, Rossi A, Coen P, Goodpaster BH (2011) Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia 54(5):1147–1156. https://doi.org/10.1007/s00125-011-2065-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Warshauer JT, Lopez X, Gordillo R, Hicks J, Holland WL, Anuwe E, Blankfard MB, Scherer PE, Lingvay I (2015) Effect of pioglitazone on plasma ceramides in adults with metabolic syndrome. Diabetes Metab Res Rev 31(7):734–744. https://doi.org/10.1002/dmrr.2662

    Article  CAS  PubMed  Google Scholar 

  47. Fabbri E, Yang A, Simonsick EM, Chia CW, Zoli M, Haughey NJ, Mielke MM, Ferrucci L, Coen PM (2016) Circulating ceramides are inversely associated with cardiorespiratory fitness in participants aged 54–96 years from the Baltimore Longitudinal Study of Aging. Aging Cell 15(5):825–831. https://doi.org/10.1111/acel.12491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Noureddine L, Azzam R, Nemer G, Bielawski J, Nasser M, Bitar F, Dbaibo GS (2008) Modulation of total ceramide and constituent ceramide species in the acutely and chronically hypoxic mouse heart at different ages. Prostaglandins Other Lipid Mediat 86(1–4):49–55. https://doi.org/10.1016/j.prostaglandins.2008.02.003

    Article  CAS  PubMed  Google Scholar 

  49. Russo SB, Tidhar R, Futerman AH, Cowart LA (2013) Myristate-derived d16:0 sphingolipids constitute a cardiac sphingolipid pool with distinct synthetic routes and functional properties. J Biol Chem 288(19):13397–13409. https://doi.org/10.1074/jbc.M112.428185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Edsfeldt A, Dunér P, Ståhlman M, Mollet IG, Asciutto G, Grufman H, Nitulescu M, Persson AF, Fisher RM, Melander O, Orho-Melander M, Borén J, Nilsson J, Gonçalves I (2016) Sphingolipids contribute to human atherosclerotic plaque inflammation. Arterioscler Thromb Vasc Biol 36(6):1132

    Article  CAS  PubMed  Google Scholar 

  51. Ellims AH, Wong G, Weir JM, Lew P, Meikle PJ, Taylor AJ (2014) Plasma lipidomic analysis predicts non-calcified coronary artery plaque in asymptomatic patients at intermediate risk of coronary artery disease. Eur Heart J Cardiovasc Imaging 15(8):908–916. https://doi.org/10.1093/ehjci/jeu033

    Article  PubMed  Google Scholar 

  52. Hamai H, Keyserman F, Quittell LM, Worgall TS (2009) Defective CFTR increases synthesis and mass of sphingolipids that modulate membrane composition and lipid signaling. J Lipid Res 50(6):1101–1108. https://doi.org/10.1194/jlr.M800427-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Berdyshev EV, Gorshkova I, Skobeleva A, Bittman R, Lu X, Dudek SM, Mirzapoiazova T, Garcia JGN, Natarajan V (2009) FTY720 inhibits ceramide synthases and up-regulates dihydrosphingosine 1-phosphate formation in human lung endothelial cells. J Biol Chem 284(9):5467–5477. https://doi.org/10.1074/jbc.M805186200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yasuo M, Mizuno S, Allegood J, Kraskauskas D, Bogaard HJ, Spiegel S, Voelkel NF (2013) Fenretinide causes emphysema, which is prevented by sphingosine 1-phoshate. PLoS One 8(1):e53927. https://doi.org/10.1371/journal.pone.0053927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Devlin CM, Lahm T, Hubbard WC, Van Demark M, Wang KC, Wu X, Bielawska A, Obeid LM, Ivan M, Petrache I (2011) Dihydroceramide-based response to hypoxia. J Biol Chem 286(44):38069–38078. https://doi.org/10.1074/jbc.M111.297994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cai L, Oyeniran C, Biswas DD, Allegood J, Milstien S, Kordula T, Maceyka M, Spiegel S (2016) ORMDL proteins regulate ceramide levels during sterile inflammation. J Lipid Res 57(8):1412–1422. https://doi.org/10.1194/jlr.M065920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ruangsiriluk W, Grosskurth SE, Ziemek D, Kuhn M, des Etages SG, Francone OL (2012) Silencing of enzymes involved in ceramide biosynthesis causes distinct global alterations of lipid homeostasis and gene expression. J Lipid Res 53(8):1459–1471. https://doi.org/10.1194/jlr.M020941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Grammatikos G, Schoell N, Ferreirós N, Bon D, Herrmann E, Farnik H, Köberle V, Piiper A, Zeuzem S, Kronenberger B, Waidmann O, Pfeilschifter J (2016) Serum sphingolipidomic analyses reveal an upregulation of C16-ceramide and sphingosine-1-phosphate in hepatocellular carcinoma. Oncotarget 7(14):18095–18105. https://doi.org/10.18632/oncotarget.7741

    Article  PubMed  PubMed Central  Google Scholar 

  59. Grammatikos G, Mühle C, Ferreiros N, Schroeter S, Bogdanou D, Schwalm S, Hintereder G, Kornhuber J, Zeuzem S, Sarrazin C, Pfeilschifter J (2014) Serum acid sphingomyelinase is upregulated in chronic hepatitis C infection and non alcoholic fatty liver disease. Biochim Biophys Acta Mol Cell Biol Lipids 1841(7):1012–1020. https://doi.org/10.1016/j.bbalip.2014.04.007

    Article  CAS  Google Scholar 

  60. Sun N, Keep RF, Hua Y, Xi G (2016) Critical role of the sphingolipid pathway in stroke: a review of current utility and potential therapeutic targets. Transl Stroke Res 7(5):420–438. https://doi.org/10.1007/s12975-016-0477-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mielke MM, Haughey NJ, Bandaru VV, Weinberg DD, Darby E, Zaidi N, Pavlik V, Doody RS, Lyketsos CG (2011) Plasma sphingomyelins are associated with cognitive progression in Alzheimer’s disease. J Alzheimers Dis 27(2):259–269. https://doi.org/10.3233/JAD-2011-110405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Di Pardo A, Basit A, Armirotti A, Amico E, Castaldo S, Pepe G, Marracino F, Buttari F, Digilio AF, Maglione V (2017) De novo synthesis of sphingolipids is defective in experimental models of Huntington’s disease. Front Neurosci 11:698. https://doi.org/10.3389/fnins.2017.00698

    Article  PubMed  PubMed Central  Google Scholar 

  63. Matesanz F, Fedetz M, Barrionuevo C, Karaky M, Catalá-Rabasa A, Potenciano V, Bello-Morales R, López-Guerrero J-A, Alcina A (2016) A splice variant in the ACSL5 gene relates migraine with fatty acid activation in mitochondria. Eur J Hum Genet 24(11):1572–1577. https://doi.org/10.1038/ejhg.2016.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ordóñez-Gutiérrez L, Benito-Cuesta I, Abad JL, Casas J, Fábrias G, Wandosell F (2018) Dihydroceramide desaturase 1 inhibitors reduce amyloid-β levels in primary neurons from an Alzheimer’s disease transgenic model. Pharm Res 35(3):49. https://doi.org/10.1007/s11095-017-2312-2

    Article  CAS  PubMed  Google Scholar 

  65. Gagliostro V, Casas J, Caretti A, Abad JL, Tagliavacca L, Ghidoni R, Fabrias G, Signorelli P (2012) Dihydroceramide delays cell cycle G1/S transition via activation of ER stress and induction of autophagy. Int J Biochem Cell Biol 44(12):2135–2143. https://doi.org/10.1016/j.biocel.2012.08.025

    Article  CAS  PubMed  Google Scholar 

  66. Casasampere M, Ordóñez YF, Casas J, Fabrias G (2017) Dihydroceramide desaturase inhibitors induce autophagy via dihydroceramide-dependent and independent mechanisms. Biochim Biophys Acta Gen Subj 1861(2):264–275. https://doi.org/10.1016/j.bbagen.2016.11.033

    Article  CAS  PubMed  Google Scholar 

  67. Schofield JD, Liu Y, Rao-Balakrishna P, Malik RA, Soran H (2016) Diabetes dyslipidemia. Diabetes Ther 7(2):203–219. https://doi.org/10.1007/s13300-016-0167-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mooradian AD (2009) Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab 5:150. https://doi.org/10.1038/ncpendmet1066

    Article  CAS  PubMed  Google Scholar 

  69. Mark L, Dani G (2016) Diabetic dyslipidaemia and the atherosclerosis. Orv Hetil 157(19):746–752. https://doi.org/10.1556/650.2016.30441

    Article  PubMed  Google Scholar 

  70. Sattler KJ, Elbasan S, Keul P, Elter-Schulz M, Bode C, Graler MH, Brocker-Preuss M, Budde T, Erbel R, Heusch G, Levkau B (2010) Sphingosine 1-phosphate levels in plasma and HDL are altered in coronary artery disease. Basic Res Cardiol 105(6):821–832. https://doi.org/10.1007/s00395-010-0112-5

    Article  CAS  PubMed  Google Scholar 

  71. Reali F, Morine MJ, Kahramanoğulları O, Raichur S, Schneider H-C, Crowther D, Priami C (2017) Mechanistic interplay between ceramide and insulin resistance. Sci Rep 7:41231. https://doi.org/10.1038/srep41231. https://www.nature.com/articles/srep41231#supplementary-information

  72. Stratford S, Hoehn KL, Liu F, Summers SA (2004) Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of AKT/protein kinase B. J Biol Chem 279(35):36608–36615. https://doi.org/10.1074/jbc.M406499200

    Article  CAS  PubMed  Google Scholar 

  73. Turpin SM, Nicholls HT, Willmes DM, Mourier A, Brodesser S, Wunderlich CM, Mauer J, Xu E, Hammerschmidt P, Bronneke HS, Trifunovic A, LoSasso G, Wunderlich FT, Kornfeld JW, Bluher M, Kronke M, Bruning JC (2014) Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab 20(4):678–686. https://doi.org/10.1016/j.cmet.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  74. Raichur S, Wang ST, Chan PW, Li Y, Ching J, Chaurasia B, Dogra S, Ohman MK, Takeda K, Sugii S, Pewzner-Jung Y, Futerman AH, Summers SA (2014) CerS2 haploinsufficiency inhibits beta-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab 20(4):687–695. https://doi.org/10.1016/j.cmet.2014.09.015

    Article  CAS  PubMed  Google Scholar 

  75. Taylor R (2012) Insulin resistance and type 2 diabetes. Diabetes 61(4):778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Szpigel A, Hainault I, Carlier A, Venteclef N, Batto A-F, Hajduch E, Bernard C, Ktorza A, Gautier J-F, Ferré P, Bourron O, Foufelle F (2018) Lipid environment induces ER stress, TXNIP expression and inflammation in immune cells of individuals with type 2 diabetes. Diabetologia 61(2):399–412. https://doi.org/10.1007/s00125-017-4462-5

    Article  CAS  PubMed  Google Scholar 

  77. Patel SA, Hoehn KL, Lawrence RT, Sawbridge L, Talbot NA, Tomsig JL, Turner N, Cooney GJ, Whitehead JP, Kraegen EW, Cleasby ME (2012) Overexpression of the adiponectin receptor AdipoR1 in rat skeletal muscle amplifies local insulin sensitivity. Endocrinology 153(11):5231–5246. https://doi.org/10.1210/en.2012-1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Qu Q, Zeng F, Liu X, Wang QJ, Deng F (2016) Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis 7:e2226. https://doi.org/10.1038/cddis.2016.132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Williams M, Caino MC (2018) Mitochondrial dynamics in Type 2 diabetes and cancer. Front Endocrinol 9:211. https://doi.org/10.3389/fendo.2018.00211

    Article  Google Scholar 

  80. Siddique MM, Li Y, Wang L, Ching J, Mal M, Ilkayeva O, Wu YJ, Bay BH, Summers SA (2013) Ablation of dihydroceramide desaturase 1, a therapeutic target for the treatment of metabolic diseases, simultaneously stimulates anabolic and catabolic signaling. Mol Cell Biol 33(11):2353–2369. https://doi.org/10.1128/MCB.00226-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jheng H-F, Tsai P-J, Guo S-M, Kuo L-H, Chang C-S, Su I-J, Chang C-R, Tsai Y-S (2012) Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol Cell Biol 32(2):309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lai WL, Wong NS (2008) The PERK/eIF2 alpha signaling pathway of unfolded protein response is essential for N-(4-hydroxyphenyl)retinamide (4HPR)-induced cytotoxicity in cancer cells. Exp Cell Res 314(8):1667–1682. https://doi.org/10.1016/j.yexcr.2008.02.002

    Article  CAS  PubMed  Google Scholar 

  83. Alsanafi M, Kelly SL, Jubair K, McNaughton M, Tate RJ, Merrill AH, Pyne S, Pyne NJ (2018) Native and polyubiquitinated forms of dihydroceramide desaturase are differentially linked to human embryonic kidney cell survival. Mol Cell Biol 38:e00222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Grygiel-Górniak B (2014) Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications—a review. Nutr J 13(1):17. https://doi.org/10.1186/1475-2891-13-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bergman BC, Brozinick JT, Strauss A, Bacon S, Kerege A, Bui HH, Sanders P, Siddall P, Wei T, Thomas MK, Kuo MS, Perreault L (2016) Muscle sphingolipids during rest and exercise: a C18:0 signature for insulin resistance in humans. Diabetologia 59(4):785–798. https://doi.org/10.1007/s00125-015-3850-y

    Article  CAS  PubMed  Google Scholar 

  86. Blachnio-Zabielska AU, Pulka M, Baranowski M, Nikolajuk A, Zabielski P, Gorska M, Gorski J (2012) Ceramide metabolism is affected by obesity and diabetes in human adipose tissue. J Cell Physiol 227(2):550–557. https://doi.org/10.1002/jcp.22745

    Article  CAS  PubMed  Google Scholar 

  87. Curran JE, Weir, Jacquelyn M., Bellis, Claire., Carless, Melanie A., Jowett, Jeremy B., Mahaney, Michael C., Dyer, Thomas D., Goring, Harald H., Comuzzie, Anthony G., Almasy, Laura., Meikle, Peter J., Blangero, John. (2011) Genetic analysis of lipidomic profiles influencing diabetes risk in Mexican Americans. Paper presented at the American Diabetes Association, 71st Scientific Sessions

  88. Mamtani M, Kulkarni H, Wong G, Weir JM, Barlow CK, Dyer TD, Almasy L, Mahaney MC, Comuzzie AG, Glahn DC, Magliano DJ, Zimmet P, Shaw J, Williams-Blangero S, Duggirala R, Blangero J, Meikle PJ, Curran JE (2016) Lipidomic risk score independently and cost-effectively predicts risk of future type 2 diabetes: results from diverse cohorts. Lipids Health Dis 15(1):67. https://doi.org/10.1186/s12944-016-0234-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Benjamin EJ, Virani SS, Callaway CW, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling FN, Deo R, de Ferranti SD, Ferguson JF, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Lutsey PL, Matchar DB, Matsushita K, Mussolino ME, Nasir K, O’Flaherty M, Palaniappan LP, Pandey DK, Reeves MJ, Ritchey MD, Rodriguez CJ, Roth GA, Rosamond WD, Sampson UKA, Satou GM, Shah SH, Spartano NL, Tirschwell DL, Tsao CW, Voeks JH, Willey JZ, Wilkins JT, Wu JHY, Alger HM, Wong SS, Muntner P (2018) Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation 137(12):e67–e492

  90. Fagard RH (1999) Physical activity in the prevention and treatment of hypertension in the obese. Med Sci Sports Exerc 31(11 Suppl):S624–S630

    Article  CAS  PubMed  Google Scholar 

  91. Paterson DH, Govindasamy D, Vidmar M, Cunningham DA, Koval JJ (2004) Longitudinal study of determinants of dependence in an elderly population. J Am Geriatr Soc 52(10):1632–1638. https://doi.org/10.1111/j.1532-5415.2004.52454.x

    Article  PubMed  Google Scholar 

  92. Laaksonen DE, Lakka HM, Salonen JT, Niskanen LK, Rauramaa R, Lakka TA (2002) Low levels of leisure-time physical activity and cardiorespiratory fitness predict development of the metabolic syndrome. Diabetes Care 25(9):1612–1618

    Article  PubMed  Google Scholar 

  93. Azzam R, Hariri F, El-Hachem N, Kamar A, Dbaibo G, Nemer G, Bitar F (2013) Regulation of de novo ceramide synthesis: the role of dihydroceramide desaturase and transcriptional factors NFATC and Hand2 in the hypoxic mouse heart. DNA Cell Biol 32(6):310–319. https://doi.org/10.1089/dna.2013.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dirkx E, Gladka MM, Philippen LE, Armand A-S, Kinet V, Leptidis S, el Azzouzi H, Salic K, Bourajjaj M, da Silva GJJ, Olieslagers S, van der Nagel R, de Weger R, Bitsch N, Kisters N, Seyen S, Morikawa Y, Chanoine C, Heymans S, Volders PGA, Thum T, Dimmeler S, Cserjesi P, Eschenhagen T, da Costa Martins PA, De Windt LJ (2013) Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure. Nat Cell Biol 15:1282. https://doi.org/10.1038/ncb2866. https://www.nature.com/articles/ncb2866#supplementary-information

  95. de Mello-Coelho V, Cutler RG, Bunbury A, Tammara A, Mattson MP, Taub DD (2017) Age-associated alterations in the levels of cytotoxic lipid molecular species and oxidative stress in the murine thymus are reduced by growth hormone treatment. Mech Ageing Dev 167:46–55. https://doi.org/10.1016/j.mad.2017.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275(23):17221–17224. https://doi.org/10.1074/jbc.R000005200

    Article  CAS  PubMed  Google Scholar 

  97. González-Peña D, Checa A, de Ancos B, Wheelock CE, Sánchez-Moreno C (2017) New insights into the effects of onion consumption on lipid mediators using a diet-induced model of hypercholesterolemia. Redox Biol 11:205–212. https://doi.org/10.1016/j.redox.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  98. Reiss AB, Siegart NM, De Leon J (2017) Interleukin-6 in atherosclerosis: atherogenic or atheroprotective? Clin Lipidol 12(1):14–23. https://doi.org/10.1080/17584299.2017.1319787

    Article  CAS  Google Scholar 

  99. Chang T-T, Chen J-W (2016) Emerging role of chemokine CC motif ligand 4 related mechanisms in diabetes mellitus and cardiovascular disease: friends or foes? Cardiovasc Diabetol 15(1):117. https://doi.org/10.1186/s12933-016-0439-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fang L, Mundra PA, Fan F, Galvin A, Weir JM, Wong G, Chin-Dusting J, Cicuttini F, Meikle P, Dart AM (2016) Plasma lipidomic profiling in patients with rheumatoid arthritis. Metabolomics 12(8):136. https://doi.org/10.1007/s11306-016-1086-6

    Article  CAS  Google Scholar 

  101. Fine B, Marx A, Topkara V, Gomez EA, Vunjak-Novakovic G, Colombo P (2017) (223)—An integrated analysis of metabolomics after left ventricular assist device implantation. J Heart Lung Transplant 36(4, Supplement)):S93. https://doi.org/10.1016/j.healun.2017.01.235

    Article  Google Scholar 

  102. Liu A, Chu Y-J, Wang X, Yu R, Jiang H, Li Y, Zhou H, Gong L-L, Yang W-Q, Ju J (2018) Serum metabolomics study based on LC-MS and antihypertensive effect of uncaria on spontaneously hypertensive rats. Evid Based Complement Altern Med 2018:11. https://doi.org/10.1155/2018/9281946

    Article  Google Scholar 

  103. Ji R, Chang JY, Liao X, Zhang X, Kennel P, Castillero E, Brunjes D, Akashi H, Homma S, Goldberg I, Schulze PC (2015) Abstract 17320: inhibition of ceramide synthesis preserves cardiac function and increases survival in doxorubicin-induced cardiomyopathy. Circulation 132(Suppl 3):A17320

    Google Scholar 

  104. Sharma A, Sung B, Veerappan A, Silver RB, Kim B, Worgall TS, Worgall S (2017) Decreased Sphingolipid Synthesis Enhances Rhinovirus-Triggered Airway Hyperreactivity. In: A36. Host defense against viral infection. American Thoracic Society International Conference Abstracts, American Thoracic Society, pp A1381–A1381. https://doi.org/10.1164/ajrccm-conference.2017.195.1_meetingabstracts.a1381

  105. Mucke VT, Gerharz J, Jakobi K, Thomas D, Ferreiros Bouzas N, Mucke MM, Trotschler S, Weiler N, Welker MW, Zeuzem S, Pfeilschifter J, Grammatikos G (2018) Low serum levels of (dihydro-)ceramides reflect liver graft dysfunction in a real-world cohort of patients post liver transplantation. Int J Mol Sci. https://doi.org/10.3390/ijms19040991

    Article  PubMed  PubMed Central  Google Scholar 

  106. Apostolopoulou M, Gordillo R, Koliaki C, Gancheva S, Jelenik T, De Filippo E, Herder C, Markgraf D, Jankowiak F, Esposito I, Schlensak M, Scherer PE, Roden M (2018) Specific hepatic sphingolipids relate to insulin resistance, oxidative stress, and inflammation in nonalcoholic steatohepatitis. Diabetes Care. https://doi.org/10.2337/dc17-1318

    Article  PubMed  Google Scholar 

  107. Alexaki A, Clarke BA, Gavrilova O, Ma Y, Zhu H, Ma X, Xu L, Tuymetova G, Larman BC, Allende ML, Dunn TM, Proia RL (2017) De novo sphingolipid biosynthesis is required for adipocyte survival and metabolic homeostasis. J Biol Chem 292(9):3929–3939. https://doi.org/10.1074/jbc.M116.756460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Qu L, Qu F, Jia Z, Wang C, Wu C, Zhang J (2015) Integrated targeted sphingolipidomics and transcriptomics reveal abnormal sphingolipid metabolism as a novel mechanism of the hepatotoxicity and nephrotoxicity of triptolide. J Ethnopharmacol 170:28–38. https://doi.org/10.1016/j.jep.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  109. Li F, Zhang N (2015) Ceramide: therapeutic potential in combination therapy for cancer treatment. Curr Drug Metab 17(1):37–51

    Article  CAS  PubMed  Google Scholar 

  110. Park MA, Mitchell C, Zhang G, Yacoub A, Allegood J, Häussinger D, Reinehr R, Larner A, Spiegel S, Fisher PB, Voelkel-Johnson C, Ogretmen B, Grant S, Dent P (2010) Vorinostat and sorafenib increase CD95 activation in gastrointestinal tumor cells through a Ca2+-de novo ceramide-PP2A-ROS dependent signaling pathway. Can Res 70(15):6313–6324. https://doi.org/10.1158/0008-5472.CAN-10-0999

    Article  CAS  Google Scholar 

  111. Gencer EB, Ural AU, Avcu F, Baran Y (2011) A novel mechanism of dasatinib-induced apoptosis in chronic myeloid leukemia; ceramide synthase and ceramide clearance genes. Ann Hematol 90(11):1265–1275. https://doi.org/10.1007/s00277-011-1212-5

    Article  CAS  PubMed  Google Scholar 

  112. Maeng HJ, Song J-H, Kim G-T, Song Y-J, Lee K, Kim J-Y, Park T-S (2017) Celecoxib-mediated activation of endoplasmic reticulum stress induces de novo ceramide biosynthesis and apoptosis in hepatoma HepG2 cells. BMB Rep 50(3):144–149. https://doi.org/10.5483/bmbrep.2017.50.3.197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Signorelli P, Munoz-Olaya JM, Gagliostro V, Casas J, Ghidoni R, Fabriàs G (2009) Dihydroceramide intracellular increase in response to resveratrol treatment mediates autophagy in gastric cancer cells. Cancer Lett 282(2):238–243. https://doi.org/10.1016/j.canlet.2009.03.020

    Article  CAS  PubMed  Google Scholar 

  114. Grenald SA, Doyle TM, Zhang H, Slosky LM, Chen Z, Largent-Milnes TM, Spiegel S, Vanderah TW, Salvemini D (2017) Targeting the S1P/S1PR1 axis mitigates cancer-induced bone pain and neuroinflammation. Pain 158(9):1733–1742. https://doi.org/10.1097/j.pain.0000000000000965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Holliday MW Jr, Cox SB, Kang MH, Maurer BJ (2013) C22:0- and C24:0-dihydroceramides confer mixed cytotoxicity in T-Cell acute lymphoblastic leukemia cell lines. PLoS One 8(9):e74768. https://doi.org/10.1371/journal.pone.0074768

    Article  CAS  PubMed  Google Scholar 

  116. Realini N, Palese F, Pizzirani D, Pontis S, Basit A, Bach A, Ganesan A, Piomelli D (2016) Acid ceramidase in melanoma: expression, localization, and effects of pharmacological inhibition. J Biol Chem 291(5):2422–2434. https://doi.org/10.1074/jbc.M115.666909

    Article  CAS  PubMed  Google Scholar 

  117. Knapp P, Baranowski M, Knapp M, Zabielski P, Błachnio-Zabielska AU, Górski J (2010) Altered sphingolipid metabolism in human endometrial cancer. Prostaglandins Other Lipid Mediat 92(1):62–66. https://doi.org/10.1016/j.prostaglandins.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  118. Cazzaniga M, Varricchio C, Montefrancesco C, Feroce I, Guerrieri-Gonzaga A (2012) Fenretinide (4-HPR): a preventive chance for women at genetic and familial risk? J Biomed Biotechnol 2012:172897. https://doi.org/10.1155/2012/172897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rahmaniyan M, Curley RW, Obeid LM, Hannun YA, Kraveka JM (2011) Identification of dihydroceramide desaturase as a direct in vitro target for fenretinide. J Biol Chem 286(28):24754–24764. https://doi.org/10.1074/jbc.M111.250779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Illuzzi G, Bernacchioni C, Aureli M, Prioni S, Frera G, Donati C, Valsecchi M, Chigorno V, Bruni P, Sonnino S, Prinetti A (2010) Sphingosine kinase mediates resistance to the synthetic retinoid N-(4-hydroxyphenyl)retinamide in human ovarian cancer cells. J Biol Chem 285(24):18594–18602. https://doi.org/10.1074/jbc.M109.072801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Noack J, Choi J, Richter K, Kopp-Schneider A, Regnier-Vigouroux A (2014) A sphingosine kinase inhibitor combined with temozolomide induces glioblastoma cell death through accumulation of dihydrosphingosine and dihydroceramide, endoplasmic reticulum stress and autophagy. Cell Death Dis 5:e1425. https://doi.org/10.1038/cddis.2014.384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Valsecchi M, Aureli M, Mauri L, Illuzzi G, Chigorno V, Prinetti A, Sonnino S (2010) Sphingolipidomics of A2780 human ovarian carcinoma cells treated with synthetic retinoids. J Lipid Res 51(7):1832–1840. https://doi.org/10.1194/jlr.M004010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang H, Maurer BJ, Liu YY, Wang E, Allegood JC, Kelly S, Symolon H, Liu Y, Merrill AH Jr, Gouaze-Andersson V, Yu JY, Giuliano AE, Cabot MC (2008) N-(4-Hydroxyphenyl)retinamide increases dihydroceramide and synergizes with dimethylsphingosine to enhance cancer cell killing. Mol Cancer Ther 7(9):2967–2976. https://doi.org/10.1158/1535-7163.MCT-08-0549

    Article  CAS  PubMed  Google Scholar 

  124. Idkowiak-Baldys J, Apraiz A, Li L, Rahmaniyan M, Clarke CJ, Kraveka JM, Asumendi A, Hannun YA (2010) Dihydroceramide desaturase activity is modulated by oxidative stress. Biochem J 427(2):265–274. https://doi.org/10.1042/BJ20091589

    Article  CAS  PubMed  Google Scholar 

  125. Venant H, Rahmaniyan M, Jones EE, Lu P, Lilly MB, Garrett-Mayer E, Drake RR, Kraveka JM, Smith CD, Voelkel-Johnson C (2015) The sphingosine kinase 2 inhibitor ABC294640 reduces the growth of prostate cancer cells and results in accumulation of dihydroceramides in vitro and in vivo. Mol Cancer Ther 14(12):2744–2752. https://doi.org/10.1158/1535-7163.MCT-15-0279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Obeid LM, Linardic CM, Karolak LA, Hannun YA (1993) Programmed cell death induced by ceramide. Science 259(5102):1769

    Article  CAS  PubMed  Google Scholar 

  127. Hernandez-Corbacho MJ, Canals D, Adada MM, Liu M, Senkal CE, Yi JK, Mao C, Luberto C, Hannun YA, Obeid LM (2015) Tumor necrosis factor-alpha (TNFalpha)-induced ceramide generation via ceramide synthases regulates loss of focal adhesion kinase (FAK) and programmed cell death. J Biol Chem 290(42):25356–25373. https://doi.org/10.1074/jbc.M115.658658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Singh SS, Vats S, Chia AY, Tan TZ, Deng S, Ong MS, Arfuso F, Yap CT, Goh BC, Sethi G, Huang RY, Shen HM, Manjithaya R, Kumar AP (2018) Dual role of autophagy in hallmarks of cancer. Oncogene 37(9):1142–1158. https://doi.org/10.1038/s41388-017-0046-6

    Article  CAS  PubMed  Google Scholar 

  129. Apraiz A, Idkowiak-Baldys J, Nieto-Rementería N, Boyano MD, Hannun YA, Asumendi A (2012) Dihydroceramide accumulation and reactive oxygen species are distinct and nonessential events in 4-HPR-mediated leukemia cell death. Biochem Cell Biol 90(2):209–223. https://doi.org/10.1139/o2012-001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. McNair C, Urbanucci A, Comstock CES, Augello MA, Goodwin JF, Launchbury R, Zhao SG, Schiewer MJ, Ertel A, Karnes J, Davicioni E, Wang L, Wang Q, Mills IG, Feng FY, Li W, Carroll JS, Knudsen KE (2017) Cell cycle-coupled expansion of AR activity promotes cancer progression. Oncogene 36(12):1655–1668. https://doi.org/10.1038/onc.2016.334

    Article  CAS  PubMed  Google Scholar 

  131. Zhou W, Ye X-L, Sun Z-J, Ji X-D, Chen H-X, Xie D (2009) Overexpression of degenerative spermatocyte homolog 1 up-regulates the expression of cyclin D1 and enhances metastatic efficiency in esophageal carcinoma Eca109 cells. Mol Carcinog 48(10):886–894. https://doi.org/10.1002/mc.20533

    Article  CAS  PubMed  Google Scholar 

  132. Boppana NB, DeLor JS, Van Buren E, Bielawska A, Bielawski J, Pierce JS, Korbelik M, Separovic D (2016) Enhanced apoptotic cancer cell killing after Foscan photodynamic therapy combined with fenretinide via de novo sphingolipid biosynthesis pathway. J Photochem Photobiol B Biol 159(Supplement C):191–195. https://doi.org/10.1016/j.jphotobiol.2016.02.040

    Article  CAS  Google Scholar 

  133. Breen P, Joseph N, Thompson K, Kraveka JM, Gudz TI, Li LI, Rahmaniyan M, Bielawski J, Pierce JS, Van Buren E, Bhatti G, Separovic D (2013) Dihydroceramide desaturase knockdown impacts sphingolipids and apoptosis after photodamage in human head and neck squamous carcinoma cells. Anticancer Res 33(1):77–84

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Separovic D, Bielawski J, Pierce JS, Merchant S, Tarca AL, Ogretmen B, Korbelik M (2009) Increased tumour dihydroceramide production after Photofrin-PDT alone and improved tumour response after the combination with the ceramide analogue LCL29. Evidence from mouse squamous cell carcinomas. Br J Cancer 100(4):626–632. https://doi.org/10.1038/sj.bjc.6604896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Separovic D, Breen P, Joseph N, Bielawski J, Pierce JS, Van Buren E, Gudz TI (2012) siRNA-mediated down-regulation of ceramide synthase 1 leads to apoptotic resistance in human head and neck squamous carcinoma cells after photodynamic therapy. Anticancer Res 32(7):2479–2485

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Jiang Q, Rao X, Kim CY, Freiser H, Zhang Q, Jiang Z, Li G (2012) Gamma-tocotrienol induces apoptosis and autophagy in prostate cancer cells by increasing intracellular dihydrosphingosine and dihydroceramide. Int J Cancer 130(3):685–693. https://doi.org/10.1002/ijc.26054

    Article  CAS  PubMed  Google Scholar 

  137. Sylvester PW, Ayoub NM (2013) Tocotrienols target PI3K/Akt signaling in anti-breast cancer therapy. Anticancer Agents Med Chem 13(7):1039–1047

    Article  CAS  PubMed  Google Scholar 

  138. Wang Y, Park NY, Jang Y, Ma A, Jiang Q (2015) Vitamin E gamma-tocotrienol inhibits cytokine-stimulated NF-kappaB activation by induction of anti-inflammatory A20 via stress adaptive response due to modulation of sphingolipids. J Immunol 195(1):126–133. https://doi.org/10.4049/jimmunol.1403149

    Article  CAS  PubMed  Google Scholar 

  139. Dorronsoro A, Lang V, Jakobsson E, Ferrin I, Salcedo JM, Fernández-Rueda J, Fechter K, Rodriguez MS, Trigueros C (2013) Identification of the NF-κB inhibitor A20 as a key regulator for human adipogenesis. Cell Death Dis 4:e972. https://doi.org/10.1038/cddis.2013.494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mullen TD, Spassieva S, Jenkins RW, Kitatani K, Bielawski J, Hannun YA, Obeid LM (2011) Selective knockdown of ceramide synthases reveals complex interregulation of sphingolipid metabolism. J Lipid Res 52(1):68–77. https://doi.org/10.1194/jlr.M009142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Huwiler A, Brunner J, Hummel R, Vervoordeldonk M, Stabel S, van den Bosch H, Pfeilschifter J (1996) Ceramide-binding and activation defines protein kinase c-Raf as a ceramide-activated protein kinase. Proc Natl Acad Sci USA 93(14):6959–6963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Huwiler A, Xin C, Brust AK, Briner VA, Pfeilschifter J (2004) Differential binding of ceramide to MEKK1 in glomerular endothelial and mesangial cells. Biochim Biophys Acta 1636(2–3):159–168. https://doi.org/10.1016/j.bbalip.2003.08.010

    Article  CAS  PubMed  Google Scholar 

  143. Skolova B, Jandovska K, Pullmannova P, Tesar O, Roh J, Hrabalek A, Vavrova K (2014) The role of the trans double bond in skin barrier sphingolipids: permeability and infrared spectroscopic study of model ceramide and dihydroceramide membranes. Langmuir 30(19):5527–5535. https://doi.org/10.1021/la500622f

    Article  CAS  PubMed  Google Scholar 

  144. Dany M, Elston D (2017) Gene expression of sphingolipid metabolism pathways is altered in hidradenitis suppurativa. J Am Acad Dermatol 77(2):268.e266–273.e266. https://doi.org/10.1016/j.jaad.2017.03.016

    Article  CAS  Google Scholar 

  145. Deeley JM, Hankin JA, Friedrich MG, Murphy RC, Truscott RJW, Mitchell TW, Blanksby SJ (2010) Sphingolipid distribution changes with age in the human lens. J Lipid Res 51(9):2753–2760. https://doi.org/10.1194/jlr.M007716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gardner NM, Riley RT, Showker JL, Voss KA, Sachs AJ, Maddox JR, Gelineau-van Waes JB (2016) Elevated nuclear sphingoid base-1-phosphates and decreased histone deacetylase activity after fumonisin B1 treatment in mouse embryonic fibroblasts. Toxicol Appl Pharmacol 298:56–65. https://doi.org/10.1016/j.taap.2016.02.018

    Article  CAS  PubMed  Google Scholar 

  147. Zhang H, Desai NN, Olivera A, Seki T, Brooker G, Spiegel S (1991) Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J Cell Biol 114(1):155–167

    Article  CAS  PubMed  Google Scholar 

  148. Olivera A, Spiegel S (1993) Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365(6446):557–560. https://doi.org/10.1038/365557a0

    Article  CAS  PubMed  Google Scholar 

  149. Couttas TA, Kain N, Tran C, Chatterton Z, Kwok JB, Don AS (2018) Age-dependent changes to sphingolipid balance in the human hippocampus are gender-specific and may sensitize to neurodegeneration. J Alzheimers Dis 63(2):503–514. https://doi.org/10.3233/JAD-171054

    Article  CAS  PubMed  Google Scholar 

  150. Callihan P, Zitomer NC, Stoeling MV, Kennedy PC, Lynch KR, Riley RT, Hooks SB (2012) Distinct generation, pharmacology, and distribution of sphingosine 1-phosphate and dihydrosphingosine 1-phosphate in human neural progenitor cells. Neuropharmacology 62(2):988–996. https://doi.org/10.1016/j.neuropharm.2011.10.005

    Article  CAS  PubMed  Google Scholar 

  151. Niedernberg A, Tunaru S, Blaukat A, Ardati A, Kostenis E (2003) Sphingosine 1-phosphate and dioleoylphosphatidic acid are low affinity agonists for the orphan receptor GPR63. Cell Signal 15(4):435–446

    Article  CAS  PubMed  Google Scholar 

  152. Lin W, Zhang J, Liu Y, Wu R, Yang H, Hu X, Ling X (2017) Studies on diagnostic biomarkers and therapeutic mechanism of Alzheimer’s disease through metabolomics and hippocampal proteomics. Eur J Pharm Sci 105:119–126. https://doi.org/10.1016/j.ejps.2017.05.003

    Article  CAS  PubMed  Google Scholar 

  153. Gray SG (2011) Targeting Huntington’s disease through histone deacetylases. Clin Epigenet 2(2):257–277. https://doi.org/10.1007/s13148-011-0025-7

    Article  CAS  Google Scholar 

  154. Sharma S, Taliyan R (2015) Transcriptional dysregulation in Huntington’s disease: the role of histone deacetylases. Pharmacol Res 100:157–169. https://doi.org/10.1016/j.phrs.2015.08.002

    Article  CAS  PubMed  Google Scholar 

  155. Edsall LC, Pirianov GG, Spiegel S (1997) Involvement of sphingosine 1-phosphate in nerve growth factor-mediated neuronal survival and differentiation. J Neurosci 17(18):6952–6960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bu S, Kapanadze B, Hsu T, Trojanowska M (2008) Opposite effects of dihydrosphingosine 1-phosphate and sphingosine 1-phosphate on transforming growth factor-beta/Smad signaling are mediated through the PTEN/PPM1A-dependent pathway. J Biol Chem 283(28):19593–19602. https://doi.org/10.1074/jbc.M802417200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Triola G, Fabrias G, Dragusin M, Niederhausen L, Broere R, Llebaria A, van Echten-Deckert G (2004) Specificity of the dihydroceramide desaturase inhibitor N-[(1R,2S)-2-hydroxy-1-hydroxymethyl-2-(2-tridecyl-1-cyclopropenyl)ethyl]octanami de (GT11) in primary cultured cerebellar neurons. Mol Pharmacol 66(6):1671–1678. https://doi.org/10.1124/mol.104.003681

    Article  CAS  PubMed  Google Scholar 

  158. Gelineau-van Waes J, Rainey MA, Maddox JR, Voss KA, Sachs AJ, Gardner NM, Wilberding JD, Riley RT (2012) Increased sphingoid base-1-phosphates and failure of neural tube closure after exposure to fumonisin or FTY720. Birth Defects Res A Clin Mol Teratol 94(10):790–803. https://doi.org/10.1002/bdra.23074

    Article  CAS  PubMed  Google Scholar 

  159. Baranowski M, Charmas M, Dlugolecka B, Gorski J (2011) Exercise increases plasma levels of sphingoid base-1 phosphates in humans. Acta Physiol (Oxf) 203(3):373–380. https://doi.org/10.1111/j.1748-1716.2011.02322.x

    Article  CAS  Google Scholar 

  160. Baranowski M, Gorski J, Klapcinska B, Waskiewicz Z, Sadowska-Krepa E (2014) Ultramarathon run markedly reduces plasma sphingosine-1-phosphate concentration. Int J Sport Nutr Exerc Metab 24(2):148–156. https://doi.org/10.1123/ijsnem.2013-0093

    Article  CAS  PubMed  Google Scholar 

  161. Baranowski M, Błachnio-Zabielska AU, Charmas M, Helge JW, Dela F, Książek M, Długołęcka B, Klusiewicz A, Chabowski A, Górski J (2015) Exercise increases sphingoid base-1-phosphate levels in human blood and skeletal muscle in a time- and intensity-dependent manner. Eur J Appl Physiol 115(5):993–1003. https://doi.org/10.1007/s00421-014-3080-x

    Article  CAS  PubMed  Google Scholar 

  162. Knapp M, Zendzian-Piotrowska M, Blachnio-Zabielska A, Zabielski P, Kurek K, Gorski J (2012) Myocardial infarction differentially alters sphingolipid levels in plasma, erythrocytes and platelets of the rat. Basic Res Cardiol 107(6):294. https://doi.org/10.1007/s00395-012-0294-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Górski J, Baranowski M, Wójcik B, Chabowski A (2015) Effect of atrial pacing on the level of bioactive sphingolipids in the heart ventricles of the rat. Atherosclerosis 241(1):e122–e123. https://doi.org/10.1016/j.atherosclerosis.2015.04.425

    Article  Google Scholar 

  164. Knapp M, Lisowska A, Zabielski P, Musiał W, Baranowski M (2013) Sustained decrease in plasma sphingosine-1-phosphate concentration and its accumulation in blood cells in acute myocardial infarction. Prostaglandins Other Lipid Mediat 106:53–61. https://doi.org/10.1016/j.prostaglandins.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  165. Knapp M, Baranowski M, Czarnowski D, Lisowska A, Zabielski P, Gorski J, Musial W (2009) Plasma sphingosine-1-phosphate concentration is reduced in patients with myocardial infarction. Med Sci Monit 15(9):CR490–CR493

    CAS  PubMed  Google Scholar 

  166. Książek M, Chacińska M, Chabowski A, Baranowski M (2015) Sources, metabolism, and regulation of circulating sphingosine-1-phosphate. J Lipid Res 56(7):1271–1281. https://doi.org/10.1194/jlr.R059543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Argraves KM, Sethi AA, Gazzolo PJ, Wilkerson BA, Remaley AT, Tybjaerg-Hansen A, Nordestgaard BG, Yeatts SD, Nicholas KS, Barth JL, Argraves WS (2011) S1P, dihydro-S1P and C24:1-ceramide levels in the HDL-containing fraction of serum inversely correlate with occurrence of ischemic heart disease. Lipids Health Dis 10:70. https://doi.org/10.1186/1476-511X-10-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Levkau B (2015) HDL-S1P: cardiovascular functions, disease-associated alterations, and therapeutic applications. Front Pharmacol 6:243. https://doi.org/10.3389/fphar.2015.00243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Aoki S, Yatomi Y, Ohta M, Osada M, Kazama F, Satoh K, Nakahara K, Ozaki Y (2005) Sphingosine 1-phosphate-related metabolism in the blood vessel. J Biochem 138(1):47–55. https://doi.org/10.1093/jb/mvi100

    Article  CAS  PubMed  Google Scholar 

  170. Dahm F, Nocito A, Bielawska A, Lang KS, Georgiev P, Asmis LM, Bielawski J, Madon J, Hannun YA, Clavien PA (2006) Distribution and dynamic changes of sphingolipids in blood in response to platelet activation. J Thromb Haemost 4(12):2704–2709. https://doi.org/10.1111/j.1538-7836.2006.02241.x

    Article  CAS  PubMed  Google Scholar 

  171. Knapp M, Lisowska A (2016) Blood bioactive sphingolipids and activity of acid sphingomyelinase in patients with multivessel coronary artery disease. J Clin Exp Cardiol 7:12. https://doi.org/10.4172/2155-9880.1000482

    Article  CAS  Google Scholar 

  172. Ono Y, Kurano M, Ohkawa R, Yokota H, Igarashi K, Aoki J, Tozuka M, Yatomi Y (2013) Sphingosine 1-phosphate release from platelets during clot formation: close correlation between platelet count and serum sphingosine 1-phosphate concentration. Lipids Health Dis 12:20. https://doi.org/10.1186/1476-511X-12-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Dobierzewska A, Soman S, Illanes SE, Morris AJ (2017) Plasma cross-gestational sphingolipidomic analyses reveal potential first trimester biomarkers of preeclampsia. PLoS One 12(4):e0175118. https://doi.org/10.1371/journal.pone.0175118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sugiura T, Dohi Y, Yamashita S, Ohte N, Ito S, Sanagawa A, Iwaki S, Ohkawa R, Yatomi Y, Fujii S (2013) Circulating microRNA-126 as a potential biomarker for recovery from smoking-related vascular endothelial damage. Eur Heart J 34(suppl_1):P2417. https://doi.org/10.1093/eurheartj/eht308.p2417

    Article  Google Scholar 

  175. Ryu Y, Takuwa N, Sugimoto N, Sakurada S, Usui S, Okamoto H, Matsui O, Takuwa Y (2002) Sphingosine-1-phosphate, a platelet-derived lysophospholipid mediator, negatively regulates cellular rac activity and cell migration in vascular smooth muscle cells. Circ Res 90(3):325

    Article  CAS  PubMed  Google Scholar 

  176. Bu S, Yamanaka M, Pei H, Bielawska A, Bielawski J, Hannun YA, Obeid L, Trojanowska M (2006) Dihydrosphingosine 1-phosphate stimulates MMP1 gene expression via activation of ERK1/2-Ets1 pathway in human fibroblasts. FASEB J 20(1):184–186. https://doi.org/10.1096/fj.05-4646fje

    Article  CAS  PubMed  Google Scholar 

  177. Bu S, Asano Y, Bujor A, Highland K, Hant F, Trojanowska M (2010) Dihydrosphingosine-1 phosphate has a potent anti-fibrotic effect in Scleroderma fibroblasts via normalization of PTEN levels. Arthritis Rheum 62(7):2117–2126. https://doi.org/10.1002/art.27463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ruddy JM, Ikonomidis JS, Jones JA (2016) Multidimensional contribution of matrix metalloproteinases to atherosclerotic plaque vulnerability: multiple mechanisms of inhibition to promote stability. J Vasc Res 53(1–2):1–16. https://doi.org/10.1159/000446703

    Article  CAS  PubMed  Google Scholar 

  179. Ye S, Gale CR, Martyn CN (2003) Variation in the matrix metalloproteinase-1 gene and risk of coronary heart disease. Eur Heart J 24(18):1668–1671

    Article  CAS  PubMed  Google Scholar 

  180. Gorshkova IA, Wang H, Orbelyan GA, Goya J, Natarajan V, Beiser DG, Vanden Hoek TL, Berdyshev EV (2013) Inhibition of sphingosine-1-phosphate lyase rescues sphingosine kinase-1-knockout phenotype following murine cardiac arrest. Life Sci 93(9):359–366. https://doi.org/10.1016/j.lfs.2013.07.017

    Article  CAS  PubMed  Google Scholar 

  181. Igarashi N, Okada T, Hayashi S, Fujita T, Jahangeer S, S-i Nakamura (2003) Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J Biol Chem 278(47):46832–46839

    Article  CAS  PubMed  Google Scholar 

  182. Knapp M, Lisowska A, Knapp P, Baranowski M (2013) Dose-dependent effect of aspirin on the level of sphingolipids in human blood. Adv Med Sci 58(2):274–281. https://doi.org/10.2478/ams-2013-0021

    Article  CAS  PubMed  Google Scholar 

  183. Ono JG, Worgall TS, Worgall S (2015) Airway reactivity and sphingolipids—implications for childhood asthma. Mol Cell Pediatr 2:13. https://doi.org/10.1186/s40348-015-0025-3

    Article  PubMed  PubMed Central  Google Scholar 

  184. Miller M, Tam AB, Mueller JL, Rosenthal P, Beppu A, Gordillo R, McGeough MD, Vuong C, Doherty TA, Hoffman HM, Niwa M, Broide DH (2017) Cutting edge: targeting epithelial ORMDL3 increases, rather than reduces, airway responsiveness and is associated with increased sphingosine-1-phosphate. J Immunol

  185. Kowal K, Zebrowska E, Chabowski A (2018) Plasma concentration of selected sphingolipids correlates with lung function parameters in house dust mite allergic patients. J Allergy Clin Immunol 141(2, Supplement):AB113. https://doi.org/10.1016/j.jaci.2017.12.360

    Article  Google Scholar 

  186. Oyeniran C, Sturgill JL, Hait NC, Huang WC, Avni D, Maceyka M, Newton J, Allegood JC, Montpetit A, Conrad DH, Milstien S, Spiegel S (2015) Aberrant ORM (yeast)-like protein isoform 3 (ORMDL3) expression dysregulates ceramide homeostasis in cells and ceramide exacerbates allergic asthma in mice. J Allergy Clin Immunol 136(4):1035 e1036–1046 e1036. https://doi.org/10.1016/j.jaci.2015.02.031

    Article  CAS  Google Scholar 

  187. Berdyshev EV, Gorshkova IA, Usatyuk P, Zhao Y, Saatian B, Hubbard W, Natarajan V (2006) De novo biosynthesis of dihydrosphingosine-1-phosphate by sphingosine kinase 1 in mammalian cells. Cell Signal 18(10):1779–1792. https://doi.org/10.1016/j.cellsig.2006.01.018

    Article  CAS  PubMed  Google Scholar 

  188. Boujaoude LC, Bradshaw-Wilder C, Mao C, Cohn J, Ogretmen B, Hannun YA, Obeid LM (2001) Cystic fibrosis transmembrane regulator regulates uptake of sphingoid base phosphates and lysophosphatidic acid: modulation of cellular activity of sphingosine 1-phosphate. J Biol Chem 276(38):35258–35264. https://doi.org/10.1074/jbc.M105442200

    Article  CAS  PubMed  Google Scholar 

  189. Gorshkova I, Zhou T, Mathew B, Jacobson JR, Takekoshi D, Bhattacharya P, Smith B, Aydogan B, Weichselbaum RR, Natarajan V, Garcia JG, Berdyshev EV (2012) Inhibition of serine palmitoyltransferase delays the onset of radiation-induced pulmonary fibrosis through the negative regulation of sphingosine kinase-1 expression. J Lipid Res 53(8):1553–1568. https://doi.org/10.1194/jlr.M026039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Park SW, Kim M, Chen SW, Brown KM, D’Agati VD, Lee HT (2010) Sphinganine-1-phosphate protects kidney and liver after hepatic ischemia and reperfusion in mice through S1P1 receptor activation. Lab Invest 90(8):1209–1224. https://doi.org/10.1038/labinvest.2010.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Park SW, Kim M, Chen SW, D’Agati VD, Lee HT (2010) Sphinganine-1-phosphate attenuates both hepatic and renal injury induced by hepatic ischemia and reperfusion in mice. Shock 33(1):31–42. https://doi.org/10.1097/SHK.0b013e3181c02c1f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kim DH, Yoo HS, Lee YM, Kie JH, Jang S, Oh S (2006) Elevation of sphinganine 1-phosphate as a predictive biomarker for fumonisin exposure and toxicity in mice. J Toxicol Environ Health A 69(23):2071–2082. https://doi.org/10.1080/15287390600746215

    Article  CAS  PubMed  Google Scholar 

  193. Gopee NV, Sharma RP (2003) Sphingoid bases and their phosphates: transient activation and delayed repression of protein kinase C isoforms and their possible involvement in fumonisin B1 cytotoxicity. Toxicology 187(2):239–250. https://doi.org/10.1016/S0300-483X(03)00048-9

    Article  CAS  PubMed  Google Scholar 

  194. Tardieu D, Tran ST, Auvergne A, Babile R, Benard G, Bailly JD, Guerre P (2006) Effects of fumonisins on liver and kidney sphinganine and the sphinganine to sphingosine ratio during chronic exposure in ducks. Chem Biol Interact 160(1):51–60. https://doi.org/10.1016/j.cbi.2005.11.004

    Article  CAS  PubMed  Google Scholar 

  195. Riley RT, Torres O, Matute J, Gregory SG, Ashley-Koch AE, Showker JL, Mitchell T, Voss KA, Maddox JR, Gelineau-van Waes JB (2015) Evidence for fumonisin inhibition of ceramide synthase in humans consuming maize-based foods and living in high exposure communities in Guatemala. Mol Nutr Food Res 59(11):2209–2224. https://doi.org/10.1002/mnfr.201500499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Choudhury GG, Biswas P, Grandaliano G, Abboud HE (1993) Involvement of PKC-alpha in PDGF-mediated mitogenic signaling in human mesangial cells. Am J Physiol 265(5 Pt 2):F634–F642. https://doi.org/10.1152/ajprenal.1993.265.5.F634

    Article  CAS  PubMed  Google Scholar 

  197. Katsuma S, Hada Y, Ueda T, Shiojima S, Hirasawa A, Tanoue A, Takagaki K, Ohgi T, Yano J, Tsujimoto G (2002) Signalling mechanisms in sphingosine 1-phosphate-promoted mesangial cell proliferation. Genes Cells 7(12):1217–1230

    Article  CAS  PubMed  Google Scholar 

  198. Veret J, Coant N, Gorshkova IA, Giussani P, Fradet M, Riccitelli E, Skobeleva A, Goya J, Kassis N, Natarajan V, Portha B, Berdyshev EV, Le Stunff H (2013) Role of palmitate-induced sphingoid base-1-phosphate biosynthesis in INS-1 beta-cell survival. Biochim Biophys Acta 1831(2):251–262. https://doi.org/10.1016/j.bbalip.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  199. Katsuma S, Hada Y, Shiojima S, Hirasawa A, Tanoue A, Takagaki K, Ohgi T, Yano J, Tsujimoto G (2003) Transcriptional profiling of gene expression patterns during sphingosine 1-phosphate-induced mesangial cell proliferation. Biochem Biophys Res Commun 300(2):577–584. https://doi.org/10.1016/S0006-291X(02)02850-4

    Article  CAS  PubMed  Google Scholar 

  200. Sato K, Ui M, Okajima F (2000) Differential roles of Edg-1 and Edg-5, sphingosine 1-phosphate receptors, in the signaling pathways in C6 glioma cells. Brain Res Mol Brain Res 85(1–2):151–160

    Article  CAS  PubMed  Google Scholar 

  201. Arikawa K, Takuwa N, Yamaguchi H, Sugimoto N, Kitayama J, Nagawa H, Takehara K, Takuwa Y (2003) Ligand-dependent inhibition of B16 melanoma cell migration and invasion via endogenous S1P2 G protein-coupled receptor. Requirement of inhibition of cellular RAC activity. J Biol Chem 278(35):32841–32851. https://doi.org/10.1074/jbc.m305024200

    Article  CAS  PubMed  Google Scholar 

  202. Barth BM, Shanmugavelandy SS, Kaiser JM, McGovern C, Altinoglu EI, Haakenson JK, Hengst JA, Gilius EL, Knupp SA, Fox TE, Smith JP, Ritty TM, Adair JH, Kester M (2013) PhotoImmunoNanoTherapy reveals an anticancer role for sphingosine kinase 2 and dihydrosphingosine-1-phosphate. ACS Nano 7(3):2132–2144. https://doi.org/10.1021/nn304862b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK, Luo C, Marmorstein R, Kordula T, Milstien S, Spiegel S (2009) Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325(5945):1254–1257. https://doi.org/10.1126/science.1176709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Jin Y, Knudsen E, Wang L, Bryceson Y, Damaj B, Gessani S, Maghazachi AA (2003) Sphingosine 1-phosphate is a novel inhibitor of T-cell proliferation. Blood 101(12):4909–4915. https://doi.org/10.1182/blood-2002-09-2962

    Article  CAS  PubMed  Google Scholar 

  205. Xu Y, Stenmark KR, Das M, Walchak SJ, Ruff LJ, Dempsey EC (1997) Pulmonary artery smooth muscle cells from chronically hypoxic neonatal calves retain fetal-like and acquire new growth properties. Am J Physiol 273(1 Pt 1):L234–L245. https://doi.org/10.1152/ajplung.1997.273.1.L234

    Article  CAS  PubMed  Google Scholar 

  206. Das M, Stenmark KR, Dempsey EC (1995) Enhanced growth of fetal and neonatal pulmonary artery adventitial fibroblasts is dependent on protein kinase C. Am J Physiol 269(5 Pt 1):L660–L667. https://doi.org/10.1152/ajplung.1995.269.5.L660

    Article  CAS  PubMed  Google Scholar 

  207. Mann J, Farrukh IS, Michael JR (1991) Mechanisms by which endothelin 1 induces pulmonary vasoconstriction in the rabbit. J Appl Physiol (1985) 71(2):410–416. https://doi.org/10.1152/jappl.1991.71.2.410

    Article  CAS  Google Scholar 

  208. Voss KA, Riley RT (2013) Fumonisin toxicity and mechanism of action: overview and current perspectives. Food Saf 1(1):2013006. https://doi.org/10.14252/foodsafetyfscj.2013006

    Article  Google Scholar 

  209. Riley RT, Voss KA (2006) Differential sensitivity of rat kidney and liver to fumonisin toxicity: organ-specific differences in toxin accumulation and sphingoid base metabolism. Toxicol Sci 92(1):335–345. https://doi.org/10.1093/toxsci/kfj198

    Article  CAS  PubMed  Google Scholar 

  210. Mathur S, Constable PD, Eppley RM, Waggoner AL, Tumbleson ME, Haschek WM (2001) Fumonisin B(1) is hepatotoxic and nephrotoxic in milk-fed calves. Toxicol Sci 60(2):385–396

    Article  CAS  PubMed  Google Scholar 

  211. Grenier B, Schwartz-Zimmermann HE, Caha S, Moll WD, Schatzmayr G, Applegate TJ (2015) Dose-dependent effects on sphingoid bases and cytokines in chickens fed diets prepared with fusarium verticillioides culture material containing fumonisins. Toxins (Basel) 7(4):1253–1272. https://doi.org/10.3390/toxins7041253

    Article  CAS  Google Scholar 

  212. Collins TF, Sprando RL, Black TN, Shackelford ME, Laborde JB, Hansen DK, Eppley RM, Trucksess MW, Howard PC, Bryant MA, Ruggles DI, Olejnik N, Rorie JI (1998) Effects of fumonisin B1 in pregnant rats. Part 2. Food Chem Toxicol 36(8):673–685. https://doi.org/10.1016/s0278-6915(98)00036-2

    Article  CAS  PubMed  Google Scholar 

  213. LaBorde JB, Terry KK, Howard PC, Chen JJ, Collins TFX, Shackelford ME, Hansen DK (1997) Lack of embryotoxicity of fumonisin B1in New Zealand White Rabbits. Fundam Appl Toxicol 40(1):120–128. https://doi.org/10.1006/faat.1997.2380

    Article  CAS  PubMed  Google Scholar 

  214. Domijan AM, Peraica M, Markov K, Fuchs R (2009) Urine ochratoxin a and sphinganine/sphingosine ratio in residents of the endemic nephropathy area in Croatia. Arh Hig Rada Toksikol 60(4):387–393. https://doi.org/10.2478/10004-1254-60-2009-1938

    Article  CAS  PubMed  Google Scholar 

  215. Grammatikos G, Dietz J, Ferreiros N, Koch A, Dultz G, Bon D, Karakasiliotis I, Lutz T, Knecht G, Gute P, Herrmann E, Zeuzem S, Mavromara P, Sarrazin C, Pfeilschifter J (2016) Persistence of HCV in acutely-infected patients depletes C24-ceramide and upregulates sphingosine and sphinganine serum levels. Int J Mol Sci 17(6):922. https://doi.org/10.3390/ijms17060922

    Article  CAS  PubMed Central  Google Scholar 

  216. Qiu S, Zhang H, Fei Q, Zhu F, Wang J, Jia X, Chen B (2018) Urine and plasma metabolomics study on potential hepatoxic biomarkers identification in rats induced by Gynura segetum. J Ethnopharmacol 216:37–46. https://doi.org/10.1016/j.jep.2018.01.017

    Article  PubMed  Google Scholar 

  217. Touboul D, Roy S, Germain DP, Baillet A, Brion F, Prognon P, Chaminade P, Laprevote O (2005) Fast fingerprinting by MALDI-TOF mass spectrometry of urinary sediment glycosphingolipids in Fabry disease. Anal Bioanal Chem 382(5):1209–1216. https://doi.org/10.1007/s00216-005-3239-8

    Article  CAS  PubMed  Google Scholar 

  218. Ribar S, Mesarić M, Bauman M (2001) High-performance liquid chromatographic determination of sphinganine and sphingosine in serum and urine of subjects from an endemic nephropathy area in Croatia. J Chromatogr B Biomed Sci Appl 754(2):511–519. https://doi.org/10.1016/S0378-4347(01)00041-X

    Article  CAS  PubMed  Google Scholar 

  219. Cho K, S-i Min, Ahn S, Min S-K, Ahn C, Yu K-S, Jang I-J, Cho J-Y, Ha J (2017) Integrative analysis of renal ischemia/reperfusion injury and remote ischemic preconditioning in mice. J Proteome Res 16(8):2877–2886. https://doi.org/10.1021/acs.jproteome.7b00167

    Article  CAS  PubMed  Google Scholar 

  220. Dekker MJ, Baker C, Naples M, Samsoondar J, Zhang R, Qiu W, Sacco J, Adeli K (2013) Inhibition of sphingolipid synthesis improves dyslipidemia in the diet-induced hamster model of insulin resistance: evidence for the role of sphingosine and sphinganine in hepatic VLDL-apoB100 overproduction. Atherosclerosis 228(1):98–109. https://doi.org/10.1016/j.atherosclerosis.2013.01.041

    Article  CAS  PubMed  Google Scholar 

  221. Huang Y, Liu X, Zhao L, Li F, Xiong Z (2014) Kidney tissue targeted metabolic profiling of glucocorticoid-induced osteoporosis and the proposed therapeutic effects of Rhizoma Drynariae studied using UHPLC/MS/MS. Biomed Chromatogr 28(6):878–884. https://doi.org/10.1002/bmc.3194

    Article  CAS  PubMed  Google Scholar 

  222. Pewzner-Jung Y, Park H, Laviad EL, Silva LC, Lahiri S, Stiban J, Erez-Roman R, Brügger B, Sachsenheimer T, Wieland F, Prieto M, Merrill AH, Futerman AH (2010) A critical role for ceramide synthase 2 in liver homeostasis: I. Alterations in lipid metabolic pathways. J Biol Chem 285(14):10902–10910. https://doi.org/10.1074/jbc.m109.077594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Merrill AH Jr, Sullards MC, Wang E, Voss KA, Riley RT (2001) Sphingolipid metabolism: roles in signal transduction and disruption by fumonisins. Environ Health Perspect 109(Suppl 2):283–289. https://doi.org/10.1289/ehp.01109s2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Laviad EL, Albee L, Pankova-Kholmyansky I, Epstein S, Park H, Merrill AH Jr, Futerman AH (2008) Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. J Biol Chem 283(9):5677–5684. https://doi.org/10.1074/jbc.M707386200

    Article  CAS  PubMed  Google Scholar 

  225. Dugyala RR, Sharma RP, Tsunoda M, Riley RT (1998) Tumor necrosis factor-α as a contributor in Fumonisin B1 toxicity. J Pharmacol Exp Ther 285(1):317

    CAS  PubMed  Google Scholar 

  226. Bhandari N, He Q, Sharma PR (2001) Gender-related differences in subacute fumonisin B1 hepatotoxicity in BALB/c mice, vol 165. https://doi.org/10.1016/s0300-483x(01)00449-8

  227. He Q, Riley RT, Sharma RP (2001) Fumonisin-induced tumor necrosis factor-alpha expression in a porcine kidney cell line is independent of sphingoid base accumulation induced by ceramide synthase inhibition. Toxicol Appl Pharmacol 174(1):69–77. https://doi.org/10.1006/taap.2001.9189

    Article  CAS  PubMed  Google Scholar 

  228. Sharma RP, Bhandari N, Riley RT, Voss KA, Meredith FI (2000) Tolerance to fumonisin toxicity in a mouse strain lacking the P75 tumor necrosis factor receptor. Toxicology 143(2):183–194. https://doi.org/10.1016/S0300-483X(99)00168-7

    Article  CAS  PubMed  Google Scholar 

  229. Chen X, Hu C, Dai J, Chen L (2015) Metabolomics analysis of seminal plasma in infertile males with kidney-yang deficiency: a preliminary study. Evid Based Complement Alternat Med 2015:892930. https://doi.org/10.1155/2015/892930

    Article  PubMed  PubMed Central  Google Scholar 

  230. Zhao YY, Cheng XL, Wei F, Xiao XY, Sun WJ, Zhang Y, Lin RC (2012) Serum metabonomics study of adenine-induced chronic renal failure in rats by ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Biomarkers 17(1):48–55. https://doi.org/10.3109/1354750X.2011.637180

    Article  CAS  PubMed  Google Scholar 

  231. Zhang J, Yan L, Chen W, Lin L, Song X, Yan X, Hang W, Huang B (2009) Metabonomics research of diabetic nephropathy and type 2 diabetes mellitus based on UPLC—oaTOF-MS system. Anal Chim Acta 650(1):16–22. https://doi.org/10.1016/j.aca.2009.02.027

    Article  CAS  PubMed  Google Scholar 

  232. Lin L, Huang Z, Gao Y, Chen Y, Hang W, Xing J, Yan X (2012) LC-MS-based serum metabolic profiling for genitourinary cancer classification and cancer type-specific biomarker discovery. Proteomics 12(14):2238–2246. https://doi.org/10.1002/pmic.201200016

    Article  CAS  PubMed  Google Scholar 

  233. Baranowski M, Zabielski P, Blachnio A, Gorski J (2008) Effect of exercise duration on ceramide metabolism in the rat heart. Acta Physiol (Oxf) 192(4):519–529. https://doi.org/10.1111/j.1748-1716.2007.01755.x

    Article  CAS  Google Scholar 

  234. Wojcik B, Baranowski M, Chabowski A, Gorski J (2015) Effect of atrial pacing on the level of bioactive sphingolipids in the heart ventricles of the rat. J Physiol Pharmacol 66(3):385–389

    CAS  PubMed  Google Scholar 

  235. Sun L, Liu J, Sun M, Lin L, Miao L, Ge Z, Yang B (2017) Comprehensive metabonomic analysis of heart tissue from isoproterenol-induced myocardial infarction rat based on reversed-phase and hydrophilic interaction chromatography coupled to mass spectrometry. J Sep Sci 40(10):2198–2206. https://doi.org/10.1002/jssc.201601013

    Article  CAS  PubMed  Google Scholar 

  236. Qi Y, Gu H, Song Y, Dong X, Liu A, Lou Z, Fan G, Chai Y (2013) Metabolomics study of resina draconis on myocardial ischemia rats using ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry combined with pattern recognition methods and metabolic pathway analysis. Evidence Based Complement Altern Med 2013:10. https://doi.org/10.1155/2013/438680

    Article  Google Scholar 

  237. Y-t Liu, H-m Jia, Chang X, W-h Cheng, Zhao X, Ding G, H-w Zhang, D-y Cai, Zou Z-M (2014) Metabolic pathways involved in Xin-Ke-Shu protecting against myocardial infarction in rats using ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Pharm Biomed Anal 90:35–44. https://doi.org/10.1016/j.jpba.2013.11.008

    Article  CAS  Google Scholar 

  238. Miklosz A, Lukaszuk B, Chabowski A, Rogowski F, Kurek K, Zendzian-Piotrowska M (2015) Hyperthyroidism evokes myocardial ceramide accumulation. Cell Physiol Biochem 35(2):755–766. https://doi.org/10.1159/000369735

    Article  CAS  PubMed  Google Scholar 

  239. Park MT, Kang JA, Choi JA, Kang CM, Kim TH, Bae S, Kang S, Kim S, Choi WI, Cho CK, Chung HY, Lee YS, Lee SJ (2003) Phytosphingosine induces apoptotic cell death via caspase 8 activation and Bax translocation in human cancer cells. Clin Cancer Res 9(2):878–885

    CAS  PubMed  Google Scholar 

  240. Yang Y, Jia H, Yu M, Zhou C, Sun L, Zhao Y, Zhang H, Zou Z (2018) Chinese patent medicine Xin-Ke-Shu inhibits Ca2+ overload and dysfunction of fatty acid β-oxidation in rats with myocardial infarction induced by LAD ligation. J Chromatogr B 1079:85–94. https://doi.org/10.1016/j.jchromb.2018.01.038

    Article  CAS  Google Scholar 

  241. Błachnio-Zabielska A, Baranowski M, Wójcik B, Górski J (2016) Reduction of ceramide de novo synthesis in solid tissues changes sphingolipid levels in rat plasma, erythrocytes and platelets. Adv Med Sci 61(1):72–77. https://doi.org/10.1016/j.advms.2015.09.006

    Article  PubMed  Google Scholar 

  242. Huang L, Li T, Liu YW, Zhang L, Dong ZH, Liu SY, Gao YT (2016) Plasma metabolic profile determination in young ST-segment elevation myocardial infarction patients with ischemia and reperfusion: ultra-performance liquid chromatography and mass spectrometry for pathway analysis. Chin Med J (Engl) 129(9):1078–1086. https://doi.org/10.4103/0366-6999.180527

    Article  Google Scholar 

  243. Knapp M, Baranowski M, Lisowska A, Musiał W (2012) Decreased free sphingoid base concentration in the plasma of patients with chronic systolic heart failure. Adv Med Sci 57(1):100–105. https://doi.org/10.2478/v10039-011-0057-4

    Article  CAS  PubMed  Google Scholar 

  244. Sun M, Miao Y, Wang P, Miao L, Liu L, Liu J (2014) Urinary metabonomics study of heart failure patients with HILIC and RPLC separation coupled to TOF–MS. Chromatographia 77(3):249–255. https://doi.org/10.1007/s10337-013-2585-5

    Article  CAS  Google Scholar 

  245. Chen Y, Wen S, Jiang M, Zhu Y, Ding L, Shi H, Dong P, Yang J, Yang Y (2017) Atherosclerotic dyslipidemia revealed by plasma lipidomics on ApoE(−/−) mice fed a high-fat diet. Atherosclerosis 262:78–86. https://doi.org/10.1016/j.atherosclerosis.2017.05.010

    Article  CAS  PubMed  Google Scholar 

  246. Jiang H, Shen Z, Chu Y, Li Y, Li J, Wang X, Yang W, Zhang X, Ju J, Xu J, Yang C (2015) Serum metabolomics research of the anti-hypertensive effects of Tengfu Jiangya tablet on spontaneously hypertensive rats. J Chromatogr B Analyt Technol Biomed Life Sci 1002:210–217. https://doi.org/10.1016/j.jchromb.2015.08.010

    Article  CAS  PubMed  Google Scholar 

  247. Liu Y-T, Peng J-B, Jia H-M, Cai D-Y, Zhang H-W, Yu C-Y, Zou Z-M (2014) UPLC-Q/TOF MS standardized Chinese formula Xin-Ke-Shu for the treatment of atherosclerosis in a rabbit model. Phytomedicine 21(11):1364–1372. https://doi.org/10.1016/j.phymed.2014.05.009

    Article  CAS  PubMed  Google Scholar 

  248. Egom EE, Mamas MA, Chacko S, Stringer SE, Charlton-Menys V, El-Omar M, Chirico D, Clarke B, Neyses L, Cruickshank JK, Lei M, Fath-Ordoubadi F (2013) Serum sphingolipids level as a novel potential marker for early detection of human myocardial ischaemic injury. Front Physiol 4:130. https://doi.org/10.3389/fphys.2013.00130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Park TS, Rosebury W, Kindt EK, Kowala MC, Panek RL (2008) Serine palmitoyltransferase inhibitor myriocin induces the regression of atherosclerotic plaques in hyperlipidemic ApoE-deficient mice. Pharmacol Res 58(1):45–51. https://doi.org/10.1016/j.phrs.2008.06.005

    Article  CAS  PubMed  Google Scholar 

  250. Dolgachev V, Nagy B, Taffe B, Hanada K, Separovic D (2003) Reactive oxygen species generation is independent of de novo sphingolipids in apoptotic photosensitized cells. Exp Cell Res 288(2):425–436. https://doi.org/10.1016/S0014-4827(03)00235-0

    Article  CAS  PubMed  Google Scholar 

  251. Miller M, Rosenthal P, Beppu A, Gordillo R, Broide DH (2017) Oroscomucoid like protein 3 (ORMDL3) transgenic mice have reduced levels of sphingolipids including sphingosine-1-phosphate and ceramide. J Allergy Clin Immunol 139(4):1373.e1374–1376.e1374. https://doi.org/10.1016/j.jaci.2016.08.053

    Article  CAS  Google Scholar 

  252. Breslow DK, Collins SR, Bodenmiller B, Aebersold R, Simons K, Shevchenko A, Ejsing CS, Weissman JS (2010) Orm family proteins mediate sphingolipid homeostasis. Nature 463(7284):1048–1053. https://doi.org/10.1038/nature08787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Loiseau N, Obata Y, Moradian S, Sano H, Yoshino S, Aburai K, Takayama K, Sakamoto K, Holleran WM, Elias PM, Uchida Y (2013) Altered sphingoid base profiles predict compromised membrane structure and permeability in atopic dermatitis. J Dermatol Sci 72(3):296–303. https://doi.org/10.1016/j.jdermsci.2013.08.003

    Article  CAS  PubMed  Google Scholar 

  254. Obata Y, Sano H, Ohta N, Moriwaki T, Ishida K, Uchida Y, Takayama K (2017) Characterization of simple intercellular lipid model of atopic dermatitis stratum corneum containing sphingosine and sphinganine. J Dermatol Sci 86(2):e43–e44. https://doi.org/10.1016/j.jdermsci.2017.02.128

    Article  Google Scholar 

  255. Kurek K, Miklosz A, Lukaszuk B, Chabowski A, Gorski J, Zendzian-Piotrowska M (2015) Inhibition of ceramide de novo synthesis ameliorates diet induced skeletal muscles insulin resistance. J Diabetes Res 2015:154762. https://doi.org/10.1155/2015/154762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Dong Y, Chen YT, Yang YX, Zhou XJ, Dai SJ, Tong JF, Shou D, Li C (2016) Metabolomics study of type 2 diabetes mellitus and the antidiabetic effect of berberine in Zucker diabetic fatty rats using Uplc-ESI-Hdms. Phytother Res 30(5):823–828. https://doi.org/10.1002/ptr.5587

    Article  CAS  PubMed  Google Scholar 

  257. Jiang W, Gao L, Li P, Kan H, Qu J, Men L, Liu Z, Liu Z (2017) Metabonomics study of the therapeutic mechanism of fenugreek galactomannan on diabetic hyperglycemia in rats, by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Chromatogr B 1044–1045:8–16. https://doi.org/10.1016/j.jchromb.2016.12.039

    Article  CAS  Google Scholar 

  258. Jung S, Kim M, Ryu HJ, Chae JS, Lee S-H, Lee JH (2015) Age-related increase in LDL-cholesterol is associated with enhanced oxidative stress and disturbed sphingolipid metabolism. Metabolomics 11(1):40–49. https://doi.org/10.1007/s11306-014-0669-3

    Article  CAS  Google Scholar 

  259. Oertel S, Scholich K, Weigert A, Thomas D, Schmetzer J, Trautmann S, Wegner M-S, Radeke HH, Filmann N, Brüne B, Geisslinger G, Tegeder I, Grösch S (2017) Ceramide synthase 2 deficiency aggravates AOM-DSS-induced colitis in mice: role of colon barrier integrity. Cell Mol Life Sci 74(16):3039–3055. https://doi.org/10.1007/s00018-017-2518-9

    Article  CAS  PubMed  Google Scholar 

  260. Choi S, Kim JA, Kim TH, Li HY, Shin KO, Lee YM, Oh S, Pewzner-Jung Y, Futerman AH, Suh SH (2015) Altering sphingolipid composition with aging induces contractile dysfunction of gastric smooth muscle via K(Ca) 1.1 upregulation. Aging Cell 14(6):982–994. https://doi.org/10.1111/acel.12388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Xu H, Zhang L, Kang H, Zhang J, Liu J, Liu S (2016) Serum metabonomics of mild acute pancreatitis. J Clin Lab Anal 30(6):990–998. https://doi.org/10.1002/jcla.21969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Barbas-Bernardos C, Armitage EG, García A, Mérida S, Navea A, Bosch-Morell F, Barbas C (2016) Looking into aqueous humor through metabolomics spectacles—exploring its metabolic characteristics in relation to myopia. J Pharm Biomed Anal 127:18–25. https://doi.org/10.1016/j.jpba.2016.03.032

    Article  CAS  PubMed  Google Scholar 

  263. Sui Z, Li Q, Zhu L, Wang Z, Lv C, Liu R, Xu H, He B, Li Z, Bi K (2017) An integrative investigation of the toxicity of Aconiti kusnezoffii radix and the attenuation effect of its processed drug using a UHPLC-Q-TOF based rat serum and urine metabolomics strategy. J Pharm Biomed Anal 145:240–247. https://doi.org/10.1016/j.jpba.2017.06.049

    Article  CAS  PubMed  Google Scholar 

  264. Charkiewicz K, Goscik J, Blachnio-Zabielska A, Raba G, Sakowicz A, Kalinka J, Chabowski A, Laudanski P (2017) Sphingolipids as a new factor in the pathomechanism of preeclampsia—mass spectrometry analysis. PLoS One 12(5):e0177601. https://doi.org/10.1371/journal.pone.0177601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Zmyslowska A, Ciborowski M, Borowiec M, Fendler W, Pietrowska K, Parfieniuk E, Antosik K, Pyziak A, Waszczykowska A, Kretowski A, Mlynarski W (2017) Serum metabolic fingerprinting identified putatively annotated sphinganine isomer as a biomarker of Wolfram syndrome. J Proteome Res 16(11):4000–4008. https://doi.org/10.1021/acs.jproteome.7b00401

    Article  CAS  PubMed  Google Scholar 

  266. Auer-Grumbach M, Bode H, Pieber TR, Schabhüttl M, Fischer D, Seidl R, Graf E, Wieland T, Schuh R, Vacariu G, Grill F, Timmerman V, Strom TM, Hornemann T (2013) Mutations at Ser331 in the HSN type I gene SPTLC1 are associated with a distinct syndromic phenotype. Eur J Med Genet 56(5):266–269. https://doi.org/10.1016/j.ejmg.2013.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  267. Hsiao CT, Chao HC, Liao YC, Lin KP, Soong BW, Lee YC (2017) Investigation for SPTLC1 mutations in a Taiwanese cohort with hereditary neuropathies. J Neurol Sci 381:463–464. https://doi.org/10.1016/j.jns.2017.08.3516

    Article  Google Scholar 

  268. Murphy SM, Ernst D, Wei Y, Laura M, Liu YT, Polke J, Blake J, Winer J, Houlden H, Hornemann T, Reilly MM (2013) Hereditary sensory and autonomic neuropathy type 1 (HSANI) caused by a novel mutation in SPTLC2. Neurology 80(23):2106–2111. https://doi.org/10.1212/WNL.0b013e318295d789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Kojima T, Asano Y, Kurasawa O, Hirata Y, Iwamura N, Wong T-T, Saito B, Tanaka Y, Arai R, Yonemori K, Miyamoto Y, Sagiya Y, Yaguchi M, Shibata S, Mizutani A, Sano O, Adachi R, Satomi Y, Hirayama M, Aoyama K, Hiura Y, Kiba A, Kitamura S, Imamura S (2018) Discovery of novel serine palmitoyltransferase inhibitors as cancer therapeutic agents. Bioorg Med Chem 26(9):2452–2465. https://doi.org/10.1016/j.bmc.2018.04.008

    Article  CAS  PubMed  Google Scholar 

  270. Boyden LM, Vincent NG, Zhou J, Hu R, Craiglow BG, Bayliss SJ, Rosman IS, Lucky AW, Diaz LA, Goldsmith LA, Paller AS, Lifton RP, Baserga SJ, Choate KA (2017) Mutations in KDSR cause recessive progressive symmetric erythrokeratoderma. Am J Hum Genet 100(6):978–984. https://doi.org/10.1016/j.ajhg.2017.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Takeichi T, Torrelo A, Lee JYW, Ohno Y, Lozano ML, Kihara A, Liu L, Yasuda Y, Ishikawa J, Murase T, Rodrigo AB, Fernández-Crehuet P, Toi Y, Mellerio J, Rivera J, Vicente V, Kelsell DP, Nishimura Y, Okuno Y, Kojima D, Ogawa Y, Sugiura K, Simpson MA, McLean WHI, Akiyama M, McGrath JA (2017) Biallelic mutations in KDSR disrupt ceramide synthesis and result in a spectrum of keratinization disorders associated with thrombocytopenia. J Invest Dermatol 137(11):2344–2353. https://doi.org/10.1016/j.jid.2017.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Krebs S, Medugorac I, Röther S, Strässer K, Förster M (2007) A missense mutation in the 3-ketodihydrosphingosine reductase FVT1 as candidate causal mutation for bovine spinal muscular atrophy. Proc Natl Acad Sci USA 104(16):6746–6751. https://doi.org/10.1073/pnas.0607721104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Ordonez YF, Gonzalez J, Bedia C, Casas J, Abad JL, Delgado A, Fabrias G (2016) 3-Ketosphinganine provokes the accumulation of dihydroshingolipids and induces autophagy in cancer cells. Mol BioSyst 12(4):1166–1173. https://doi.org/10.1039/C5MB00852B

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by National Health and Medical Research Council of Australia Program Grants (1092642) (BHW, DL, CR and DJK) and Project Grant (1087355) (BHW). RM and FS are sponsored by a Monash Graduate Scholarship and Monash International Postgraduate Research Scholarship for their doctoral studies.

Author information

Authors and Affiliations

Authors

Contributions

RM and BW conceived and designed review question, conducted preliminary data search, and sorting the papers. FS and YH conducted literature search and screening. DK, CR, BF and DL assisted drafting and edited of the paper and had responsibility for its final content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bing H. Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magaye, R.R., Savira, F., Hua, Y. et al. The role of dihydrosphingolipids in disease. Cell. Mol. Life Sci. 76, 1107–1134 (2019). https://doi.org/10.1007/s00018-018-2984-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2984-8

Keywords

Navigation