Skip to main content

Advertisement

Log in

Agonist-dependent development of delta opioid receptor tolerance in the colon

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The use of opioid analgesics is severely limited due to the development of intractable constipation, mediated through activation of mu opioid receptors (MOR) expressed by enteric neurons. The related delta opioid receptor (DOR) is an emerging therapeutic target for chronic pain, depression and anxiety. Whether DOR agonists also promote sustained inhibition of colonic transit is unknown. This study examined acute and chronic tolerance to SNC80 and ARM390, which were full and partial DOR agonists in neural pathways controlling colonic motility, respectively. Excitatory pathways developed acute and chronic tolerance to SNC80, whereas only chronic tolerance developed in inhibitory pathways. Both pathways remained functional after acute or chronic ARM390 exposure. Propagating colonic motor patterns were significantly reduced after acute or chronic SNC80 treatment, but not by ARM390 pre-treatment. These findings demonstrate that SNC80 has a prolonged inhibitory effect on propagating colonic motility. ARM390 had no effect on motor patterns and thus may have fewer gastrointestinal side-effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wood JD, Galligan JJ (2004) Function of opioids in the enteric nervous system. Neurogastroenterol Motil 16(Suppl 2):17–28. https://doi.org/10.1111/j.1743-3150.2004.00554.x

    Article  PubMed  Google Scholar 

  2. Hughes PA, Costello SP, Bryant RV, Andrews JM (2016) Opioidergic effects on enteric and sensory nerves in the lower GI tract: basic mechanisms and clinical implications. Am J Physiol Gastrointest Liver Physiol 311(3):G501–G513. https://doi.org/10.1152/ajpgi.00442.2015

    Article  PubMed  Google Scholar 

  3. Ketwaroo GA, Cheng V, Lembo A (2013) Opioid-induced bowel dysfunction. Curr Gastroenterol Rep 15(9):344. https://doi.org/10.1007/s11894-013-0344-2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, Koch T, Evans CJ, Christie MJ (2013) Regulation of mu-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev 65(1):223–254. https://doi.org/10.1124/pr.112.005942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ling GS, Paul D, Simantov R, Pasternak GW (1989) Differential development of acute tolerance to analgesia, respiratory depression, gastrointestinal transit and hormone release in a morphine infusion model. Life Sci 45(18):1627–1636

    Article  CAS  PubMed  Google Scholar 

  6. Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9(5):286–294. https://doi.org/10.1038/nrgastro.2012.32

    Article  CAS  PubMed  Google Scholar 

  7. Ross GR, Gabra BH, Dewey WL, Akbarali HI (2008) Morphine tolerance in the mouse ileum and colon. J Pharmacol Exp Ther 327(2):561–572. https://doi.org/10.1124/jpet.108.143438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gendron L, Mittal N, Beaudry H, Walwyn W (2015) Recent advances on the delta opioid receptor: from trafficking to function. Br J Pharmacol 172(2):403–419. https://doi.org/10.1111/bph.12706

    Article  CAS  PubMed  Google Scholar 

  9. DiCello JJ, Saito A, Rajasekhar P, Eriksson EM, McQuade RM, Nowell CJ, Sebastian BW, Fichna J, Veldhuis NA, Canals M, Bunnett NW, Carbone SE, Poole DP (2018) Inflammation-associated changes in DOR expression and function in the mouse colon. Am J Physiol Gastrointest Liver Physiol. https://doi.org/10.1152/ajpgi.00025.2018

    Article  PubMed  Google Scholar 

  10. Bauer AJ, Sarr MG, Szurszewski JH (1991) Opioids inhibit neuromuscular transmission in circular muscle of human and baboon jejunum. Gastroenterology 101(4):970–976

    Article  CAS  PubMed  Google Scholar 

  11. Poole DP, Pelayo JC, Scherrer G, Evans CJ, Kieffer BL, Bunnett NW (2011) Localization and regulation of fluorescently labeled delta opioid receptor, expressed in enteric neurons of mice. Gastroenterology 141(3):982 e918–991 e918. https://doi.org/10.1053/j.gastro.2011.05.042

    Article  CAS  Google Scholar 

  12. Pradhan AA, Becker JA, Scherrer G, Tryoen-Toth P, Filliol D, Matifas A, Massotte D, Gaveriaux-Ruff C, Kieffer BL (2009) In vivo delta opioid receptor internalization controls behavioral effects of agonists. PLoS One 4(5):e5425. https://doi.org/10.1371/journal.pone.0005425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pradhan AA, Walwyn W, Nozaki C, Filliol D, Erbs E, Matifas A, Evans C, Kieffer BL (2010) Ligand-directed trafficking of the delta-opioid receptor in vivo: two paths toward analgesic tolerance. J Neurosci 30(49):16459–16468. https://doi.org/10.1523/jneurosci.3748-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pradhan AA, Smith ML, Zyuzin J, Charles A (2014) Delta-Opioid receptor agonists inhibit migraine-related hyperalgesia, aversive state and cortical spreading depression in mice. Br J Pharmacol 171(9):2375–2384. https://doi.org/10.1111/bph.12591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rowan MP, Szteyn K, Doyle AP, Gomez R, Henry MA, Jeske NA (2014) beta-arrestin-2-biased agonism of delta opioid receptors sensitizes transient receptor potential vanilloid type 1 (TRPV1) in primary sensory neurons. Mol Pain 10:50. https://doi.org/10.1186/1744-8069-10-50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nozaki C, Nagase H, Nemoto T, Matifas A, Kieffer BL, Gaveriaux-Ruff C (2014) In vivo properties of KNT-127, a novel delta opioid receptor agonist: receptor internalization, antihyperalgesia and antidepressant effects in mice. Br J Pharmacol 171(23):5376–5386. https://doi.org/10.1111/bph.12852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scherrer G, Tryoen-Toth P, Filliol D, Matifas A, Laustriat D, Cao YQ, Basbaum AI, Dierich A, Vonesh JL, Gaveriaux-Ruff C, Kieffer BL (2006) Knockin mice expressing fluorescent delta-opioid receptors uncover G protein-coupled receptor dynamics in vivo. Proc Natl Acad Sci USA 103(25):9691–9696. https://doi.org/10.1073/pnas.0603359103

    Article  CAS  PubMed  Google Scholar 

  18. Vicente-Sanchez A, Segura L, Pradhan AA (2016) The delta opioid receptor tool box. Neuroscience 338:145–159. https://doi.org/10.1016/j.neuroscience.2016.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McQuade RM, Stojanovska V, Donald E, Abalo R, Bornstein JC, Nurgali K (2016) Gastrointestinal dysfunction and enteric neurotoxicity following treatment with anticancer chemotherapeutic agent 5-fluorouracil. Neurogastroenterol Motil 28(12):1861–1875. https://doi.org/10.1111/nmo.12890

    Article  CAS  PubMed  Google Scholar 

  20. Costa M, Dodds KN, Wiklendt L, Spencer NJ, Brookes SJ, Dinning PG (2013) Neurogenic and myogenic motor activity in the colon of the guinea pig, mouse, rabbit, and rat. Am J Physiol Gastrointest Liver Physiol 305(10):G749–G759. https://doi.org/10.1152/ajpgi.00227.2013

    Article  CAS  PubMed  Google Scholar 

  21. Lucchinetti CF, Kimmel DW, Lennon VA (1998) Paraneoplastic and oncologic profiles of patients seropositive for type 1 antineuronal nuclear autoantibodies. Neurology 50(3):652–657

    Article  CAS  PubMed  Google Scholar 

  22. Lay J, Carbone SE, DiCello JJ, Bunnett NW, Canals M, Poole DP (2016) Distribution and trafficking of the mu-opioid receptor in enteric neurons of the guinea pig. Am J Physiol Gastrointest Liver Physiol 311(2):G252–G266. https://doi.org/10.1152/ajpgi.00184.2016

    Article  PubMed  Google Scholar 

  23. Kang M, Maguma HT, Smith TH, Ross GR, Dewey WL, Akbarali HI (2012) The role of beta-arrestin2 in the mechanism of morphine tolerance in the mouse and guinea pig gastrointestinal tract. J Pharmacol Exp Ther 340(3):567–576. https://doi.org/10.1124/jpet.111.186320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maguma HT, Dewey WL, Akbarali HI (2012) Differences in the characteristics of tolerance to mu-opioid receptor agonists in the colon from wild type and beta-arrestin2 knockout mice. Eur J Pharmacol 685(1–3):133–140. https://doi.org/10.1016/j.ejphar.2012.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Spencer NJ, Dinning PG, Brookes SJ, Costa M (2016) Insights into the mechanisms underlying colonic motor patterns. J Physiol 594(15):4099–4116. https://doi.org/10.1113/jp271919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Spencer NJ, Hennig GW, Dickson E, Smith TK (2005) Synchronization of enteric neuronal firing during the murine colonic MMC. J Physiol 564(Pt 3):829–847. https://doi.org/10.1113/jphysiol.2005.083600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. De Man JG, Seerden TC, De Winter BY, Van Marck EA, Herman AG, Pelckmans PA (2003) Alteration of the purinergic modulation of enteric neurotransmission in the mouse ileum during chronic intestinal inflammation. Br J Pharmacol 139(1):172–184. https://doi.org/10.1038/sj.bjp.0705218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pennock RL, Dicken MS, Hentges ST (2012) Multiple inhibitory G-protein-coupled receptors resist acute desensitization in the presynaptic but not postsynaptic compartments of neurons. J Neurosci 32(30):10192–10200. https://doi.org/10.1523/jneurosci.1227-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chavkin C, Goldstein A (1984) Opioid receptor reserve in normal and morphine-tolerant guinea pig ileum myenteric plexus. Proc Natl Acad Sci USA 81(22):7253–7257

    Article  CAS  PubMed  Google Scholar 

  30. Arttamangkul S, Heinz DA, Bunzow JR, Song X, Williams JT (2018) Cellular tolerance at the micro-opioid receptor is phosphorylation dependent. Elife. https://doi.org/10.7554/elife.34989

    Article  PubMed  PubMed Central  Google Scholar 

  31. Arttamangkul S, Quillinan N, Low MJ, von Zastrow M, Pintar J, Williams JT (2008) Differential activation and trafficking of micro-opioid receptors in brain slices. Mol Pharmacol 74(4):972–979. https://doi.org/10.1124/mol.108.048512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marie N, Landemore G, Debout C, Jauzac P, Allouche S (2003) Pharmacological characterization of AR-M1000390 at human delta opioid receptors. Life Sci 73(13):1691–1704

    Article  CAS  PubMed  Google Scholar 

  33. Miess E, Gondin AB, Yousuf A, Steinborn R, Mosslein N, Yang Y, Goldner M, Ruland JG, Bunemann M, Krasel C, Christie MJ, Halls ML, Schulz S, Canals M (2018) Multisite phosphorylation is required for sustained interaction with GRKs and arrestins during rapid mu-opioid receptor desensitization. Sci Signal. https://doi.org/10.1126/scisignal.aas9609

    Article  PubMed  Google Scholar 

  34. Hong MH, Xu C, Wang YJ, Ji JL, Tao YM, Xu XJ, Chen J, Xie X, Chi ZQ, Liu JG (2009) Role of Src in ligand-specific regulation of delta-opioid receptor desensitization and internalization. J Neurochem 108(1):102–114. https://doi.org/10.1111/j.1471-4159.2008.05740.x

    Article  CAS  PubMed  Google Scholar 

  35. Navratilova E, Waite S, Stropova D, Eaton MC, Alves ID, Hruby VJ, Roeske WR, Yamamura HI, Varga EV (2007) Quantitative evaluation of human delta opioid receptor desensitization using the operational model of drug action. Mol Pharmacol 71(5):1416–1426. https://doi.org/10.1124/mol.106.030023

    Article  CAS  PubMed  Google Scholar 

  36. Qiu Y, Loh HH, Law PY (2007) Phosphorylation of the delta-opioid receptor regulates its beta-arrestins selectivity and subsequent receptor internalization and adenylyl cyclase desensitization. J Biol Chem 282(31):22315–22323. https://doi.org/10.1074/jbc.m611258200

    Article  CAS  PubMed  Google Scholar 

  37. Law PY, Kouhen OM, Solberg J, Wang W, Erickson LJ, Loh HH (2000) Deltorphin II-induced rapid desensitization of delta-opioid receptor requires both phosphorylation and internalization of the receptor. J Biol Chem 275(41):32057–32065. https://doi.org/10.1074/jbc.m002395200

    Article  CAS  PubMed  Google Scholar 

  38. Pradhan AA, Perroy J, Walwyn WM, Smith ML, Vicente-Sanchez A, Segura L, Bana A, Kieffer BL, Evans CJ (2016) Agonist-specific recruitment of arrestin isoforms differentially modify delta opioid receptor function. J Neurosci 36(12):3541–3551. https://doi.org/10.1523/jneurosci.4124-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wei ZY, Brown W, Takasaki B, Plobeck N, Delorme D, Zhou F, Yang H, Jones P, Gawell L, Gagnon H, Schmidt R, Yue SY, Walpole C, Payza K, St-Onge S, Labarre M, Godbout C, Jakob A, Butterworth J, Kamassah A, Morin PE, Projean D, Ducharme J, Roberts E (2000) N, N-Diethyl-4-(phenylpiperidin-4-ylidenemethyl)benzamide: a novel, exceptionally selective, potent delta opioid receptor agonist with oral bioavailability and its analogues. J Med Chem 43(21):3895–3905

    Article  CAS  PubMed  Google Scholar 

  40. Leedham JA, Bennett LE, Taylor DA, Fleming WW (1991) Involvement of mu, delta and kappa receptors in morphine-induced tolerance in the guinea pig myenteric plexus. J Pharmacol Exp Ther 259(1):295–301

    CAS  PubMed  Google Scholar 

  41. Vicente-Sanchez A, Dripps IJ, Tipton AF, Akbari H, Akbari A, Jutkiewicz EM, Pradhan AA (2018) Tolerance to high-internalizing delta opioid receptor agonist is critically mediated by arrestin 2. Br J Pharmacol 175(14):3050–3059. https://doi.org/10.1111/bph.14353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Patierno S, Anselmi L, Jaramillo I, Scott D, Garcia R, Sternini C (2011) Morphine induces mu opioid receptor endocytosis in guinea pig enteric neurons following prolonged receptor activation. Gastroenterology 140(2):618–626. https://doi.org/10.1053/j.gastro.2010.11.005

    Article  CAS  PubMed  Google Scholar 

  43. Leterrier C, Laine J, Darmon M, Boudin H, Rossier J, Lenkei Z (2006) Constitutive activation drives compartment-selective endocytosis and axonal targeting of type 1 cannabinoid receptors. J Neurosci 26(12):3141–3153. https://doi.org/10.1523/jneurosci.5437-05.2006

    Article  CAS  PubMed  Google Scholar 

  44. Duraffourd C, Kumala E, Anselmi L, Brecha NC, Sternini C (2014) Opioid-induced mitogen-activated protein kinase signaling in rat enteric neurons following chronic morphine treatment. PLoS One 9(10):e110230. https://doi.org/10.1371/journal.pone.0110230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Charfi I, Abdallah K, Gendron L, Pineyro G (2018) Delta opioid receptors recycle to the membrane after sorting to the degradation path. Cell Mol Life Sci 75(12):2257–2271. https://doi.org/10.1007/s00018-017-2732-5

    Article  CAS  PubMed  Google Scholar 

  46. Audet N, Charfi I, Mnie-Filali O, Amraei M, Chabot-Dore AJ, Millecamps M, Stone LS, Pineyro G (2012) Differential association of receptor-Gbetagamma complexes with beta-arrestin2 determines recycling bias and potential for tolerance of delta opioid receptor agonists. J Neurosci 32(14):4827–4840. https://doi.org/10.1523/jneurosci.3734-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Spencer NJ (2013) Characteristics of colonic migrating motor complexes in neuronal NOS (nNOS) knockout mice. Front Neurosci 7:184. https://doi.org/10.3389/fnins.2013.00184

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dickson EJ, Heredia DJ, McCann CJ, Hennig GW, Smith TK (2010) The mechanisms underlying the generation of the colonic migrating motor complex in both wild-type and nNOS knockout mice. Am J Physiol Gastrointest Liver Physiol 298(2):G222–232. https://doi.org/10.1152/ajpgi.00399.2009

    Article  CAS  PubMed  Google Scholar 

  49. Brierley SM, Nichols K, Grasby DJ, Waterman SA (2001) Neural mechanisms underlying migrating motor complex formation in mouse isolated colon. Br J Pharmacol 132(2):507–517. https://doi.org/10.1038/sj.bjp.0703814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stoeber M, Jullie D, Lobingier BT, Laeremans T, Steyaert J, Schiller PW, Manglik A, von Zastrow M (2018) A genetically encoded biosensor reveals location bias of opioid drug action. Neuron 98(5):963e965–976e965. https://doi.org/10.1016/j.neuron.2018.04.021

    Article  CAS  Google Scholar 

  51. Murphy JE, Padilla BE, Hasdemir B, Cottrell GS, Bunnett NW (2009) Endosomes: a legitimate platform for the signaling train. Proc Natl Acad Sci USA 106(42):17615–17622. https://doi.org/10.1073/pnas.0906541106

    Article  PubMed  Google Scholar 

  52. Broccardo M, Improta G, Tabacco A (1998) Central effect of SNC 80, a selective and systemically active delta-opioid receptor agonist, on gastrointestinal propulsion in the mouse. Eur J Pharmacol 342(2–3):247–251

    Article  CAS  PubMed  Google Scholar 

  53. Codd EE, Carson JR, Colburn RW, Stone DJ, Van Besien CR, Zhang SP, Wade PR, Gallantine EL, Meert TF, Molino L, Pullan S, Razler CM, Dax SL, Flores CM (2009) JNJ-20788560 [9-(8-azabicyclo[3.2.1]oct-3-ylidene)-9H-xanthene-3-carboxylic acid diethylamide], a selective delta opioid receptor agonist, is a potent and efficacious antihyperalgesic agent that does not produce respiratory depression, pharmacologic tolerance, or physical dependence. J Pharmacol Exp Ther 329(1):241–251. https://doi.org/10.1124/jpet.108.146969

    Article  CAS  PubMed  Google Scholar 

  54. Petrillo P, Angelici O, Bingham S, Ficalora G, Garnier M, Zaratin PF, Petrone G, Pozzi O, Sbacchi M, Stean TO, Upton N, Dondio GM, Scheideler MA (2003) Evidence for a selective role of the delta-opioid agonist [8R-(4bS*,8aalpha,8abeta, 12bbeta)]7,10-Dimethyl-1-methoxy-11-(2-methylpropyl)oxycarbonyl 5,6,7,8,12,12b-hexahydro-(9H)-4,8-methanobenzofuro[3,2-e]pyrrolo[2,3-g]isoquinoline hydrochloride (SB-235863) in blocking hyperalgesia associated with inflammatory and neuropathic pain responses. J Pharmacol Exp Ther 307(3):1079–1089. https://doi.org/10.1124/jpet.103.055590

    Article  CAS  PubMed  Google Scholar 

  55. Gallantine EL, Meert TF (2005) A comparison of the antinociceptive and adverse effects of the mu-opioid agonist morphine and the delta-opioid agonist SNC80. Basic Clin Pharmacol Toxicol 97(1):39–51. https://doi.org/10.1111/j.1742-7843.2005.pto_07.x

    Article  CAS  PubMed  Google Scholar 

  56. Altarifi AA, David B, Muchhala KH, Blough BE, Akbarali H, Negus SS (2017) Effects of acute and repeated treatment with the biased mu opioid receptor agonist TRV130 (oliceridine) on measures of antinociception, gastrointestinal function, and abuse liability in rodents. J Psychopharmacol (Oxford, Engl) 31(6):730–739. https://doi.org/10.1177/0269881116689257

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professors Brigitte Kieffer and Macdonald Christie for DOReGFP mice, Dr Sabatino Ventura for advice with pharmacological analysis and Cameron Nowell for advice on image analysis.

Funding

National Health and Medical Research Council (NHMRC) Australia 1049730 and 1121029 (DPP & MC), 1083480 (DPP); JJD, AB and PR are supported by NHMRC Australian Postgraduate Awards. Research in DPP’s laboratory is funded in part by Takeda Pharmaceuticals. The research presented in this manuscript was not related to this agreement.

Author information

Authors and Affiliations

Authors

Contributions

JJD conceived, designed, conducted, analyzed and interpreted experiments, supervised the study and wrote the manuscript. AS conducted and analyzed experiments. BWS and RM conducted experiments. PR assisted with experimental analysis and made Fig. 8. NAV, AB and MC assisted with interpretation of data. SEC conducted experiments, supervised the study, and assisted with drafting of the manuscript. DPP conceived, designed, conducted and analyzed experiments, supervised the study, and wrote the manuscript.

Corresponding authors

Correspondence to Jesse J. DiCello or Daniel P. Poole.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Supplementary Fig. 1

TAN67 acts as a partial DOR agonist in the colon. (a) TAN67 inhibited EFS-evoked contractions in a concentration-dependent manner. (b) TAN67-evoked contractions were desensitized following repeated exposures to agonist. (c) TAN67 (1 nM- 10 µM) only weakly internalized DOReGFP in myenteric neurons (n=21-52 neurons from 3-5 mice). Data are expressed as mean ± s.e.m.; N=5-6 mice for tissue contraction experiments. Statistical comparison performed by one-way repeated measures ANOVA followed by Dunnett’s post-hoc test (*p<0.05 and ***p<0.01)

Supplementary Fig. 2

Prolonged inhibitory effects of DOR and MOR agonists on electrically stimulated contractions of the colon. (a, b) EFS-evoked contractions remained suppressed after each subsequent exposure to SNC80. (c, d) The efficacy at which ARM390 inhibited electrically stimulated contractions significantly increased at the third and fourth addition. (e, f) DAMGO maintained its ability to diminish EFS-evoked contractions at each subsequent exposure. Circles indicate where EFS was applied. Data points are expressed as mean ± s.e.m., n=5-7 mice per treatment. Statistical analyses for the SNC80 and DAMGO data were conducted using a one-way repeated measures ANOVA followed by Dunnett’s post-hoc test. Statistical analyses for the ARM390 data were performed using Friedman’s test followed by Dunn’s post-hoc analysis (*p<0.05 and **p<0.01 compared to 1st addition)

Supplementary Fig. 3

An acute treatment (3 h) with the MOR agonist loperamide reduced CMMC frequency. (a, b) Relatively fewer CMMCs were generated in the loperamide-treated group compared to the equivalent acute SNC80-treated group under basal conditions. The data set presented for the SNC80-pretreated group was taken from Fig. 5d. Yellow arrows indicate representative CMMCs. Data are expressed as mean ± s.e.m., n=8-10 mice per treatment group. Statistical analysis was conducted using the Student’s t test (*p<0.05)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DiCello, J.J., Saito, A., Rajasekhar, P. et al. Agonist-dependent development of delta opioid receptor tolerance in the colon. Cell. Mol. Life Sci. 76, 3033–3050 (2019). https://doi.org/10.1007/s00018-019-03077-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03077-6

Keywords

Navigation