Skip to main content
Log in

Dynamics of kinetochore structure and its regulations during mitotic progression

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Faithful chromosome segregation during mitosis in eukaryotes requires attachment of the kinetochore, a large protein complex assembled on the centromere of each chromosome, to the spindle microtubules. The kinetochore is a structural interface for the microtubule attachment and provides molecular surveillance mechanisms that monitor and ensure the precise microtubule attachment as well, including error correction and spindle assembly checkpoint. During mitotic progression, the kinetochore undergoes dynamic morphological changes that are observable through electron microscopy as well as through fluorescence microscopy. These structural changes might be associated with the kinetochore function. In this review, we summarize how the dynamics of kinetochore morphology are associated with its functions and discuss recent findings on the switching of protein interaction networks in the kinetochore during cell cycle progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cheeseman IM (2014) The kinetochore. Cold Spring Harb Perspect Biol 6:a015826–a015826. https://doi.org/10.1101/cshperspect.a015826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Musacchio A, Desai A (2017) A molecular view of kinetochore assembly and function. Biology 5(6):5. https://doi.org/10.3390/biology6010005

    Article  CAS  Google Scholar 

  3. Fukagawa T, Earnshaw WC (2014) The centromere: chromatin foundation for the kinetochore machinery. Dev Cell 30:496–508. https://doi.org/10.1016/j.devcel.2014.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Musacchio A (2015) The molecular biology of spindle assembly checkpoint signaling dynamics. Curr Biol 25:R1002–R1018. https://doi.org/10.1016/j.cub.2015.08.051

    Article  CAS  PubMed  Google Scholar 

  5. Sacristan C, Kops GJPL (2015) Joined at the hip: kinetochores, microtubules, and spindle assembly checkpoint signaling. Trends Cell Biol 25:21–28. https://doi.org/10.1016/j.tcb.2014.08.006

    Article  CAS  PubMed  Google Scholar 

  6. Sarangapani KK, Asbury CL (2014) Catch and release: how do kinetochores hook the right microtubules during mitosis? Trends Genet 30:150–159. https://doi.org/10.1016/j.tig.2014.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nagpal H, Fukagawa T (2016) Kinetochore assembly and function through the cell cycle. Chromosoma 125:645–659. https://doi.org/10.1007/s00412-016-0608-3

    Article  CAS  PubMed  Google Scholar 

  8. Pesenti ME, Weir JR, Musacchio A (2016) Progress in the structural and functional characterization of kinetochores. Curr Opin Struct Biol 37:152–163. https://doi.org/10.1016/j.sbi.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  9. Thrower DA, Jordan MA, Wilson L (1996) Modulation of CENP-E organization at kinetochores by spindle microtubule attachment. Cell Motil Cytoskeleton 35:121–133. https://doi.org/10.1002/(SICI)1097-0169(1996)35:2%3c121:AID-CM5%3e3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  10. Rieder CL (1982) The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber. Int Rev Cytol 79:1–58. https://doi.org/10.1016/s0074-7696(08)61672-1

    Article  CAS  PubMed  Google Scholar 

  11. McEwen BF, Hsieh CE, Mattheyses AL, Rieder CL (1998) A new look at kinetochore structure in vertebrate somatic cells using high-pressure freezing and freeze substitution. Chromosoma 107:366–375. https://doi.org/10.1007/s004120050320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hoffman DB, Pearson CG, Yen TJ et al (2001) Microtubule-dependent changes in assembly of microtubule motor proteins and mitotic spindle checkpoint proteins at PtK1 kinetochores. Mol Biol Cell 12:1995–2009. https://doi.org/10.1091/mbc.12.7.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wynne DJ, Funabiki H (2015) Kinetochore function is controlled by a phospho-dependent coexpansion of inner and outer components. J Cell Biol 210:899–916. https://doi.org/10.1083/jcb.201506020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krenn V, Musacchio A (2015) The Aurora B kinase in chromosome bi-orientation and spindle checkpoint signaling. Front Oncol 5:225. https://doi.org/10.3389/fonc.2015.00225

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lampson MA, Cheeseman IM (2011) Sensing centromere tension: Aurora B and the regulation of kinetochore function. Trends Cell Biol 21:133–140. https://doi.org/10.1016/j.tcb.2010.10.007

    Article  CAS  PubMed  Google Scholar 

  16. Maresca TJ, Salmon ED (2010) Welcome to a new kind of tension: translating kinetochore mechanics into a wait-anaphase signal. J Cell Sci 123:825–835. https://doi.org/10.1242/jcs.064790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hara M, Fukagawa T (2017) Critical foundation of the kinetochore: the constitutive centromere-associated network (CCAN). Prog Mol Subcell Biol 56:29–57. https://doi.org/10.1007/978-3-319-58592-5_2

    Article  CAS  PubMed  Google Scholar 

  18. Varma D, Salmon ED (2012) The KMN protein network—chief conductors of the kinetochore orchestra. J Cell Sci 125:5927–5936. https://doi.org/10.1242/jcs.093724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Monda JK, Cheeseman IM (2018) The kinetochore-microtubule interface at a glance. J Cell Sci 131:jcs214577. https://doi.org/10.1242/jcs.214577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hara M, Ariyoshi M, Okumura E-I et al (2018) Multiple phosphorylations control recruitment of the KMN network onto kinetochores. Nat Cell Biol 20:1378–1388. https://doi.org/10.1038/s41556-018-0230-0

    Article  CAS  PubMed  Google Scholar 

  21. Watanabe R, Hara M, Okumura E-I et al (2019) CDK1-mediated CENP-C phosphorylation modulates CENP-A binding and mitotic kinetochore localization. J Cell Biol 218:4042–4062. https://doi.org/10.1083/jcb.201907006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McKinley KL, Cheeseman IM (2016) The molecular basis for centromere identity and function. Nat Rev Mol Cell Biol 17:16–29. https://doi.org/10.1038/nrm.2015.5

    Article  CAS  PubMed  Google Scholar 

  23. Brinkley BR, Stubblefield E (1966) The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma 19:28–43. https://doi.org/10.1007/bf00332792

    Article  CAS  PubMed  Google Scholar 

  24. Jokelainen PT (1967) The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells. J Ultrastruct Res 19:19–44. https://doi.org/10.1016/s0022-5320(67)80058-3

    Article  CAS  PubMed  Google Scholar 

  25. Rieder CL (1981) The structure of the cold-stable kinetochore fiber in metaphase PtK1 cells. Chromosoma 84:145–158. https://doi.org/10.1007/bf00293368

    Article  CAS  PubMed  Google Scholar 

  26. McEwen BF, Arena JT, Frank J, Rieder CL (1993) Structure of the colcemid-treated PtK1 kinetochore outer plate as determined by high voltage electron microscopic tomography. J Cell Biol 120:301–312. https://doi.org/10.1083/jcb.120.2.301

    Article  CAS  PubMed  Google Scholar 

  27. McEwen BF, Dong Y (2010) Contrasting models for kinetochore microtubule attachment in mammalian cells. Cell Mol Life Sci 67:2163–2172. https://doi.org/10.1007/s00018-010-0322-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maiato H, DeLuca J, Salmon ED, Earnshaw WC (2004) The dynamic kinetochore–microtubule interface. J Cell Sci 117:5461–5477. https://doi.org/10.1242/jcs.01536

    Article  CAS  PubMed  Google Scholar 

  29. Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A (2006) The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127:983–997. https://doi.org/10.1016/j.cell.2006.09.039

    Article  CAS  PubMed  Google Scholar 

  30. Cheeseman IM, Desai A (2008) Molecular architecture of the kinetochore–microtubule interface. Nat Rev Mol Cell Biol 9:33–46. https://doi.org/10.1038/nrm2310

    Article  CAS  PubMed  Google Scholar 

  31. Foley EA, Kapoor TM (2013) Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol 14:25–37. https://doi.org/10.1038/nrm3494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. DeLuca JG, Dong Y, Hergert P et al (2005) Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol Biol Cell 16:519–531. https://doi.org/10.1091/mbc.e04-09-0852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ciferri C, Pasqualato S, Screpanti E et al (2008) Implications for kinetochore–microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133:427–439. https://doi.org/10.1016/j.cell.2008.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. DeLuca JG, Gall WE, Ciferri C et al (2006) Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127:969–982. https://doi.org/10.1016/j.cell.2006.09.047

    Article  CAS  PubMed  Google Scholar 

  35. Wei RR, Al-Bassam J, Harrison SC (2007) The Ndc80/HEC1 complex is a contact point for kinetochore–microtubule attachment. Nat Struct Mol Biol 14:54–59. https://doi.org/10.1038/nsmb1186

    Article  CAS  PubMed  Google Scholar 

  36. Cassimeris L, Rieder CL, Rupp G, Salmon ED (1990) Stability of microtubule attachment to metaphase kinetochores in PtK1 cells. J Cell Sci 96(Pt 1):9–15

    PubMed  Google Scholar 

  37. Dong Y, Vanden Beldt KJ, Meng X et al (2007) The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions. Nat Cell Biol 9:516–522. https://doi.org/10.1038/ncb1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rieder CL, Alexander SP (1990) Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J Cell Biol 110:81–95. https://doi.org/10.1083/jcb.110.1.81

    Article  CAS  PubMed  Google Scholar 

  39. Yao X, Anderson KL, Cleveland DW (1997) The microtubule-dependent motor centromere-associated protein E (CENP-E) is an integral component of kinetochore corona fibers that link centromeres to spindle microtubules. J Cell Biol 139:435–447. https://doi.org/10.1083/jcb.139.2.435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cooke CA, Schaar B, Yen TJ, Earnshaw WC (1997) Localization of CENP-E in the fibrous corona and outer plate of mammalian kinetochores from prometaphase through anaphase. Chromosoma 106:446–455. https://doi.org/10.1007/s004120050266

    Article  CAS  PubMed  Google Scholar 

  41. Magidson V, He J, Ault JG et al (2016) Unattached kinetochores rather than intrakinetochore tension arrest mitosis in taxol-treated cells. J Cell Biol 212:307–319. https://doi.org/10.1083/jcb.201412139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Johnson VL, Scott MIF, Holt SV et al (2004) Bub1 is required for kinetochore localization of BubR1, Cenp-E, Cenp-F and Mad2, and chromosome congression. J Cell Sci 117:1577–1589. https://doi.org/10.1242/jcs.01006

    Article  CAS  PubMed  Google Scholar 

  43. Rodriguez-Rodriguez J-A, Lewis C, McKinley KL et al (2018) Distinct roles of RZZ and Bub1-KNL1 in mitotic checkpoint signaling and kinetochore expansion. Curr Biol 28:3422–3429.e5. https://doi.org/10.1016/j.cub.2018.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pereira C, Reis RM, Gama JB et al (2018) Self-assembly of the RZZ complex into filaments drives kinetochore expansion in the absence of microtubule attachment. Curr Biol 28:3408–3421.e8. https://doi.org/10.1016/j.cub.2018.08.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Magidson V, Paul R, Yang N et al (2015) Adaptive changes in the kinetochore architecture facilitate proper spindle assembly. Nat Cell Biol 17:1134–1144. https://doi.org/10.1038/ncb3223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wynne DJ, Funabiki H (2016) Heterogeneous architecture of vertebrate kinetochores revealed by three-dimensional superresolution fluorescence microscopy. Mol Biol Cell 27:3395–3404. https://doi.org/10.1091/mbc.E16-02-0130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sacristan C, Ahmad MUD, Keller J et al (2018) Dynamic kinetochore size regulation promotes microtubule capture and chromosome biorientation in mitosis. Nat Cell Biol 20:800–810. https://doi.org/10.1038/s41556-018-0130-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Howell BJ, McEwen BF, Canman JC et al (2001) Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J Cell Biol 155:1159–1172. https://doi.org/10.1083/jcb.200105093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wojcik E, Basto R, Serr M et al (2001) Kinetochore dynein: its dynamics and role in the transport of the Rough deal checkpoint protein. Nat Cell Biol 3:1001–1007. https://doi.org/10.1038/ncb1101-1001

    Article  CAS  PubMed  Google Scholar 

  50. Mische S, He Y, Ma L et al (2008) Dynein light intermediate chain: an essential subunit that contributes to spindle checkpoint inactivation. Mol Biol Cell 19:4918–4929. https://doi.org/10.1091/mbc.e08-05-0483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sivaram MVS, Wadzinski TL, Redick SD et al (2009) Dynein light intermediate chain 1 is required for progress through the spindle assembly checkpoint. EMBO J 28:902–914. https://doi.org/10.1038/emboj.2009.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Karess R (2005) Rod–Zw10–Zwilch: a key player in the spindle checkpoint. Trends Cell Biol 15:386–392. https://doi.org/10.1016/j.tcb.2005.05.003

    Article  CAS  PubMed  Google Scholar 

  53. Karess RE, Glover DM (1989) rough deal: a gene required for proper mitotic segregation in Drosophila. J Cell Biol 109:2951–2961. https://doi.org/10.1083/jcb.109.6.2951

    Article  CAS  PubMed  Google Scholar 

  54. Williams BC, Karr TL, Montgomery JM, Goldberg ML (1992) The Drosophila l(1)zw10 gene product, required for accurate mitotic chromosome segregation, is redistributed at anaphase onset. J Cell Biol 118:759–773. https://doi.org/10.1083/jcb.118.4.759

    Article  CAS  PubMed  Google Scholar 

  55. Starr DA, Williams BC, Li Z et al (1997) Conservation of the centromere/kinetochore protein ZW10. J Cell Biol 138:1289–1301. https://doi.org/10.1083/jcb.138.6.1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Scaërou F, Starr DA, Piano F et al (2001) The ZW10 and Rough Deal checkpoint proteins function together in a large, evolutionarily conserved complex targeted to the kinetochore. J Cell Sci 114:3103–3114

    PubMed  Google Scholar 

  57. Basto R, Gomes R, Karess RE (2000) Rough deal and Zw10 are required for the metaphase checkpoint in Drosophila. Nat Cell Biol 2:939–943. https://doi.org/10.1038/35046592

    Article  CAS  PubMed  Google Scholar 

  58. Chan GK, Jablonski SA, Starr DA et al (2000) Human Zw10 and ROD are mitotic checkpoint proteins that bind to kinetochores. Nat Cell Biol 2:944–947. https://doi.org/10.1038/35046598

    Article  CAS  PubMed  Google Scholar 

  59. Williams BC, Li Z, Liu S et al (2003) Zwilch, a new component of the ZW10/ROD complex required for kinetochore functions. Mol Biol Cell 14:1379–1391. https://doi.org/10.1091/mbc.e02-09-0624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mosalaganti S, Keller J, Altenfeld A et al (2017) Structure of the RZZ complex and molecular basis of its interaction with Spindly. J Cell Biol 216:961–981. https://doi.org/10.1083/jcb.201611060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Griffis ER, Stuurman N, Vale RD (2007) Spindly, a novel protein essential for silencing the spindle assembly checkpoint, recruits dynein to the kinetochore. J Cell Biol 177:1005–1015. https://doi.org/10.1083/jcb.200702062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chan YW, Fava LL, Uldschmid A et al (2009) Mitotic control of kinetochore-associated dynein and spindle orientation by human Spindly. J Cell Biol 185:859–874. https://doi.org/10.1083/jcb.200812167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Barisic M, Sohm B, Mikolcevic P et al (2010) Spindly/CCDC99 is required for efficient chromosome congression and mitotic checkpoint regulation. Mol Biol Cell 21:1968–1981. https://doi.org/10.1091/mbc.e09-04-0356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gassmann R, Holland AJ, Varma D et al (2010) Removal of Spindly from microtubule-attached kinetochores controls spindle checkpoint silencing in human cells. Genes Dev 24:957–971. https://doi.org/10.1101/gad.1886810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Holland AJ, Reis RM, Niessen S et al (2015) Preventing farnesylation of the dynein adaptor Spindly contributes to the mitotic defects caused by farnesyltransferase inhibitors. Mol Biol Cell 26:1845–1856. https://doi.org/10.1091/mbc.E14-11-1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Moudgil DK, Westcott N, Famulski JK et al (2015) A novel role of farnesylation in targeting a mitotic checkpoint protein, human Spindly, to kinetochores. J Cell Biol 208:881–896. https://doi.org/10.1083/jcb.201412085

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gassmann R, Essex A, Hu J-S et al (2008) A new mechanism controlling kinetochore–microtubule interactions revealed by comparison of two dynein-targeting components: SPDL-1 and the Rod/Zwilch/Zw10 complex. Genes Dev 22:2385–2399. https://doi.org/10.1101/gad.1687508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang G, Lischetti T, Hayward DG, Nilsson J (2015) Distinct domains in Bub1 localize RZZ and BubR1 to kinetochores to regulate the checkpoint. Nat Commun 6:7162–7214. https://doi.org/10.1038/ncomms8162

    Article  CAS  PubMed  Google Scholar 

  69. Qian J, García-Gimeno MA, Beullens M et al (2017) An attachment-independent biochemical timer of the spindle assembly checkpoint. Mol Cell 68:715–730.e5. https://doi.org/10.1016/j.molcel.2017.10.011

    Article  CAS  PubMed  Google Scholar 

  70. Caldas GV, Lynch TR, Anderson R et al (2015) The RZZ complex requires the N-terminus of KNL1 to mediate optimal Mad1 kinetochore localization in human cells. Open Biol 5:150160. https://doi.org/10.1098/rsob.150160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gama JB, Pereira C, Simões PA et al (2017) Molecular mechanism of dynein recruitment to kinetochores by the Rod–Zw10–Zwilch complex and Spindly. J Cell Biol 216:943–960. https://doi.org/10.1083/jcb.201610108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Silió V, McAinsh AD, Millar JB (2015) KNL1-Bubs and RZZ provide two separable pathways for checkpoint activation at human kinetochores. Dev Cell 35:600–613. https://doi.org/10.1016/j.devcel.2015.11.012

    Article  CAS  PubMed  Google Scholar 

  73. Kops GJPL, Kim Y, Weaver BAA et al (2005) ZW10 links mitotic checkpoint signaling to the structural kinetochore. J Cell Biol 169:49–60. https://doi.org/10.1083/jcb.200411118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Buffin E, Lefebvre C, Huang J et al (2005) Recruitment of Mad2 to the kinetochore requires the Rod/Zw10 complex. Curr Biol 15:856–861. https://doi.org/10.1016/j.cub.2005.03.052

    Article  CAS  PubMed  Google Scholar 

  75. Basto R, Scaerou F, Mische S et al (2004) In vivo dynamics of the rough deal checkpoint protein during Drosophila mitosis. Curr Biol 14:56–61. https://doi.org/10.1016/j.cub.2003.12.025

    Article  CAS  PubMed  Google Scholar 

  76. Waters JC, Mitchison TJ, Rieder CL, Salmon ED (1996) The kinetochore microtubule minus-end disassembly associated with poleward flux produces a force that can do work. Mol Biol Cell 7:1547–1558. https://doi.org/10.1091/mbc.7.10.1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maresca TJ, Salmon ED (2009) Intrakinetochore stretch is associated with changes in kinetochore phosphorylation and spindle assembly checkpoint activity. J Cell Biol 184:373–381. https://doi.org/10.1083/jcb.200808130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Uchida KSK, Takagaki K, Kumada K et al (2009) Kinetochore stretching inactivates the spindle assembly checkpoint. J Cell Biol 184:383–390. https://doi.org/10.1083/jcb.200811028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wordeman L, Steuer ER, Sheetz MP, Mitchison T (1991) Chemical subdomains within the kinetochore domain of isolated CHO mitotic chromosomes. J Cell Biol 114:285–294. https://doi.org/10.1083/jcb.114.2.285

    Article  CAS  PubMed  Google Scholar 

  80. Schittenhelm RB, Heeger S, Althoff F et al (2007) Spatial organization of a ubiquitous eukaryotic kinetochore protein network in Drosophila chromosomes. Chromosoma 116:385–402. https://doi.org/10.1007/s00412-007-0103-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Biggins S, Severin FF, Bhalla N et al (1999) The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Genes Dev 13:532–544. https://doi.org/10.1101/gad.13.5.532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tanaka TU, Rachidi N, Janke C et al (2002) Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 108:317–329. https://doi.org/10.1016/s0092-8674(02)00633-5

    Article  CAS  PubMed  Google Scholar 

  83. Lampson MA, Renduchitala K, Khodjakov A, Kapoor TM (2004) Correcting improper chromosome-spindle attachments during cell division. Nat Cell Biol 6:232–237. https://doi.org/10.1038/ncb1102

    Article  CAS  PubMed  Google Scholar 

  84. Cimini D, Wan X, Hirel CB, Salmon ED (2006) Aurora kinase promotes turnover of kinetochore microtubules to reduce chromosome segregation errors. Curr Biol 16:1711–1718. https://doi.org/10.1016/j.cub.2006.07.022

    Article  CAS  PubMed  Google Scholar 

  85. Kelly AE, Funabiki H (2009) Correcting aberrant kinetochore microtubule attachments: an Aurora B-centric view. Curr Opin Cell Biol 21:51–58. https://doi.org/10.1016/j.ceb.2009.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Adams RR, Maiato H, Earnshaw WC, Carmena M (2001) Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J Cell Biol 153:865–880. https://doi.org/10.1083/jcb.153.4.865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Carvalho A, Carmena M, Sambade C et al (2003) Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. J Cell Sci 116:2987–2998. https://doi.org/10.1242/jcs.00612

    Article  CAS  PubMed  Google Scholar 

  88. Honda R, Körner R, Nigg EA (2003) Exploring the functional interactions between Aurora B, INCENP, and survivin in mitosis. Mol Biol Cell 14:3325–3341. https://doi.org/10.1091/mbc.e02-11-0769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gassmann R, Carvalho A, Henzing AJ et al (2004) Borealin: a novel chromosomal passenger required for stability of the bipolar mitotic spindle. J Cell Biol 166:179–191. https://doi.org/10.1083/jcb.200404001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Klein UR, Nigg EA, Gruneberg U (2006) Centromere targeting of the chromosomal passenger complex requires a ternary subcomplex of Borealin, Survivin, and the N-terminal domain of INCENP. Mol Biol Cell 17:2547–2558. https://doi.org/10.1091/mbc.e05-12-1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Romano A, Guse A, Krascenicova I et al (2003) CSC-1: a subunit of the Aurora B kinase complex that binds to the survivin-like protein BIR-1 and the incenp-like protein ICP-1. J Cell Biol 161:229–236. https://doi.org/10.1083/jcb.200207117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cooke CA, Heck MM, Earnshaw WC (1987) The inner centromere protein (INCENP) antigens: movement from inner centromere to midbody during mitosis. J Cell Biol 105:2053–2067. https://doi.org/10.1083/jcb.105.5.2053

    Article  CAS  PubMed  Google Scholar 

  93. Kaitna S, Mendoza M, Jantsch-Plunger V, Glotzer M (2000) Incenp and an aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis. Curr Biol 10:1172–1181. https://doi.org/10.1016/s0960-9822(00)00721-1

    Article  CAS  PubMed  Google Scholar 

  94. Sampath SC, Ohi R, Leismann O et al (2004) The chromosomal passenger complex is required for chromatin-induced microtubule stabilization and spindle assembly. Cell 118:187–202. https://doi.org/10.1016/j.cell.2004.06.026

    Article  CAS  PubMed  Google Scholar 

  95. Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917–921. https://doi.org/10.1038/nm0897-917

    Article  CAS  PubMed  Google Scholar 

  96. Samejima K, Platani M, Wolny M et al (2015) The inner centromere protein (INCENP) coil is a single α-helix (SAH) domain that binds directly to microtubules and is important for chromosome passenger complex (CPC) localization and function in mitosis. J Biol Chem 290:21460–21472. https://doi.org/10.1074/jbc.M115.645317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zaytsev AV, Segura-Peña D, Godzi M et al (2016) Bistability of a coupled Aurora B kinase-phosphatase system in cell division. Elife 5:e10644. https://doi.org/10.7554/eLife.10644

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wang E, Ballister ER, Lampson MA (2011) Aurora B dynamics at centromeres create a diffusion-based phosphorylation gradient. J Cell Biol 194:539–549. https://doi.org/10.1083/jcb.201103044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu D, Vader G, Vromans MJM et al (2009) Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates. Science 323:1350–1353. https://doi.org/10.1126/science.1167000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Welburn JPI, Vleugel M, Liu D et al (2010) Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore–microtubule interface. Mol Cell 38:383–392. https://doi.org/10.1016/j.molcel.2010.02.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. DeLuca KF, Lens SMA, DeLuca JG (2011) Temporal changes in Hec1 phosphorylation control kinetochore–microtubule attachment stability during mitosis. J Cell Sci 124:622–634. https://doi.org/10.1242/jcs.072629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cheeseman IM, Anderson S, Jwa M et al (2002) Phospho-regulation of kinetochore–microtubule attachments by the Aurora kinase Ipl1p. Cell 111:163–172. https://doi.org/10.1016/s0092-8674(02)00973-x

    Article  CAS  PubMed  Google Scholar 

  103. Guimaraes GJ, Dong Y, McEwen BF, DeLuca JG (2008) Kinetochore–microtubule attachment relies on the disordered N-terminal tail domain of Hec1. Curr Biol 18:1778–1784. https://doi.org/10.1016/j.cub.2008.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Miller MP, Asbury CL, Biggins S (2016) A TOG protein confers tension sensitivity to kinetochore–microtubule attachments. Cell 165:1428–1439. https://doi.org/10.1016/j.cell.2016.04.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pinsky BA, Kung C, Shokat KM, Biggins S (2006) The Ipl1-Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores. Nat Cell Biol 8:78–83. https://doi.org/10.1038/ncb1341

    Article  CAS  PubMed  Google Scholar 

  106. Liu D, Vleugel M, Backer CB et al (2010) Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase. J Cell Biol 188:809–820. https://doi.org/10.1083/jcb.201001006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Emanuele MJ, Lan W, Jwa M et al (2008) Aurora B kinase and protein phosphatase 1 have opposing roles in modulating kinetochore assembly. J Cell Biol 181:241–254. https://doi.org/10.1083/jcb.200710019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Francisco L, Wang W, Chan CS (1994) Type 1 protein phosphatase acts in opposition to IpL1 protein kinase in regulating yeast chromosome segregation. Mol Cell Biol 14:4731–4740. https://doi.org/10.1128/mcb.14.7.4731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hsu JY, Sun ZW, Li X et al (2000) Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102:279–291. https://doi.org/10.1016/s0092-8674(00)00034-9

    Article  CAS  PubMed  Google Scholar 

  110. Vanoosthuyse V, Hardwick KG (2009) A novel protein phosphatase 1-dependent spindle checkpoint silencing mechanism. Curr Biol 19:1176–1181. https://doi.org/10.1016/j.cub.2009.05.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Etemad B, Kuijt TEF, Kops GJPL (2015) Kinetochore–microtubule attachment is sufficient to satisfy the human spindle assembly checkpoint. Nat Commun 6:8987–8988. https://doi.org/10.1038/ncomms9987

    Article  CAS  PubMed  Google Scholar 

  112. Tauchman EC, Boehm FJ, DeLuca JG (2015) Stable kinetochore–microtubule attachment is sufficient to silence the spindle assembly checkpoint in human cells. Nat Commun 6:10036–10039. https://doi.org/10.1038/ncomms10036

    Article  CAS  PubMed  Google Scholar 

  113. Hori T, Amano M, Suzuki A et al (2008) CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 135:1039–1052. https://doi.org/10.1016/j.cell.2008.10.019

    Article  CAS  PubMed  Google Scholar 

  114. Nishino T, Takeuchi K, Gascoigne KE et al (2012) CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold. Cell 148:487–501. https://doi.org/10.1016/j.cell.2011.11.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Carroll CW, Silva MCC, Godek KM et al (2009) Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nat Cell Biol 11:896–902. https://doi.org/10.1038/ncb1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Carroll CW, Milks KJ, Straight AF (2010) Dual recognition of CENP-A nucleosomes is required for centromere assembly. J Cell Biol 189:1143–1155. https://doi.org/10.1083/jcb.201001013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. McKinley KL, Sekulic N, Guo LY et al (2015) The CENP-L-N complex forms a critical node in an integrated meshwork of interactions at the centromere-kinetochore interface. Mol Cell 60:886–898. https://doi.org/10.1016/j.molcel.2015.10.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kato H, Jiang J, Zhou B-R et al (2013) A conserved mechanism for centromeric nucleosome recognition by centromere protein CENP-C. Science 340:1110–1113. https://doi.org/10.1126/science.1235532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pentakota S, Zhou K, Smith C et al (2017) Decoding the centromeric nucleosome through CENP-N. Elife 6:213. https://doi.org/10.7554/eLife.33442

    Article  Google Scholar 

  120. Chittori S, Hong J, Saunders H et al (2018) Structural mechanisms of centromeric nucleosome recognition by the kinetochore protein CENP-N. Science 359:339–343. https://doi.org/10.1126/science.aar2781

    Article  CAS  PubMed  Google Scholar 

  121. Tian T, Li X, Liu Y et al (2018) Molecular basis for CENP-N recognition of CENP-A nucleosome on the human kinetochore. Cell Res 28:374–378. https://doi.org/10.1038/cr.2018.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Allu PK, Dawicki-McKenna JM, Van Eeuwen T et al (2019) Structure of the human core centromeric nucleosome complex. Curr Biol 29:2625–2639.e5. https://doi.org/10.1016/j.cub.2019.06.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tachiwana H, Kagawa W, Shiga T et al (2011) Crystal structure of the human centromeric nucleosome containing CENP-A. Nature 476:232–235. https://doi.org/10.1038/nature10258

    Article  CAS  PubMed  Google Scholar 

  124. Guo LY, Allu PK, Zandarashvili L et al (2017) Centromeres are maintained by fastening CENP-A to DNA and directing an arginine anchor-dependent nucleosome transition. Nat Commun 8:15775. https://doi.org/10.1038/ncomms15775

    Article  PubMed  PubMed Central  Google Scholar 

  125. Nagpal H, Hori T, Furukawa A et al (2015) Dynamic changes in CCAN organization through CENP-C during cell-cycle progression. Mol Biol Cell 26:3768–3776. https://doi.org/10.1091/mbc.E15-07-0531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fukagawa T, Mikami Y, Nishihashi A et al (2001) CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells. EMBO J 20:4603–4617. https://doi.org/10.1093/emboj/20.16.4603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kwon M-S, Hori T, Okada M, Fukagawa T (2007) CENP-C is involved in chromosome segregation, mitotic checkpoint function, and kinetochore assembly. Mol Biol Cell 18:2155–2168. https://doi.org/10.1091/mbc.E07-01-0045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fang J, Liu Y, Wei Y et al (2015) Structural transitions of centromeric chromatin regulate the cell cycle-dependent recruitment of CENP-N. Genes Dev 29:1058–1073. https://doi.org/10.1101/gad.259432.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hellwig D, Emmerth S, Ulbricht T et al (2011) Dynamics of CENP-N kinetochore binding during the cell cycle. J Cell Sci 124:3871–3883. https://doi.org/10.1242/jcs.088625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kline SL, Cheeseman IM, Hori T et al (2006) The human Mis12 complex is required for kinetochore assembly and proper chromosome segregation. J Cell Biol 173:9–17. https://doi.org/10.1083/jcb.200509158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nishino T, Rago F, Hori T et al (2013) CENP-T provides a structural platform for outer kinetochore assembly. EMBO J 32:424–436. https://doi.org/10.1038/emboj.2012.348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Takeuchi K, Nishino T, Mayanagi K et al (2014) The centromeric nucleosome-like CENP-T-W-S-X complex induces positive supercoils into DNA. Nucleic Acids Res 42:1644–1655. https://doi.org/10.1093/nar/gkt1124

    Article  CAS  PubMed  Google Scholar 

  133. Hara M, Fukagawa T (2019) Where is the right path heading from the centromere to spindle microtubules? Cell Cycle 18:1199–1211. https://doi.org/10.1080/15384101.2019.1617008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hori T, Shang W-H, Takeuchi K, Fukagawa T (2013) The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. J Cell Biol 200:45–60. https://doi.org/10.1083/jcb.201210106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Drinnenberg IA, Akiyoshi B (2017) Evolutionary lessons from species with unique kinetochores. Prog Mol Subcell Biol 56:111–138. https://doi.org/10.1007/978-3-319-58592-5_5

    Article  CAS  PubMed  Google Scholar 

  136. Drinnenberg IA, Henikoff S, Malik HS (2016) Evolutionary turnover of kinetochore proteins: a ship of theseus? Trends Cell Biol 26:498–510. https://doi.org/10.1016/j.tcb.2016.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. van Hooff JJ, Tromer E, van Wijk LM et al (2017) Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics. EMBO Rep 18:1559–1571. https://doi.org/10.15252/embr.201744102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gascoigne KE, Takeuchi K, Suzuki A et al (2011) Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 145:410–422. https://doi.org/10.1016/j.cell.2011.03.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Przewloka MR, Venkei Z, Bolanos-Garcia VM et al (2011) CENP-C is a structural platform for kinetochore assembly. Curr Biol 21:399–405. https://doi.org/10.1016/j.cub.2011.02.005

    Article  CAS  PubMed  Google Scholar 

  140. Screpanti E, De Antoni A, Alushin GM et al (2011) Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore. Curr Biol 21:391–398. https://doi.org/10.1016/j.cub.2010.12.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Petrovic A, Keller J, Liu Y et al (2016) Structure of the MIS12 complex and molecular basis of its interaction with CENP-C at human kinetochores. Cell 167:1028–1040.e15. https://doi.org/10.1016/j.cell.2016.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kim S, Yu H (2015) Multiple assembly mechanisms anchor the KMN spindle checkpoint platform at human mitotic kinetochores. J Cell Biol 208:181–196. https://doi.org/10.1083/jcb.201407074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Dimitrova YN, Jenni S, Valverde R et al (2016) Structure of the MIND complex defines a regulatory focus for yeast kinetochore assembly. Cell 167:1014–1027.e12. https://doi.org/10.1016/j.cell.2016.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rago F, Gascoigne KE, Cheeseman IM (2015) Distinct organization and regulation of the outer kinetochore KMN network downstream of CENP-C and CENP-T. Curr Biol 25:671–677. https://doi.org/10.1016/j.cub.2015.01.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Huis In't Veld PJ, Jeganathan S, Petrovic A et al (2016) Molecular basis of outer kinetochore assembly on CENP-T. Elife. https://doi.org/10.7554/eLife.21007

    Article  Google Scholar 

  146. Malvezzi F, Litos G, Schleiffer A et al (2013) A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors. EMBO J 32:409–423. https://doi.org/10.1038/emboj.2012.356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Vigneron S, Robert P, Hached K et al (2016) The master Greatwall kinase, a critical regulator of mitosis and meiosis. Int J Dev Biol 60:245–254. https://doi.org/10.1387/ijdb.160155tl

    Article  CAS  PubMed  Google Scholar 

  148. Suzuki A, Badger BL, Wan X et al (2014) The architecture of CCAN proteins creates a structural integrity to resist spindle forces and achieve proper Intrakinetochore stretch. Dev Cell 30:717–730. https://doi.org/10.1016/j.devcel.2014.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members in the Fukagawa lab for helpful discussions. This work was supported by JSPS KAKENHI Grant Numbers 15H05972, 16H06279, and 17H06167 to TF, JSPS KAKENHI Grant Number 16K18491 to MH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masatoshi Hara or Tatsuo Fukagawa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hara, M., Fukagawa, T. Dynamics of kinetochore structure and its regulations during mitotic progression. Cell. Mol. Life Sci. 77, 2981–2995 (2020). https://doi.org/10.1007/s00018-020-03472-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03472-4

Keywords

Navigation