Skip to main content

Advertisement

Log in

Thm2 interacts with paralog, Thm1, and sensitizes to Hedgehog signaling in postnatal skeletogenesis

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mutations in the intraflagellar transport-A (IFT-A) gene, THM1, have been identified in skeletal ciliopathies. Here, we report a genetic interaction between Thm1, and its paralog, Thm2, in postnatal skeletogenesis. THM2 localizes to primary cilia, but Thm2 deficiency does not affect ciliogenesis and Thm2-null mice survive into adulthood. However, by postnatal day 14, Thm2−/−; Thm1aln/+ mice exhibit small stature and small mandible. Radiography and microcomputed tomography reveal Thm2−/−; Thm1aln/+ tibia are less opaque and have reduced cortical and trabecular bone mineral density. In the mutant tibial growth plate, the proliferation zone is expanded and the hypertrophic zone is diminished, indicating impaired chondrocyte differentiation. Additionally, mutant growth plate chondrocytes show increased Hedgehog signaling. Yet deletion of one allele of Gli2, a major transcriptional activator of the Hedgehog pathway, exacerbated the Thm2−/−; Thm1aln/+ small phenotype, and further revealed that Thm2−/−; Gli2+/- mice have small stature. In Thm2−/−; Thm1aln/+ primary osteoblasts, a Hedgehog signaling defect was not detected, but bone nodule formation was markedly impaired. This indicates a signaling pathway is altered, and we propose that this pathway may potentially interact with Gli2. Together, our data reveal that loss of Thm2 with one allele of Thm1, Gli2, or both, present new IFT mouse models of osteochondrodysplasia. Our data also suggest Thm2 as a modifier of Hedgehog signaling in postnatal skeletal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Code availability

Not applicable.

References

  1. Xiao Z, Zhang S, Mahlios J, Zhou G, Magenheimer BS, Guo D, Dallas SL, Maser R, Calvet JP, Bonewald L, Quarles LD (2006) Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression. J Biol Chem 281(41):30884–30895. https://doi.org/10.1074/jbc.M604772200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Song B, Haycraft CJ, Seo HS, Yoder BK, Serra R (2007) Development of the post-natal growth plate requires intraflagellar transport proteins. Dev Biol 305(1):202–216. https://doi.org/10.1016/j.ydbio.2007.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Quinlan RJ, Tobin JL, Beales PL (2008) Modeling ciliopathies: primary cilia in development and disease. Curr Top Dev Biol 84:249–310. https://doi.org/10.1016/s0070-2153(08)00605-4

    Article  CAS  PubMed  Google Scholar 

  4. Halbritter J, Bizet AA, Schmidts M, Porath JD, Braun DA, Gee HY, McInerney-Leo AM, Krug P, Filhol E, Davis EE, Airik R, Czarnecki PG, Lehman AM, Trnka P, Nitschke P, Bole-Feysot C, Schueler M, Knebelmann B, Burtey S, Szabo AJ, Tory K, Leo PJ, Gardiner B, McKenzie FA, Zankl A, Brown MA, Hartley JL, Maher ER, Li C, Leroux MR, Scambler PJ, Zhan SH, Jones SJ, Kayserili H, Tuysuz B, Moorani KN, Constantinescu A, Krantz ID, Kaplan BS, Shah JV, Consortium UK, Hurd TW, Doherty D, Katsanis N, Duncan EL, Otto EA, Beales PL, Mitchison HM, Saunier S, Hildebrandt F (2013) Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans. Am J Hum Genet 93(5):915–925. https://doi.org/10.1016/j.ajhg.2013.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Veland IR, Awan A, Pedersen LB, Yoder BK, Christensen ST (2009) Primary cilia and signaling pathways in mammalian development, health and disease. Nephron Physiol 111(3):p39-53. https://doi.org/10.1159/000208212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Valente EM, Rosti RO, Gibbs E, Gleeson JG (2014) Primary cilia in neurodevelopmental disorders. Nat Rev Neurol 10(1):27–36. https://doi.org/10.1038/nrneurol.2013.247

    Article  PubMed  Google Scholar 

  7. Mukhopadhyay S, Wen X, Chih B, Nelson CD, Lane WS, Scales SJ, Jackson PK (2010) TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia. Genes Dev 24(19):2180–2193. https://doi.org/10.1101/gad.1966210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liem KF Jr, Ashe A, He M, Satir P, Moran J, Beier D, Wicking C, Anderson KV (2012) The IFT-A complex regulates Shh signaling through cilia structure and membrane protein trafficking. J Cell Biol 197(6):789–800. https://doi.org/10.1083/jcb.201110049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hirano T, Katoh Y, Nakayama K (2017) Intraflagellar transport-A complex mediates ciliary entry and retrograde trafficking of ciliary G protein-coupled receptors. Mol Biol Cell 28(3):429–439. https://doi.org/10.1091/mbc.E16-11-0813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Picariello T, Brown JM, Hou Y, Swank G, Cochran DA, King OD, Lechtreck K, Pazour GJ, Witman GB (2019) A global analysis of IFT-A function reveals specialization for transport of membrane-associated proteins into cilia. J Cell Sci. https://doi.org/10.1242/jcs.220749

    Article  PubMed  PubMed Central  Google Scholar 

  11. Goetz SC, Anderson KV (2010) The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 11(5):331–344. https://doi.org/10.1038/nrg2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF (2005) Vertebrate smoothened functions at the primary cilium. Nature 437(7061):1018–1021. https://doi.org/10.1038/nature04117

    Article  CAS  PubMed  Google Scholar 

  13. Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK (2005) Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet 1(4):e53. https://doi.org/10.1371/journal.pgen.0010053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV (2003) Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426(6962):83–87. https://doi.org/10.1038/nature02061

    Article  CAS  PubMed  Google Scholar 

  15. Arsov T, Silva DG, O’Bryan MK, Sainsbury A, Lee NJ, Kennedy C, Manji SS, Nelms K, Liu C, Vinuesa CG, de Kretser DM, Goodnow CC, Petrovsky N (2006) Fat aussie—a new Alstrom syndrome mouse showing a critical role for ALMS1 in obesity, diabetes, and spermatogenesis. Mol Endocrinol 20(7):1610–1622. https://doi.org/10.1210/me.2005-0494

    Article  CAS  PubMed  Google Scholar 

  16. Huangfu D, Anderson KV (2005) Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci USA 102(32):11325–11330. https://doi.org/10.1073/pnas.0505328102

    Article  CAS  PubMed  Google Scholar 

  17. Tran PV, Haycraft CJ, Besschetnova TY, Turbe-Doan A, Stottmann RW, Herron BJ, Chesebro AL, Qiu H, Scherz PJ, Shah JV, Yoder BK, Beier DR (2008) THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia. Nat Genet 40(4):403–410. https://doi.org/10.1038/ng.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davis EE, Zhang Q, Liu Q, Diplas BH, Davey LM, Hartley J, Stoetzel C, Szymanska K, Ramaswami G, Logan CV, Muzny DM, Young AC, Wheeler DA, Cruz P, Morgan M, Lewis LR, Cherukuri P, Maskeri B, Hansen NF, Mullikin JC, Blakesley RW, Bouffard GG, Gyapay G, Rieger S, Tonshoff B, Kern I, Soliman NA, Neuhaus TJ, Swoboda KJ, Kayserili H, Gallagher TE, Lewis RA, Bergmann C, Otto EA, Saunier S, Scambler PJ, Beales PL, Gleeson JG, Maher ER, Attie-Bitach T, Dollfus H, Johnson CA, Green ED, Gibbs RA, Hildebrandt F, Pierce EA, Katsanis N (2011) TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum. Nat Genet 43(3):189–196. https://doi.org/10.1038/ng.756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chang CF, Chang YT, Millington G, Brugmann SA (2016) Craniofacial ciliopathies reveal specific requirements for GLI proteins during development of the facial midline. PLoS Genet 12(11):e1006351. https://doi.org/10.1371/journal.pgen.1006351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Driver AM, Shumrick C, Stottmann RW (2017) Ttc21b is required in bergmann glia for proper granule cell radial migration. J Dev Biol. https://doi.org/10.3390/jdb5040018

    Article  PubMed  PubMed Central  Google Scholar 

  21. Arts HH, Bongers EM, Mans DA, van Beersum SE, Oud MM, Bolat E, Spruijt L, Cornelissen EA, Schuurs-Hoeijmakers JH, de Leeuw N, Cormier-Daire V, Brunner HG, Knoers NV, Roepman R (2011) C14ORF179 encoding IFT43 is mutated in Sensenbrenner syndrome. J Med Genet 48(6):390–395. https://doi.org/10.1136/jmg.2011.088864

    Article  CAS  PubMed  Google Scholar 

  22. Duran I, Taylor SP, Zhang W, Martin J, Qureshi F, Jacques SM, Wallerstein R, Lachman RS, Nickerson DA, Bamshad M, Cohn DH, Krakow D (2017) Mutations in IFT-A satellite core component genes IFT43 and IFT121 produce short rib polydactyly syndrome with distinctive campomelia. Cilia 6:7. https://doi.org/10.1186/s13630-017-0051-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Walczak-Sztulpa J, Eggenschwiler J, Osborn D, Brown DA, Emma F, Klingenberg C, Hennekam RC, Torre G, Garshasbi M, Tzschach A, Szczepanska M, Krawczynski M, Zachwieja J, Zwolinska D, Beales PL, Ropers HH, Latos-Bielenska A, Kuss AW (2010) Cranioectodermal dysplasia, sensenbrenner syndrome, is a ciliopathy caused by mutations in the IFT122 gene. Am J Hum Genet 86(6):949–956. https://doi.org/10.1016/j.ajhg.2010.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alazami AM, Seidahmed MZ, Alzahrani F, Mohammed AO, Alkuraya FS (2014) Novel IFT122 mutation associated with impaired ciliogenesis and cranioectodermal dysplasia. Mol Genet Genomic Med 2(2):103–106. https://doi.org/10.1002/mgg3.44

    Article  CAS  PubMed  Google Scholar 

  25. Bredrup C, Saunier S, Oud MM, Fiskerstrand T, Hoischen A, Brackman D, Leh SM, Midtbo M, Filhol E, Bole-Feysot C, Nitschke P, Gilissen C, Haugen OH, Sanders JS, Stolte-Dijkstra I, Mans DA, Steenbergen EJ, Hamel BC, Matignon M, Pfundt R, Jeanpierre C, Boman H, Rodahl E, Veltman JA, Knappskog PM, Knoers NV, Roepman R, Arts HH (2011) Ciliopathies with skeletal anomalies and renal insufficiency due to mutations in the IFT-A gene WDR19. Am J Hum Genet 89(5):634–643. https://doi.org/10.1016/j.ajhg.2011.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Perrault I, Saunier S, Hanein S, Filhol E, Bizet AA, Collins F, Salih MA, Gerber S, Delphin N, Bigot K, Orssaud C, Silva E, Baudouin V, Oud MM, Shannon N, Le Merrer M, Roche O, Pietrement C, Goumid J, Baumann C, Bole-Feysot C, Nitschke P, Zahrate M, Beales P, Arts HH, Munnich A, Kaplan J, Antignac C, Cormier-Daire V, Rozet JM (2012) Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 mutations. Am J Hum Genet 90(5):864–870. https://doi.org/10.1016/j.ajhg.2012.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Belgacem YH, Borodinsky LN (2011) Sonic hedgehog signaling is decoded by calcium spike activity in the developing spinal cord. Proc Natl Acad Sci USA 108(11):4482–4487. https://doi.org/10.1073/pnas.1018217108

    Article  PubMed  Google Scholar 

  28. Beales PL, Bland E, Tobin JL, Bacchelli C, Tuysuz B, Hill J, Rix S, Pearson CG, Kai M, Hartley J, Johnson C, Irving M, Elcioglu N, Winey M, Tada M, Scambler PJ (2007) IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat Genet 39(6):727–729. https://doi.org/10.1038/ng2038

    Article  CAS  PubMed  Google Scholar 

  29. Girisha KM, Shukla A, Trujillano D, Bhavani GS, Hebbar M, Kadavigere R, Rolfs A (2016) A homozygous nonsense variant in IFT52 is associated with a human skeletal ciliopathy. Clin Genet 90(6):536–539. https://doi.org/10.1111/cge.12762

    Article  CAS  PubMed  Google Scholar 

  30. Zhang W, Taylor SP, Nevarez L, Lachman RS, Nickerson DA, Bamshad M, University of Washington Center for Mendelian Genomics C, Krakow D, Cohn DH (2016) IFT52 mutations destabilize anterograde complex assembly, disrupt ciliogenesis and result in short rib polydactyly syndrome. Hum Mol Genet 25(18):4012–4020. https://doi.org/10.1093/hmg/ddw241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shaheen R, Alsahli S, Ewida N, Alzahrani F, Shamseldin HE, Patel N, Al Qahtani A, Alhebbi H, Alhashem A, Al-Sheddi T, Alomar R, Alobeid E, Abouelhoda M, Monies D, Al-Hussaini A, Alzouman MA, Shagrani M, Faqeih E, Alkuraya FS (2020) Biallelic mutations in tetratricopeptide repeat domain 26 (Intraflagellar Transport 56) cause severe biliary ciliopathy in humans. Hepatology 71(6):2067–2079. https://doi.org/10.1002/hep.30982

    Article  CAS  PubMed  Google Scholar 

  32. Herron BJ, Lu W, Rao C, Liu S, Peters H, Bronson RT, Justice MJ, McDonald JD, Beier DR (2002) Efficient generation and mapping of recessive developmental mutations using ENU mutagenesis. Nat Genet 30(2):185–189. https://doi.org/10.1038/ng812

    Article  CAS  PubMed  Google Scholar 

  33. Miller KA, Ah-Cann CJ, Welfare MF, Tan TY, Pope K, Caruana G, Freckmann ML, Savarirayan R, Bertram JF, Dobbie MS, Bateman JF, Farlie PG (2013) Cauli: a mouse strain with an Ift140 mutation that results in a skeletal ciliopathy modelling Jeune syndrome. PLoS Genet 9(8):e1003746. https://doi.org/10.1371/journal.pgen.1003746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ashe A, Butterfield NC, Town L, Courtney AD, Cooper AN, Ferguson C, Barry R, Olsson F, Liem KF Jr, Parton RG, Wainwright BJ, Anderson KV, Whitelaw E, Wicking C (2012) Mutations in mouse Ift144 model the craniofacial, limb and rib defects in skeletal ciliopathies. Hum Mol Genet 21(8):1808–1823. https://doi.org/10.1093/hmg/ddr613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rix S, Calmont A, Scambler PJ, Beales PL (2011) An Ift80 mouse model of short rib polydactyly syndromes shows defects in hedgehog signalling without loss or malformation of cilia. Hum Mol Genet 20(7):1306–1314. https://doi.org/10.1093/hmg/ddr013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Haycraft CJ, Zhang Q, Song B, Jackson WS, Detloff PJ, Serra R, Yoder BK (2007) Intraflagellar transport is essential for endochondral bone formation. Development 134(2):307–316. https://doi.org/10.1242/dev.02732

    Article  CAS  PubMed  Google Scholar 

  37. Drera B, Ferrari D, Cavalli P, Poggiani C (2014) A case of neonatal Jeune syndrome expanding the phenotype. Clin Case Rep 2(4):156–158. https://doi.org/10.1002/ccr3.85

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu W, He X, Yang S, Zouari R, Wang J, Wu H, Kherraf ZE, Liu C, Coutton C, Zhao R, Tang D, Tang S, Lv M, Fang Y, Li W, Li H, Zhao J, Wang X, Zhao S, Zhang J, Arnoult C, Jin L, Zhang Z, Ray PF, Cao Y, Zhang F (2019) Bi-allelic Mutations in TTC21A induce asthenoteratospermia in humans and mice. Am J Hum Genet 104(4):738–748. https://doi.org/10.1016/j.ajhg.2019.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shimada A, Komatsu K, Nakashima K, Poschl E, Nifuji A (2012) Improved methods for detection of beta-galactosidase (lacZ) activity in hard tissue. Histochem Cell Biol 137(6):841–847. https://doi.org/10.1007/s00418-012-0936-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Belluoccio D, Etich J, Rosenbaum S, Frie C, Grskovic I, Stermann J, Ehlen H, Vogel S, Zaucke F, von der Mark K, Bateman JF, Brachvogel B (2010) Sorting of growth plate chondrocytes allows the isolation and characterization of cells of a defined differentiation status. J Bone Miner Res 25(6):1267–1281. https://doi.org/10.1002/jbmr.30

    Article  CAS  PubMed  Google Scholar 

  41. Dallas SL, Miyazono K, Skerry TM, Mundy GR, Bonewald LF (1995) Dual role for the latent transforming growth factor-beta binding protein in storage of latent TGF-beta in the extracellular matrix and as a structural matrix protein. J Cell Biol 131(2):539–549. https://doi.org/10.1083/jcb.131.2.539

    Article  CAS  PubMed  Google Scholar 

  42. Qin J, Lin Y, Norman RX, Ko HW, Eggenschwiler JT (2011) Intraflagellar transport protein 122 antagonizes Sonic Hedgehog signaling and controls ciliary localization of pathway components. Proc Natl Acad Sci USA 108(4):1456–1461. https://doi.org/10.1073/pnas.1011410108

    Article  PubMed  Google Scholar 

  43. Park HL, Bai C, Platt KA, Matise MP, Beeghly A, Hui CC, Nakashima M, Joyner AL (2000) Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 127(8):1593–1605

    CAS  PubMed  Google Scholar 

  44. Abbasi AA, Goode DK, Amir S, Grzeschik KH (2009) Evolution and functional diversification of the GLI family of transcription factors in vertebrates. Evol Bioinform Online 5:5–13. https://doi.org/10.4137/ebo.s2322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423(6937):332–336. https://doi.org/10.1038/nature01657

    Article  CAS  PubMed  Google Scholar 

  46. Yuan X, Yang S (2016) Primary cilia and intraflagellar transport proteins in bone and cartilage. J Dent Res 95(12):1341–1349. https://doi.org/10.1177/0022034516652383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mo R, Freer AM, Zinyk DL, Crackower MA, Michaud J, Heng HH, Chik KW, Shi XM, Tsui LC, Cheng SH, Joyner AL, Hui C (1997) Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development 124(1):113–123

    CAS  PubMed  Google Scholar 

  48. Tao D, Xue H, Zhang C, Li G, Sun Y (2019) The role of IFT140 in osteogenesis of adult mice long bone. J Histochem Cytochem 67(8):601–611. https://doi.org/10.1369/0022155419847188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rauch A, Thiel CT, Schindler D, Wick U, Crow YJ, Ekici AB, van Essen AJ, Goecke TO, Al-Gazali L, Chrzanowska KH, Zweier C, Brunner HG, Becker K, Curry CJ, Dallapiccola B, Devriendt K, Dorfler A, Kinning E, Megarbane A, Meinecke P, Semple RK, Spranger S, Toutain A, Trembath RC, Voss E, Wilson L, Hennekam R, de Zegher F, Dorr HG, Reis A (2008) Mutations in the pericentrin (PCNT) gene cause primordial dwarfism. Science 319(5864):816–819. https://doi.org/10.1126/science.1151174

    Article  CAS  PubMed  Google Scholar 

  50. Kalay E, Yigit G, Aslan Y, Brown KE, Pohl E, Bicknell LS, Kayserili H, Li Y, Tuysuz B, Nurnberg G, Kiess W, Koegl M, Baessmann I, Buruk K, Toraman B, Kayipmaz S, Kul S, Ikbal M, Turner DJ, Taylor MS, Aerts J, Scott C, Milstein K, Dollfus H, Wieczorek D, Brunner HG, Hurles M, Jackson AP, Rauch A, Nurnberg P, Karaguzel A, Wollnik B (2011) CEP152 is a genome maintenance protein disrupted in Seckel syndrome. Nat Genet 43(1):23–26. https://doi.org/10.1038/ng.725

    Article  CAS  PubMed  Google Scholar 

  51. Al-Dosari MS, Shaheen R, Colak D, Alkuraya FS (2010) Novel CENPJ mutation causes Seckel syndrome. J Med Genet 47(6):411–414. https://doi.org/10.1136/jmg.2009.076646

    Article  CAS  PubMed  Google Scholar 

  52. Fu W, Wang L, Kim S, Li J, Dynlacht BD (2016) Role for the IFT-A complex in selective transport to the primary cilium. Cell Rep 17(6):1505–1517. https://doi.org/10.1016/j.celrep.2016.10.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang B, Fallon JF, Beachy PA (2000) Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100(4):423–434

    Article  CAS  Google Scholar 

  54. Tran PV, Talbott GC, Turbe-Doan A, Jacobs DT, Schonfeld MP, Silva LM, Chatterjee A, Prysak M, Allard BA, Beier DR (2014) Downregulating hedgehog signaling reduces renal cystogenic potential of mouse models. J Am Soc Nephrol 25(10):2201–2212. https://doi.org/10.1681/ASN.2013070735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13(16):2072–2086. https://doi.org/10.1101/gad.13.16.2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hsu SH, Zhang X, Cheng S, Wunder JS, Hui CC, Alman BA (2012) Suppressor of fused (Sufu) mediates the effect of parathyroid hormone-like hormone (Pthlh) on chondrocyte differentiation in the growth plate. J Biol Chem 287(43):36222–36228. https://doi.org/10.1074/jbc.M112.382275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang J, Andre P, Ye L, Yang YZ (2015) The Hedgehog signalling pathway in bone formation. Int J Oral Sci 7(2):73–79. https://doi.org/10.1038/ijos.2015.14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schock EN, Struve JN, Chang CF, Williams TJ, Snedeker J, Attia AC, Stottmann RW, Brugmann SA (2017) A tissue-specific role for intraflagellar transport genes during craniofacial development. PLoS ONE 12(3):e0174206. https://doi.org/10.1371/journal.pone.0174206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang W, Allard BA, Pottorf TS, Wang HH, Vivian JL, Tran PV (2020) Genetic interaction of mammalian IFT-A paralogs regulates cilia disassembly, ciliary entry of membrane protein, Hedgehog signaling, and embryogenesis. FASEB J. https://doi.org/10.1096/fj.201902611R

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sanford LP, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP, Cardell EL, Doetschman T (1997) TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 124(13):2659–2670

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ji Y, Ke Y, Gao S (2017) Intermittent activation of notch signaling promotes bone formation. Am J Transl Res 9(6):2933–2944

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tao J, Chen S, Lee B (2010) Alteration of notch signaling in skeletal development and disease. Ann N Y Acad Sci 1192:257–268. https://doi.org/10.1111/j.1749-6632.2009.05307.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhong Z, Ethen NJ, Williams BO (2014) WNT signaling in bone development and homeostasis. Wiley Interdiscip Rev Dev Biol 3(6):489–500. https://doi.org/10.1002/wdev.159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Keady BT, Samtani R, Tobita K, Tsuchya M, San Agustin JT, Follit JA, Jonassen JA, Subramanian R, Lo CW, Pazour GJ (2012) IFT25 links the signal-dependent movement of Hedgehog components to intraflagellar transport. Dev Cell 22(5):940–951. https://doi.org/10.1016/j.devcel.2012.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yoon J, Comerci CJ, Weiss LE, Milenkovic L, Stearns T, Moerner WE (2019) Revealing nanoscale morphology of the primary cilium using super-resolution fluorescence microscopy. Biophys J 116(2):319–329. https://doi.org/10.1016/j.bpj.2018.11.3136

    Article  CAS  PubMed  Google Scholar 

  66. Xin D, Christopher KJ, Zeng L, Kong Y, Weatherbee SD (2017) IFT56 regulates vertebrate developmental patterning by maintaining IFTB complex integrity and ciliary microtubule architecture. Development 144(8):1544–1553. https://doi.org/10.1242/dev.143255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dmitriev AA, Rudenko EE, Kudryavtseva AV, Krasnov GS, Gordiyuk VV, Melnikova NV, Stakhovsky EO, Kononenko OA, Pavlova LS, Kondratieva TT, Alekseev BY, Braga EA, Senchenko VN, Kashuba VI (2014) Epigenetic alterations of chromosome 3 revealed by NotI-microarrays in clear cell renal cell carcinoma. Biomed Res Int 2014:735292. https://doi.org/10.1155/2014/735292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang W, Ren S, Wang Z, Zhang C, Huang J (2020) Increased expression of TTC21A in lung adenocarcinoma infers favorable prognosis and high immune infiltrating level. Int Immunopharmacol 78:106077. https://doi.org/10.1016/j.intimp.2019.106077

    Article  CAS  PubMed  Google Scholar 

  69. Li S, Weinstein G, Zare H, Teumer A, Volker U, Friedrich N, Knol MJ, Satizabal CL, Petyuk VA, Adams HHH, Launer LJ, Bennett DA, De Jager PL, Grabe HJ, Ikram MA, Gudnason V, Yang Q, Seshadri S (2020) The genetics of circulating BDNF: towards understanding the role of BDNF in brain structure and function in middle and old ages. Brain Commun 2(2):fcaa176. https://doi.org/10.1093/braincomms/fcaa176

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the KUMC Dept. of Anatomy and Cell Biology, the Jared Grantham Kidney Institute, and the UMKC Dept. of Oral and Craniofacial Sciences for helpful discussions. We thank Ms. Jing Huang of the KUMC Histology Core and Drs. Vivian and Larson of the KUMC Gene Targeting Institution Facility and acknowledge the support of these cores (Intellectual and Developmental Disabilities Research Center NIH U54 HD090216; KU Cancer Center NIH P30 CA168524; COBRE NIH P30 GM122731). This work was also supported by a KUMC Biomedical Research Training Fellowship, a pilot grant from the Kansas City Consortium on Musculoskeletal Diseases, and the National Institutes of Health (P20 GM14936; R01DK103033).

Funding

We thank members of the KUMC Dept. of Anatomy and Cell Biology, the Jared Grantham Kidney Institute, and the UMKC Dept. of Oral and Craniofacial Sciences for helpful discussions. We thank Jing Huang of the KUMC Histology Core and Drs. Vivian and Larson of the KUMC Gene Targeting Institution Facility and acknowledge the support of these cores (Intellectual and Developmental Disabilities Research Center NIH U54 HD090216; KU Cancer Center NIH P30 CA168524; COBRE NIH P30 GM122731). This work was also supported by a KUMC Biomedical Research Training Fellowship, a pilot grant from the Kansas City Consortium on Musculoskeletal Diseases, and the National Institutes of Health (P20 GM14936; R01DK103033).

Author information

Authors and Affiliations

Authors

Contributions

BAA, WW, TSP, HM, BMJ, HHW, LMS, DTJ, JW, EEB, and PVT performed experiments and analyzed data. BAA, JW, EEB and PVT designed research. BAA, HM, JW, EEB and PVT wrote the manuscript. All authors read and accepted the final manuscript.

Corresponding author

Correspondence to Pamela V. Tran.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

All animal procedures were conducted in accordance with KUMC IACUC and AAALAC rules and regulations.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 285 KB)

Supplementary file2 (MP4 6057 KB)

Supplementary file3 (MP4 4346 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allard, B.A., Wang, W., Pottorf, T.S. et al. Thm2 interacts with paralog, Thm1, and sensitizes to Hedgehog signaling in postnatal skeletogenesis. Cell. Mol. Life Sci. 78, 3743–3762 (2021). https://doi.org/10.1007/s00018-021-03806-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03806-w

Keywords

Navigation