Skip to main content
Log in

Autophagy and apoptosis cascade: which is more prominent in neuronal death?

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are characterized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family members, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to treat neurodegenerative diseases.

Graphical abstract

Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the ubiquitin–proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

NDD’s:

Neurodegenerative diseases

AD:

Alzheimer’s disease

PD:

Parkinson’s disease

ALS:

Amyotrophic lateral sclerosis

HD:

Huntington’s disease

MS:

Multiple sclerosis

UPR:

Unfolded protein response

miRNA:

Micro RNAs

ULK:

UN51-like Ser/Thr kinases

Atg13:

Autophagy-related protein 13

PI3K:

Phosphatidylinositol-3-kinase

Vps34:

Vacuolar protein sorting 34

VPS15:

P15

Atg6:

Beclin-1

Atg14:

Barkor

LC3:

Light chain 3

SNAREs:

Soluble NSF attachment protein receptor

PCD:

Programmed cell death

Bcl-2:

B-cell lymphoma 2

TNF:

Tumor necrosis factor

FADD:

Fas-associated death domain protein

TRAIL:

TNF-related apoptosis-inducing ligand

BH3:

Bcl-2 homology region 3

Smac/DIABLO:

Second Mitochondria-derived Activator of Caspases/ Direct IAP-Binding protein with Low PI

AIFs:

Apoptosis-inducing factors

BAX:

Bcl-2 associated X protein

BAK:

Bcl-2 homologous antagonist/killer

IAP:

Inhibitor of apoptosis

XIAP:

X-linked inhibitor of apoptosis

ROS:

Reactive oxygen species

NOS:

Nitrogen oxygen species

JAK/STAT:

Janus kinases/ Signal Transducer and Activator of Transcription proteins

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

RIPK1:

Receptor interacting protein kinase 1

RIPK3:

Receptor interacting protein kinase 3

DAMP’s:

Damage-associated molecular patterns

MLKL:

Mixed lineage kinase domain-like

TRADD:

Tumor necrosis factor receptor type 1-associated DEATH domain protein

TRAF2:

TNF receptor associated factor 2

Akt:

Protein kinase B

ERAD:

Endoplasmic-reticulum-associated protein degradation

PKR:

Protein kinase RNA

PERK:

Protein kinase RNA like ER kinase

IRE1α:

Inositol-requiring protein 1α

ATF6:

Activating transcription factor 6

CHOP/GADD153:

X-linked inhibitor of apoptosis protein and co-operating with C/EBP homologous protein

ASK1:

Apoptosis signal regulating kinase 1

JNK:

Jun N-terminal kinase

PKC:

Protein kinase C

PUMA:

P53 upregulated modulator of apoptosis

NOXA:

Phorbol-12-myristate-13-acetate-induced protein 1

TPEN:

N,N,N′,N′-tetrakis(2-pyridylmethyl) ethylenediamine

PARP:

Poly (ADP-ribose) polymerase-1

AMPK:

5' AMP-activated protein kinase

m-TORC1:

Mammalian target of rapamycin complex 1

DRAM:

Damaged regulated autophagy modulator

TFEB/TFE3:

The transcription factor EB/Transcription Factor Binding to IGHM Enhancer 3

FOXO3a:

Transcription factor forkhead box O3a

VEGF:

Vascular endothelial growth factor

VEGF2:

Vascular endothelial growth factor receptor 2

STAT3:

Signal transducer and activator of transcription 3

Aβ:

β-Amyloid

MPP+ :

1-Methyl-4-phenylpyridinium ion

FLICE:

FADD-like IL-1β-converting enzyme

BBC3:

Bcl-2 Binding Component 3

HMGB1:

High mobility group box 1

DRGNs:

Dorsal root ganglial neurons

RHEB:

Ras homolog enriched in brain

MAPK:

Mitogen activated protein kinase

Mcl-1:

Myeloid leukemia cell differentiation protein

Hrk/DP5:

Activator of apoptosis Harakiri/ death protein 5

MPTP+ :

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

Cdk5:

Cyclin dependent kinase 5

MEK/ERK:

Mitogen-activated protein kinase 1

ERK1/2:

Extracellular signal-regulated kinase 1

CREB:

CAMP-response element-binding protein

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

APAF1:

Apoptotic protease activating factor 1

NLRP3:

NLR family pyrin domain containing 3

PYCARD:

PYD and CARD domain containing

iNOS:

Inducible nitric oxide synthase

AICAR:

5-Aminoimidazole-4-carboxamide ribonucleotide

GSK3:

Glycogen synthase kinase 3

GSK3β:

Glycogen synthase kinase 3 β

GSK3α:

Glycogen synthase kinase 3 α

NMDAR:

N-methyl-D-aspartate receptor

Nrf2:

Nuclear factor erythroid 2-related factor 2

NLRP1:

NACHT-LRR-PYD domains-containing protein 1

NLRP3:

NACHT-LRR-PYD domains-containing protein 3

NLRC4:

NLR Family CARD Domain Containing 4

ALR’s:

Augmenter of liver regeneration

PAMP and DAMP:

Pathogen and damage associated molecular patterns

SNpc:

Substantia nigra pars compacta

PBBI:

Penetrating ballistic-like brain injury

ROF:

Roflupram

CNS:

Central nervous system

ER:

Endoplasmic reticulum

MALAT1:

Metastasis-associated lung adenocarcinoma transcript 1

NEAT2:

Nuclear-enriched transcript 2

CRNDE:

Colorectal neoplasia differentially expressed

GFAP:

Glial fibrillary acidic protein

BrdU:

Bromodeoxyuridine

SNHG12:

Small nucleolar host gene 12

References

  1. Ribeiro A, Lopes M, Monteiro R et al (2017) Neurodegenerative Disease. Nanomed Inflamm Dis. https://doi.org/10.1201/9781315152356-17

    Article  Google Scholar 

  2. Winner B, Kohl Z, Gage FH (2011) Neurodegenerative disease and adult neurogenesis. Eur J Neurosci 33:1139–1151. https://doi.org/10.1111/J.1460-9568.2011.07613.X

    Article  PubMed  Google Scholar 

  3. Martinez-Vicente M (2015) Autophagy in neurodegenerative diseases: From pathogenic dysfunction to therapeutic modulation. Semin Cell Dev Biol 40:115–126. https://doi.org/10.1016/J.SEMCDB.2015.03.005

    Article  CAS  PubMed  Google Scholar 

  4. Ghavami S, Shojaei S, Yeganeh B et al (2014) Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 112:24–49. https://doi.org/10.1016/J.PNEUROBIO.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  5. Nah J, Yuan J, Jung Y-K (2015) Autophagy in Neurodegenerative Diseases: From Mechanism to Therapeutic Approach. Mol Cells 38:381–389. https://doi.org/10.14348/molcells.2015.0034

  6. Okouchi M, Ekshyyan O, Maracine M, Aw TY (2007) Neuronal Apoptosis in Neurodegeneration. https://home.liebertpub.com/ars 9:1059–1096. https://doi.org/10.1089/ARS.2007.1511

  7. Soto C, Estrada LD (2008) Protein misfolding and neurodegeneration. Arch Neurol 65:184–189. https://doi.org/10.1001/ARCHNEUROL.2007.56

    Article  PubMed  Google Scholar 

  8. Xiang C, Wang Y, Zhang H, Han F (2017) The role of endoplasmic reticulum stress in neurodegenerative disease. Apoptosis. https://doi.org/10.1007/S10495-016-1296-4

    Article  PubMed  Google Scholar 

  9. Radi E, Formichi P, Battisti C, Federico A (2014) Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimer’s Dis 42:S125–S152. https://doi.org/10.3233/JAD-132738

    Article  CAS  Google Scholar 

  10. Mukhopadhyay S, Panda PK, Sinha N et al (2014) (2014) Autophagy and apoptosis: where do they meet? Apoptosis 194(19):555–566. https://doi.org/10.1007/S10495-014-0967-2

    Article  Google Scholar 

  11. Loos B, du Toit A, Hofmeyr J-HS (2014) Defining and measuring autophagosome flux—concept and reality. Autophagy 10:2087–2096. https://doi.org/10.4161/15548627.2014.973338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moloudizargari M, Asghari MH, Ghobadi E et al (2017) Autophagy, its mechanisms and regulation: Implications in neurodegenerative diseases. Ageing Res Rev 40:64–74. https://doi.org/10.1016/J.ARR.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  13. Jung CH, Jun CB, Ro S-H et al (2009) ULK-Atg13-FIP200 complexes mediate mTOR Signaling to the autophagy machinery. Mol Biol Cell 20:1992. https://doi.org/10.1091/MBC.E08-12-1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fan W, Nassiri A, Zhong Q (2011) Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proc Natl Acad Sci 108:7769–7774. https://doi.org/10.1073/pnas.1016472108

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kabeya Y, Mizushima N, Ueno T et al (2003) Erratum: LC3, a mammalian homolog of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  Google Scholar 

  16. Shao Y, Gao Z, Feldman T, Jiang X (2007) Stimulation of ATG12-ATG5 conjugation by ribonucleic acid. Autophagy. https://doi.org/10.4161/auto.3270

    Article  PubMed  Google Scholar 

  17. Fujita N, Hayashi-Nishino M, Fukumoto H et al (2008) An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol Biol Cell. https://doi.org/10.1091/mbc.e08-03-0312

    Article  PubMed  PubMed Central  Google Scholar 

  18. Salminen A, Kaarniranta K, Kauppinen A (2013) Beclin 1 interactome controls the crosstalk between apoptosis, autophagy and inflammasome activation: Impact on the aging process. Ageing Res Rev 12:520–534. https://doi.org/10.1016/J.ARR.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  19. Ravikumar B, Acevedo-Arozena A, Imarisio S et al (2005) Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet. https://doi.org/10.1038/ng1591

    Article  PubMed  Google Scholar 

  20. Toné S, Sugimoto K, Tanda K et al (2007) Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis. Exp Cell Res. https://doi.org/10.1016/j.yexcr.2007.06.018

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tower J (2015) Programmed cell death in aging. Ageing Res Rev 23:90–100. https://doi.org/10.1016/J.ARR.2015.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar R, Herbert PE, Warrens AN (2005) An introduction to death receptors in apoptosis. Int J Surg 3:268–277. https://doi.org/10.1016/J.IJSU.2005.05.002

    Article  CAS  PubMed  Google Scholar 

  23. Roos WP, Kaina B (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med 12:440–450. https://doi.org/10.1016/J.MOLMED.2006.07.007

    Article  CAS  PubMed  Google Scholar 

  24. Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190. https://doi.org/10.1016/S0092-8674(03)00521-X

    Article  CAS  PubMed  Google Scholar 

  25. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147:742. https://doi.org/10.1016/J.CELL.2011.10.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang JH, Zhang Y, Herman B (2003) Caspases, apoptosis and aging. Ageing Res Rev 2:357–366. https://doi.org/10.1016/S1568-1637(03)00026-6

    Article  CAS  PubMed  Google Scholar 

  27. Cheng EH-Y, Wei MC, Weiler S et al (2001) BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8:705–711. https://doi.org/10.1016/S1097-2765(01)00320-3

    Article  CAS  PubMed  Google Scholar 

  28. Wei MC, Zong W-X, Cheng EH-Y et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727. https://doi.org/10.1126/SCIENCE.1059108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Du H, Wolf J, Schafer B et al (2011) BH3 domains other than Bim and Bid can directly activate Bax/Bak. J Biol Chem 286:491. https://doi.org/10.1074/JBC.M110.167148

    Article  CAS  PubMed  Google Scholar 

  30. Okouchi M, Ekshyyan O, Maracine M et al (2007) Neuronal apoptosis in neurodegeneration. Antioxidants Redox Signal. https://doi.org/10.1089/ars.2007.1511

    Article  Google Scholar 

  31. Bakkenist CJ, Kastan MB (2004) Initiating cellular stress responses. Cell 118:9–17. https://doi.org/10.1016/J.CELL.2004.06.023

    Article  CAS  PubMed  Google Scholar 

  32. Chandra J, Samali A, Orrenius S (2000) Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med 29:323–333. https://doi.org/10.1016/S0891-5849(00)00302-6

    Article  CAS  PubMed  Google Scholar 

  33. Krysko O, Aaes TL, Kagan VE et al (2017) Necroptotic cell death in anti-cancer therapy. Immunol Rev 280:207–219. https://doi.org/10.1111/IMR.12583

    Article  CAS  PubMed  Google Scholar 

  34. Conrad M, Angeli JPF, Vandenabeele P (2016) Stockwell BR (2016) Regulated necrosis: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 155(15):348–366. https://doi.org/10.1038/nrd.2015.6

    Article  CAS  Google Scholar 

  35. Galluzzi L, Kepp O, Krautwald S et al (2014) Molecular mechanisms of regulated necrosis. Semin Cell Dev Biol 35:24–32. https://doi.org/10.1016/J.SEMCDB.2014.02.006

    Article  CAS  PubMed  Google Scholar 

  36. Murphy JM, Garnier J-M, Babon JJ et al (2014) Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1408987111

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xia B, Fang S, Chen X et al (2016) MLKL forms cation channels. Cell Res. https://doi.org/10.1038/cr.2016.26

    Article  PubMed  PubMed Central  Google Scholar 

  38. Choi ME, Price DR, Ryter SW, Choi AMK (2019) Necroptosis: a crucial pathogenic mediator of human disease. JCI Insight. https://doi.org/10.1172/JCI.INSIGHT.128834

    Article  PubMed  PubMed Central  Google Scholar 

  39. Han J, Zhong CQ, Zhang DW (2011) Programmed necrosis: Backup to and competitor with apoptosis in the immune system. Nat Immunol 12:1143–1149. https://doi.org/10.1038/NI.2159

    Article  CAS  PubMed  Google Scholar 

  40. Dillon CP, Oberst A, Weinlich R et al (2012) Survival function of the FADD-CASPASE-8-cFLIPL complex. Cell Rep 1:401–407. https://doi.org/10.1016/J.CELREP.2012.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McNamara CR, Ahuja R, Osafo-Addo AD et al (2013) Akt regulates TNFα synthesis downstream of RIP1 kinase activation during necroptosis. PLoS ONE 8:e56576. https://doi.org/10.1371/JOURNAL.PONE.0056576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Iurlaro R, Muñoz-Pinedo C (2016) Cell death induced by endoplasmic reticulum stress. FEBS J 283:2640–2652. https://doi.org/10.1111/FEBS.13598

    Article  CAS  PubMed  Google Scholar 

  43. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 132(13):89–102. https://doi.org/10.1038/nrm3270

    Article  CAS  Google Scholar 

  44. Zhu G, Lee AS (2015) Role of the unfolded protein response, GRP78 and GRP94 in organ homeostasis. J Cell Physiol. https://doi.org/10.1002/jcp.24923

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rodriguez DA, Zamorano S, Lisbona F et al (2012) BH3-only proteins are part of a regulatory network that control the sustained signalling of the unfolded protein response sensor IRE1α. EMBO J. https://doi.org/10.1038/emboj.2012.84

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zalckvar E, Berissi H, Eisenstein M, Kimchi A (2009) Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy 5(5):720–722. https://doi.org/10.4161/auto.5.5.8625

    Article  CAS  PubMed  Google Scholar 

  47. Mariño G, Niso-Santano M, Baehrecke EH (2014) Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 152(15):81–94. https://doi.org/10.1038/nrm3735

    Article  CAS  Google Scholar 

  48. Smaili S, Pereira SG, Costa M et al (2013) The role of calcium stores in apoptosis and autophagy. Curr Mol Med. https://doi.org/10.2174/1566524011313020003

    Article  PubMed  Google Scholar 

  49. He GQ, Chen Y, Liao HJ et al (2020) Associations between Huwe1 and autophagy in rat cerebral neuron oxygen-glucose deprivation and reperfusion injury. Mol Med Rep. https://doi.org/10.3892/mmr.2020.11611

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tsai RT, Tsai CW, Liu SP et al (2020) Maackiain ameliorates 6-hydroxydopamine and snca pathologies by modulating the pink1/parkin pathway in models of parkinson’s disease in caenorhabditis elegans and the sh-sy5y cell line. Int J Mol Sci. https://doi.org/10.3390/ijms21124455

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mudawal A, Srivastava A, Singh A et al (2018) Proteomic approaches to investigate age related vulnerability to lindane induced neurodegenerative effects in rats. Food Chem Toxicol. https://doi.org/10.1016/j.fct.2018.03.049

    Article  PubMed  Google Scholar 

  52. Liu H, Rose ME, Ma X et al (2017) In vivo transduction of neurons with TAT-UCHL1 protects brain against controlled cortical impact injury. PLoS ONE. https://doi.org/10.1371/journal.pone.0178049

    Article  PubMed  PubMed Central  Google Scholar 

  53. Guo F, He XB, Li S, Le W (2017) A central role for phosphorylated p38α in linking proteasome inhibition-induced apoptosis and autophagy. Mol Neurobiol. https://doi.org/10.1007/s12035-016-0260-1

    Article  PubMed  PubMed Central  Google Scholar 

  54. Murdoch JD, Rostosky CM, Gowrisankaran S et al (2016) Endophilin-A deficiency induces the Foxo3a-Fbxo32 network in the brain and causes dysregulation of autophagy and the ubiquitin-proteasome system. Cell Rep. https://doi.org/10.1016/j.celrep.2016.09.058

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fernandez-Estevez MA, Casarejos MJ, Sendon JL et al (2014) Trehalose reverses cell malfunction in fibroblasts from normal and huntington’s disease patients caused by proteosome inhibition. PLoS ONE. https://doi.org/10.1371/journal.pone.0090202

    Article  PubMed  PubMed Central  Google Scholar 

  56. Shruthi K, Reddy SS, Reddy PY et al (2016) Amelioration of neuronal cell death in a spontaneous obese rat model by dietary restriction through modulation of ubiquitin proteasome system. J Nutr Biochem. https://doi.org/10.1016/j.jnutbio.2016.03.008

    Article  PubMed  Google Scholar 

  57. Xu J, Zhang X-Z, Zhang Y-J et al (2015) Silencing of SIAH1 in SH-SY5Y affects α-synuclein degradation pathway. Int J Clin Exp Pathol 8:12885

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hamacher-Brady A, Choe SC, Krijnse-Locker J, Brady NR (2014) Intramitochondrial recruitment of endolysosomes mediates Smac degradation and constitutes a novel intrinsic apoptosis antagonizing function of XIAP E3 ligase. Cell Death Differ. https://doi.org/10.1038/cdd.2014.101

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ojha R, Ishaq M, Singh S (2015) Caspase-mediated crosstalk between autophagy and apoptosis: Mutual adjustment or matter of dominance. J Cancer Res Ther. https://doi.org/10.4103/0973-1482.163695

    Article  PubMed  Google Scholar 

  60. Oral O, Oz-Arslan D, Itah Z et al (2012) Cleavage of Atg3 protein by caspase-8 regulates autophagy during receptor-activated cell death. Apoptosis. https://doi.org/10.1007/s10495-012-0735-0

    Article  PubMed  Google Scholar 

  61. Mulay SR, Desai J, Kumar SV et al (2016) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Nat Commun 25:15077–15082

    Google Scholar 

  62. Suresh SN, Chakravorty A, Giridharan M et al (2020) Pharmacological tools to modulate autophagy in neurodegenerative diseases. J Mol Biol 432:2822–2842. https://doi.org/10.1016/J.JMB.2020.02.023

    Article  CAS  PubMed  Google Scholar 

  63. Song S, Tan J, Miao Y et al (2017) Crosstalk of autophagy and apoptosis: Involvement of the dual role of autophagy under ER stress. J Cell Physiol 232:2977–2984. https://doi.org/10.1002/JCP.25785

    Article  CAS  PubMed  Google Scholar 

  64. Deegan S, Saveljeva S, Logue SE et al (2014) Deficiency in the mitochondrial apoptotic pathway reveals the toxic potential of autophagy under ER stress conditions. Autophagy. https://doi.org/10.4161/15548627.2014.981790

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tomar D, Prajapati P, Sripada L et al (2013) TRIM13 regulates caspase-8 ubiquitination, translocation to autophagosomes and activation during ER stress induced cell death. Biochim Biophys Acta - Mol Cell Res. https://doi.org/10.1016/j.bbamcr.2013.08.021

    Article  Google Scholar 

  66. Amir M, Zhao E, Fontana L et al (2013) Inhibition of hepatocyte autophagy increases tumor necrosis factor-dependent liver injury by promoting caspase-8 activation. Cell Death Differ. https://doi.org/10.1038/cdd.2013.21

    Article  PubMed  PubMed Central  Google Scholar 

  67. Young MM, Takahashi Y, Khan O et al (2012) Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. J Biol Chem 287:12455–12468. https://doi.org/10.1074/jbc.M111.309104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hiramatsu N, Messah C, Han J et al (2014) Translational and posttranslational regulation of XIAP by eIF2 and ATF4 promotes ER stress-induced cell death during the unfolded protein response. Mol Biol Cell. https://doi.org/10.1091/mbc.e13-11-0664

    Article  PubMed  PubMed Central  Google Scholar 

  69. Galluzzi L, Kepp O (2012) Kroemer G (2012) Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 1312(13):780–788. https://doi.org/10.1038/nrm3479

    Article  CAS  Google Scholar 

  70. Youle RJ, Narendra DP (2010) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 121(12):9–14. https://doi.org/10.1038/nrm3028

    Article  CAS  Google Scholar 

  71. Ding W-X, Yin X-M (2012) Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem 393:547. https://doi.org/10.1515/HSZ-2012-0119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rezzani R, Stacchiotti A, Rodella LF (2012) Morphological and biochemical studies on aging and autophagy. Ageing Res Rev 11:10–31. https://doi.org/10.1016/J.ARR.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  73. Hou W, Han J, Lu C et al (2010) Autophagic degradation of active caspase-8: A crosstalk mechanism between autophagy and apoptosis. Autophagy. https://doi.org/10.4161/auto.6.7.13038

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fitzwalter BE, Towers CG, Sullivan KD et al (2018) Autophagy inhibition mediates apoptosis sensitization in cancer therapy by relieving FOXO3a turnover. Dev Cell. https://doi.org/10.1016/j.devcel.2018.02.014

    Article  PubMed  PubMed Central  Google Scholar 

  75. Foglio E, Puddighinu G, Germani A et al (2017) HMGB1 Inhibits apoptosis following mi and induces autophagy via mTORC1 inhibition. J Cell Physiol. https://doi.org/10.1002/jcp.25576

    Article  PubMed  Google Scholar 

  76. Liu J, Xia H, Kim M et al (2011) Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell. https://doi.org/10.1016/j.cell.2011.08.037

    Article  PubMed  PubMed Central  Google Scholar 

  77. Maiuri MC, Galluzzi L, Morselli E et al (2010) Autophagy regulation by p53. Curr Opin Cell Biol 22:181–185. https://doi.org/10.1016/J.CEB.2009.12.001

    Article  CAS  PubMed  Google Scholar 

  78. Labuschagne CF, Zani F, Vousden KH (2018) Control of metabolism by p53 – cancer and beyond. Biochim Biophys Acta Rev Cancer 1870:32–42. https://doi.org/10.1016/J.BBCAN.2018.06.001

    Article  CAS  PubMed  Google Scholar 

  79. Brooks CL, Gu W (2003) Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15:164–171. https://doi.org/10.1016/S0955-0674(03)00003-6

    Article  CAS  PubMed  Google Scholar 

  80. Brooks CL, Gu W (2011) The impact of acetylation and deacetylation on the p53 pathway. Protein Cell 2:456. https://doi.org/10.1007/S13238-011-1063-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Berkers CR, Maddocks ODK, Cheung EC et al (2013) Metabolic regulation by p53 family members. Cell Metab 18:617–633. https://doi.org/10.1016/J.CMET.2013.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Matlashewski G, Banks L, Pim D, Crawford L (1986) Analysis of human p53 proteins and mRNA levels in normal and transformed cells. Eur J Biochem 154:665–672. https://doi.org/10.1111/J.1432-1033.1986.TB09449

    Article  CAS  PubMed  Google Scholar 

  83. Crighton D, Woiwode A, Zhang C et al (2003) p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. EMBO J 22:2810. https://doi.org/10.1093/EMBOJ/CDG265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wu H-J, Pu J-L, Krafft PR et al (2014) The molecular mechanisms between autophagy and apoptosis: potential role in central nervous system disorders. Cell Mol Neurobiol 351(35):85–99. https://doi.org/10.1007/S10571-014-0116-Z

    Article  Google Scholar 

  85. Engeland K (2018) Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ 251(25):114–132. https://doi.org/10.1038/cdd.2017.172

    Article  CAS  Google Scholar 

  86. Singh R, Letai A, Sarosiek K (2019) Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 20:175–193. https://doi.org/10.1038/s41580-018-0089-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Reuter S, Eifes S, Dicato M et al (2008) Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem Pharmacol 76:1340–1351. https://doi.org/10.1016/J.BCP.2008.07.031

    Article  CAS  PubMed  Google Scholar 

  88. Kim HL, Ra H, Kim KR, et al (2015) Poly(ADP-ribosyl)ation of p53 contributes to tpen-induced neuronal apoptosis. Mol Cells. https://doi.org/10.14348/molcells.2015.2142

  89. Okuda A, Kurokawa S, Takehashi M et al (2017) Poly(ADP-ribose) polymerase inhibitors activate the p53 signaling pathway in neural stem/progenitor cells. BMC Neurosci. https://doi.org/10.1186/s12868-016-0333-0

    Article  PubMed  PubMed Central  Google Scholar 

  90. Chantranupong L, Wolfson RL, Orozco JM et al (2014) The sestrins interact with gator2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep. https://doi.org/10.1016/j.celrep.2014.09.014

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kenzelmann Broz D, Mello SS, Bieging KT et al (2013) Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev. https://doi.org/10.1101/gad.212282.112

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lionaki E, Markaki M, Tavernarakis N (2013) Autophagy and ageing: Insights from invertebrate model organisms. Ageing Res Rev 12:413–428. https://doi.org/10.1016/J.ARR.2012.05.001

    Article  CAS  PubMed  Google Scholar 

  93. Brady OA, Jeong E, Martina JA et al (2018) The transcription factors TFE3 and TFEB amplify p53 dependent transcriptional programs in response to DNA damage. Elife. https://doi.org/10.7554/ELIFE.40856

    Article  PubMed  PubMed Central  Google Scholar 

  94. Fischer M (2017) Census and evaluation of p53 target genes. Oncogene 3628(36):3943–3956. https://doi.org/10.1038/onc.2016.502

    Article  CAS  Google Scholar 

  95. Robin M, Issa AR, Santos CC et al (2019) Drosophila p53 integrates the antagonism between autophagy and apoptosis in response to stress. Autophagy 15:771. https://doi.org/10.1080/15548627.2018.1558001

    Article  PubMed  Google Scholar 

  96. Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10(6):417–427. https://doi.org/10.1038/nrd3455

    Article  CAS  PubMed  Google Scholar 

  97. Cross MJ, Claesson-Welsh L (2001) FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci 22:201–207. https://doi.org/10.1016/S0165-6147(00)01676-X

    Article  CAS  PubMed  Google Scholar 

  98. Chau YP, Lin SY, Chen JHC, Tai MH (2003) Endostatin induces autophagic cell death in EAhy926 human endothelial cells. Histol Histopathol https://doi.org/10.14670/HH-18.715

  99. Yang SY, Kim NH, Cho YS et al (2014) Convallatoxin, a dual inducer of autophagy and apoptosis, inhibits angiogenesis in vitro and in vivo. PLoS ONE. https://doi.org/10.1371/journal.pone.0091094

    Article  PubMed  PubMed Central  Google Scholar 

  100. Li Y, Zhang F, Nagai N et al (2008) VEGF-B inhibits apoptosis via VEGFR-1-mediated suppression of the expression of BH3-only protein genes in mice and rats. J Clin Invest. https://doi.org/10.1172/JCI33673

    Article  PubMed  PubMed Central  Google Scholar 

  101. Falk T, Zhang S, Sherman SJ (2009) Vascular endothelial growth factor B (VEGF-B) is up-regulated and exogenous VEGF-B is neuroprotective in a culture model of Parkinson’s disease. Mol Neurodegener. https://doi.org/10.1186/1750-1326-4-49

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ellison SM, Trabalza A, Tisato V et al (2013) Dose-dependent neuroprotection of VEGF165 in Huntington’s disease striatum. Mol Ther. https://doi.org/10.1038/mt.2013.132

    Article  PubMed  PubMed Central  Google Scholar 

  103. Religa P, Cao R, Religa D et al (2013) VEGF significantly restores impaired memory behavior in Alzheimer’s mice by improvement of vascular survival. Sci Rep. https://doi.org/10.1038/srep02053

    Article  PubMed  PubMed Central  Google Scholar 

  104. Yu H, Lin B, He YZ et al (2015) Batroxobin protects against spinal cord injury in rats by promoting the expression of vascular endothelial growth factor to reduce apoptosis. Exp Ther Med. https://doi.org/10.3892/etm.2015.2368

    Article  PubMed  PubMed Central  Google Scholar 

  105. Cui W, Li W, Han R et al (2011) PI3-K/Akt and ERK pathways activated by VEGF play opposite roles in MPP+-induced neuronal apoptosis. Neurochem Int 59:945–953. https://doi.org/10.1016/j.neuint.2011.07.005

    Article  CAS  PubMed  Google Scholar 

  106. Caballero B, Sherman SJ, Falk T (2017) Insights into the mechanisms involved in protective effects of VEGF-B in dopaminergic neurons. Parkinsons Dis. https://doi.org/10.1155/2017/4263795

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 105(10):307–318. https://doi.org/10.1038/nrm2672

    Article  CAS  Google Scholar 

  108. Ben-Sahra I, Howell JJ, Asara JM, Manning BD (2013) Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339:1323. https://doi.org/10.1126/SCIENCE.1228792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ravikumar B, Sarkar S, Davies JE et al (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435. https://doi.org/10.1152/PHYSREV.00030.2009

    Article  CAS  PubMed  Google Scholar 

  110. Fitzwalter B, Thorburn A (2015) Recent insights into cell death and autophagy. FEBS J 282:4279. https://doi.org/10.1111/FEBS.13515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pazoki-Toroudi H, Amani H, Ajami M et al (2016) Targeting mTOR signaling by polyphenols: A new therapeutic target for ageing. Ageing Res Rev 31:55–66. https://doi.org/10.1016/J.ARR.2016.07.004

    Article  CAS  PubMed  Google Scholar 

  112. Urbanska M, Gozdz A, Swiech LJ, Jaworski J (2012) Mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) control the dendritic arbor morphology of hippocampal neurons. J Biol Chem. https://doi.org/10.1074/jbc.M112.374405

    Article  PubMed  PubMed Central  Google Scholar 

  113. Rüegg MA (2013) In vivo evidence for mTORC2-mediated actin cytoskeleton rearrangement in neurons. BioArchitecture. https://doi.org/10.4161/bioa.26497

    Article  PubMed  PubMed Central  Google Scholar 

  114. Sosanya NM, Cacheaux LP, Workman ER et al (2015) Mammalian target of rapamycin (mTOR) tagging promotes dendritic branch variability through the capture of Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα) mRNAs by the RNA-binding protein HuD. J Biol Chem 290:16357–16371. https://doi.org/10.1074/jbc.M114.599399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Abe N, Borson SH, Gambello MJ et al (2010) Mammalian target of rapamycin (mTOR) activation increases axonal growth capacity of injured peripheral nerves. J Biol Chem. https://doi.org/10.1074/jbc.M110.125336

    Article  PubMed  PubMed Central  Google Scholar 

  116. Nie D, Di Nardo A, Han JM et al (2010) Tsc2-Rheb signaling regulates EphA-mediated axon guidance. Nat Neurosci. https://doi.org/10.1038/nn.2477

    Article  PubMed  PubMed Central  Google Scholar 

  117. Weston MC, Chen H, Swann JW (2012) Multiple Roles for Mammalian target of rapamycin signaling in both glutamatergic and GABAergic synaptic transmission. J Neurosci. https://doi.org/10.1523/jneurosci.1283-12.2012

    Article  PubMed  PubMed Central  Google Scholar 

  118. Briz V, Zhu G, Wang Y et al (2015) Activity-dependent rapid local RhoA synthesis is required for hippocampal synaptic plasticity. J Neurosci. https://doi.org/10.1523/jneurosci.2302-14.2015

    Article  PubMed  PubMed Central  Google Scholar 

  119. Hou L (2004) Activation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. J Neurosci. https://doi.org/10.1523/jneurosci.0995-04.2004

    Article  PubMed  PubMed Central  Google Scholar 

  120. Richardson A, Galvan V, Lin AL, Oddo S (2015) How longevity research can lead to therapies for Alzheimer’s disease: The rapamycin story. Exp Gerontol. https://doi.org/10.1016/j.exger.2014.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  121. Caccamo A, Branca C, Talboom JS et al (2015) Reducing Ribosomal Protein S6 Kinase 1 Expression Improves Spatial Memory and Synaptic Plasticity in a Mouse Model of Alzheimer’s Disease. J Neurosci. https://doi.org/10.1523/jneurosci.2781-15.2015

    Article  PubMed  PubMed Central  Google Scholar 

  122. Siman R, Cocca R, Dong Y (2015) The mTOR inhibitor rapamycin mitigates perforant pathway neurodegeneration and synapse loss in a mouse model of early-stage Alzheimer-type tauopathy. PLoS ONE. https://doi.org/10.1371/journal.pone.0142340

    Article  PubMed  PubMed Central  Google Scholar 

  123. Frederick C, Ando K, Leroy K et al (2015) Rapamycin ester analog CCI-779/Temsirolimus alleviates tau pathology and improves motor deficit in mutant tau transgenic mice. J Alzheimer’s Dis. https://doi.org/10.3233/JAD-142097

    Article  Google Scholar 

  124. Pan T, Kondo S, Le W, Jankovic J (2008) The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain 131:1969–1978. https://doi.org/10.1093/BRAIN/AWM318

    Article  PubMed  Google Scholar 

  125. Spencer B, Potkar R, Trejo M et al (2009) Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in α-synuclein models of parkinson’s and lewy body diseases. J Neurosci 29:13578. https://doi.org/10.1523/JNEUROSCI.4390-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sarosiek KA, Fraser C, Muthalagu N et al (2017) Developmental Regulation of Mitochondrial Apoptosis by c-Myc Governs Age- and Tissue-Specific Sensitivity to Cancer Therapeutics. Cancer Cell 31:142–156. https://doi.org/10.1016/J.CCELL.2016.11.011

    Article  CAS  PubMed  Google Scholar 

  127. Polster BM, Basañez G, Young M et al (2003) Inhibition of bax-induced cytochrome c release from neural cell and brain mitochondria by dibucaine and propranolol. J Neurosci 23:2735. https://doi.org/10.1523/JNEUROSCI.23-07-02735.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhu C, Wang X, Xu F et al (2005) (2004) The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia–ischemia. Cell Death Differ 122(12):162–176. https://doi.org/10.1038/sj.cdd.4401545

    Article  CAS  Google Scholar 

  129. Shimohama S, Fujimoto S, Sumida Y, Tanino H (1998) Differential expression of rat brain Bcl-2 Family proteins in development and aging. Biochem Biophys Res Commun 252:92–96. https://doi.org/10.1006/BBRC.1998.9577

    Article  CAS  PubMed  Google Scholar 

  130. Ke F, Bouillet P, Kaufmann T et al (2013) Consequences of the combined loss of BOK and BAK or BOK and BAX. Cell Death Dis. https://doi.org/10.1038/cddis.2013.176

    Article  PubMed  PubMed Central  Google Scholar 

  131. Sun W, Gould TW, Vinsant S et al (2018) Neuromuscular development after the prevention of naturally occurring neuronal death by bax deletion. J Neurosci. https://doi.org/10.1523/jneurosci.23-19-07298.2003

    Article  PubMed  PubMed Central  Google Scholar 

  132. Miller TM, Moulder KL, Knudson CM et al (1997) Bax deletion further orders the cell death pathway in cerebellar granule cells and suggests a caspase-independent pathway to cell death. J Cell Biol. https://doi.org/10.1083/jcb.139.1.205

    Article  PubMed  PubMed Central  Google Scholar 

  133. Kudo W, Lee HP, Smith MA et al (2012) Inhibition of Bax protects neuronal cells from oligomeric Aβ neurotoxicity. Cell Death Dis. https://doi.org/10.1038/cddis.2012.43

    Article  PubMed  PubMed Central  Google Scholar 

  134. Jakobson M, Jakobson M, Llano O et al (2013) Multiple mechanisms repress N-Bak mRNA translation in the healthy and apoptotic neurons. Cell Death Dis. https://doi.org/10.1038/cddis.2013.297

    Article  PubMed  PubMed Central  Google Scholar 

  135. Uo T, Kinoshita Y, Morrison RS (2005) Neurons exclusively express N-Bak, a BH3 domain-only Bak isoform that promotes neuronal apoptosis. J Biol Chem. https://doi.org/10.1074/jbc.M413030200

    Article  PubMed  Google Scholar 

  136. Fannjiang Y, Kim CH, Huganir RL et al (2003) BAK alters neuronal excitability and can switch from anti- to pro-death function during postnatal development. Dev Cell. https://doi.org/10.1016/S1534-5807(03)00091-1

    Article  PubMed  Google Scholar 

  137. Wang Y, Zhang Y, Zhang X et al (2019) Alcohol dehydrogenase 1B suppresses β-amyloid-induced neuron apoptosis. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2019.00135

    Article  PubMed  PubMed Central  Google Scholar 

  138. Liu M, Bai X, Yu S et al (2019) Ginsenoside re inhibits ROS/ASK-1 dependent mitochondrial apoptosis pathway and activation of Nrf2-antioxidant response in beta-amyloid-challenged SH-SY5Y cells. Molecules. https://doi.org/10.3390/MOLECULES24152687

    Article  PubMed  PubMed Central  Google Scholar 

  139. He G-Q, Xu W-M, Liao H-J et al (2019) Silencing Huwe1 reduces apoptosis of cortical neurons exposed to oxygen-glucose deprivation and reperfusion. Neural Regen Res 14:1977–1985. https://doi.org/10.4103/1673-5374.259620

    Article  PubMed  PubMed Central  Google Scholar 

  140. Arbour N, Vanderluit JL, Le Grand JN et al (2008) Mcl-1 is a key regulator of apoptosis during CNS development and after DNA damage. J Neurosci. https://doi.org/10.1523/jneurosci.4940-07.2008

    Article  PubMed  PubMed Central  Google Scholar 

  141. Crowther AJ, Gama V, Bevilacqua A et al (2013) Tonic activation of bax primes neural progenitors for rapid apoptosis through a mechanism preserved in medulloblastoma. J Neurosci. https://doi.org/10.1523/jneurosci.2602-13.2013

    Article  PubMed  PubMed Central  Google Scholar 

  142. Nakamura A, Swahari V, Plestant C et al (2016) Bcl-xL is essential for the survival and function of differentiated neurons in the cortex that control complex behaviors. J Neurosci. https://doi.org/10.1523/jneurosci.4247-15.2016

    Article  PubMed  PubMed Central  Google Scholar 

  143. Fogarty LC, Flemmer RT, Geizer BA et al (2018) Mcl-1 and Bcl-xL are essential for survival of the developing nervous system. Cell Death Differ. https://doi.org/10.1038/s41418-018-0225-1

    Article  PubMed  PubMed Central  Google Scholar 

  144. Michaelidis TM, Sendtner M, Cooper JD et al (1996) Inactivation of bcl-2 results in progressive degeneration of motoneurons, sympathetic and sensory neurons during early postnatal development. Neuron. https://doi.org/10.1016/S0896-6273(00)80282-2

    Article  PubMed  Google Scholar 

  145. Hochman A, Sternin H, Gorodin S et al (2002) Enhanced oxidative stress and altered antioxidants in brains of Bcl-2-deficient mice. J Neurochem. https://doi.org/10.1046/j.1471-4159.1998.71020741.x

    Article  Google Scholar 

  146. Middleton G, Wyatt S, Ninkina N, Davies AM (2001) Reciprocal developmental changes in the roles of Bcl-w and Bcl-x(L) in regulating sensory neuron survival. Development 128:447–457. https://doi.org/10.1242/DEV.128.3.447

    Article  CAS  PubMed  Google Scholar 

  147. Murphy B, Dunleavy M, Shinoda S et al (2007) Bcl-w protects hippocampus during experimental status epilepticus. Am J Pathol. https://doi.org/10.2353/ajpath.2007.070269

    Article  PubMed  PubMed Central  Google Scholar 

  148. Courchesne SL, Karch C, Pazyra-Murphy MF, Segal RA (2011) Sensory Neuropathy Attributable to Loss of Bcl-w. J Neurosci. https://doi.org/10.1523/jneurosci.3347-10.2011

    Article  PubMed  PubMed Central  Google Scholar 

  149. Simon DJ, Pitts J, Hertz NT et al (2016) Axon degeneration gated by retrograde activation of somatic pro-apoptotic signaling. Cell. https://doi.org/10.1016/j.cell.2016.01.032

    Article  PubMed  PubMed Central  Google Scholar 

  150. Henshall DC, Engel T (2013) Contribution of apoptosis-associated signaling pathways to epileptogenesis: lessons from Bcl-2 family knockouts. Front Cell Neurosci. https://doi.org/10.3389/fncel.2013.00110

    Article  PubMed  PubMed Central  Google Scholar 

  151. Krajewska M, Mai JK, Zapata JM, et al (2002) Dynamics of expression of apoptosis-regulatory proteins Bid, Bcl-2, Bcl-X, Bax and Bak during development of murine nervous system. Cell Death Differ. https://doi.org/10.1038/sj.cdd.4400934

  152. Madden SD, Donovan M, Cotter TG (2007) Key apoptosis regulating proteins are down-regulated during postnatal tissue development. Int J Dev Biol. https://doi.org/10.1387/ijdb.062263sm

    Article  PubMed  Google Scholar 

  153. Imaizumi K, Tsuda M, Imai Y et al (1997) Molecular cloning of a novel polypeptide, DP5, induced during programmed neuronal death. J Biol Chem. https://doi.org/10.1074/jbc.272.30.18842

    Article  PubMed  Google Scholar 

  154. Shimohama S, Fujimoto S, Sumida Y, Tanino H (1998) Differential expression of rat brain Bcl-2 family proteins in development and aging. Biochem Biophys Res Commun. https://doi.org/10.1006/bbrc.1998.9577

    Article  PubMed  Google Scholar 

  155. Akhter R, Sanphui P, Biswas SC (2014) The essential role of p53-up-regulated modulator of apoptosis (Puma) and its regulation by FoxO3a transcription factor in β-amyloid-induced neuron death. J Biol Chem. https://doi.org/10.1074/jbc.M113.519355

    Article  PubMed  PubMed Central  Google Scholar 

  156. Kole AJ, Swahari V, Hammond SM, Deshmukh M (2011) miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes Dev. https://doi.org/10.1101/gad.1975411

    Article  PubMed  PubMed Central  Google Scholar 

  157. Akhter R, Saleem S, Saha A, Biswas SC (2018) The pro-apoptotic protein Bmf co-operates with Bim and Puma in neuron death induced by β-amyloid or NGF deprivation. Mol Cell Neurosci. https://doi.org/10.1016/j.mcn.2018.02.011

    Article  PubMed  Google Scholar 

  158. Concannon CG, Tuffy LP, Weisová P et al (2010) AMP kinase-mediated activation of the BH3-only protein Bim couples energy depletion to stressinduced apoptosis. J Cell Biol. https://doi.org/10.1083/jcb.200909166

    Article  PubMed  PubMed Central  Google Scholar 

  159. Harder JM (2013) Libby RT (2012) Deficiency in Bim, Bid and Bbc3 (Puma) do not prevent axonal injury induced death. Cell Death Differ 201(20):182–182. https://doi.org/10.1038/cdd.2012.119

    Article  CAS  Google Scholar 

  160. Fernandes KA, Harder JM, Kim J, Libby RT (2013) JUN regulates early transcriptional responses to axonal injury in retinal ganglion cells. Exp Eye Res. https://doi.org/10.1016/j.exer.2013.04.021

    Article  PubMed  PubMed Central  Google Scholar 

  161. Ren D, Tu HC, Kim H et al (2010) BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science (80-). https://doi.org/10.1126/science.1190217

    Article  PubMed Central  Google Scholar 

  162. Wong HK, Fricker M, Wyttenbach A et al (2005) Mutually exclusive subsets of BH3-only proteins are activated by the p53 and c-Jun N-terminal kinase/c-Jun signaling pathways during cortical neuron apoptosis induced by arsenite. Mol Cell Biol 25:8732–8747. https://doi.org/10.1128/MCB.25.19.8732-8747.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kuan C-Y, Whitmarsh AJ, Yang DD et al (2003) A critical role of neural-specific JNK3 for ischemic apoptosis. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.2336254100

    Article  PubMed  PubMed Central  Google Scholar 

  164. Towers E, Gilley J, Randall R et al (2009) The proapoptotic dp5 gene is a direct target of the MLK-JNK-c-Jun pathway in sympathetic neurons. Nucleic Acids Res. https://doi.org/10.1093/nar/gkp175

    Article  PubMed  PubMed Central  Google Scholar 

  165. Ma C, Ying C, Yuan Z et al (2007) dp5/HRK is a c-Jun target gene and required for apoptosis induced by potassium deprivation in cerebellar granule neurons. J Biol Chem 282:30901–30909. https://doi.org/10.1074/jbc.M608694200

    Article  CAS  PubMed  Google Scholar 

  166. Kristiansen M, Menghi F, Hughes R et al (2011) Global analysis of gene expression in NGF-deprived sympathetic neurons identifies molecular pathways associated with cell death. BMC Genom. https://doi.org/10.1186/1471-2164-12-551

    Article  Google Scholar 

  167. Ambacher KK, Pitzul KB, Karajgikar M et al (2012) The JNK- and AKT/GSK3beta- signaling pathways converge to regulate Puma induction and neuronal apoptosis induced by trophic factor deprivation. PLoS ONE 7:e46885. https://doi.org/10.1371/journal.pone.0046885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Akhter R, Sanphui P, Das H et al (2015) The regulation of p53 up-regulated modulator of apoptosis by JNK/c-Jun pathway in beta-amyloid-induced neuron death. J Neurochem 134:1091–1103. https://doi.org/10.1111/jnc.13128

    Article  CAS  PubMed  Google Scholar 

  169. Biswas SC, Shi Y, Sproul A, Greene LA (2007) Pro-apoptotic Bim induction in response to nerve growth factor deprivation requires simultaneous activation of three different death signaling pathways. J Biol Chem. https://doi.org/10.1074/jbc.M702634200

    Article  PubMed  Google Scholar 

  170. Harder JM, Libby RT (2013) Deficiency in Bim, Bid and Bbc3 (Puma) do not prevent axonal injury induced death. Cell Death Differ 20(1):182

    Article  CAS  Google Scholar 

  171. Maor-Nof M, Romi E, Shalom HS et al (2016) Axonal degeneration is regulated by a transcriptional program that coordinates expression of pro- and anti-degenerative factors. Neuron. https://doi.org/10.1016/j.neuron.2016.10.061

    Article  PubMed  Google Scholar 

  172. Engel T, Murphy BM, Hatazaki S et al (2010) Reduced hippocampal damage and epileptic seizures after status epilepticus in mice lacking proapoptotic Puma. FASEB J. https://doi.org/10.1096/fj.09-145870

    Article  PubMed  PubMed Central  Google Scholar 

  173. Qi X, Davis B, Chiang YH et al (2016) Dopaminergic neuron-specific deletion of p53 gene is neuroprotective in an experimental Parkinson’s disease model. J Neurochem. https://doi.org/10.1111/jnc.13706

    Article  PubMed  PubMed Central  Google Scholar 

  174. Cregan SP (2004) p53 Activation domain 1 Is essential for PUMA upregulation and p53-mediated neuronal cell death. J Neurosci. https://doi.org/10.1523/jneurosci.2114-04.2004

    Article  PubMed  PubMed Central  Google Scholar 

  175. Sanphui P, Biswas SC (2013) FoxO3a is activated and executes neuron death via Bim in response to β-amyloid. Cell Death Dis. https://doi.org/10.1038/cddis.2013.148

    Article  PubMed  PubMed Central  Google Scholar 

  176. Li D, Luo L, Xu M et al (2017) AMPK activates FOXO3a and promotes neuronal apoptosis in the developing rat brain during the early phase after hypoxia-ischemia. Brain Res Bull. https://doi.org/10.1016/j.brainresbull.2017.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  177. Davila D, Connolly NMC, Bonner H et al (2012) Two-step activation of FOXO3 by AMPK generates a coherent feed-forward loop determining excitotoxic cell fate. Cell Death Differ. https://doi.org/10.1038/cdd.2012.49

    Article  PubMed  PubMed Central  Google Scholar 

  178. Zareen N, Biswas SC, Greene LA (2013) A feed-forward loop involving Trib3, Akt and FoxO mediates death of NGF-deprived neurons. Cell Death Differ https://doi.org/10.1038/cdd.2013.128

  179. Saleem S, Biswas SC (2017) Tribbles pseudokinase 3 induces both apoptosis and autophagy in amyloid-β-induced neuronal death. J Biol Chem. https://doi.org/10.1074/jbc.M116.744730

    Article  PubMed  Google Scholar 

  180. Yuan Z, Lehtinen MK, Merlo P et al (2009) Regulation of neuronal cell death by MST1-FOXO1 signaling. J Biol Chem. https://doi.org/10.1074/jbc.M900461200

    Article  PubMed  PubMed Central  Google Scholar 

  181. Shi C, Viccaro K, Lee H, Shah K (2016) Cdk5–Foxo3 axis: initially neuroprotective, eventually neurodegenerative in Alzheimer’s disease models. J Cell Sci. https://doi.org/10.1242/jcs.185009

    Article  PubMed  PubMed Central  Google Scholar 

  182. Ghosh AP, Klocke BJ, Ballestas ME, Roth KA (2012) CHOP potentially co-operates with FOXO3a in neuronal cells to regulate PUMA and BIM expression in response to ER stress. PLoS ONE. https://doi.org/10.1371/journal.pone.0039586

    Article  PubMed  PubMed Central  Google Scholar 

  183. Galehdar Z, Swan P, Fuerth B et al (2010) Neuronal apoptosis induced by endoplasmic reticulum stress is regulated by ATF4-CHOP-mediated induction of the Bcl-2 homology 3-only member PUMA. J Neurosci. https://doi.org/10.1523/jneurosci.1598-10.2010

    Article  PubMed  PubMed Central  Google Scholar 

  184. Matus S, Lopez E, Valenzuela V et al (2013) Functional contribution of the transcription factor ATF4 to the pathogenesis of amyotrophic lateral sclerosis. PLoS ONE. https://doi.org/10.1371/journal.pone.0066672

    Article  PubMed  PubMed Central  Google Scholar 

  185. Morishima Y, Gotoh Y, Zieg J et al (2018) β-Amyloid Induces Neuronal Apoptosis Via a Mechanism that Involves the c-Jun N-Terminal Kinase Pathway and the Induction of Fas Ligand. J Neurosci. https://doi.org/10.1523/jneurosci.21-19-07551.2001

    Article  PubMed  PubMed Central  Google Scholar 

  186. Biswas SC, Shi Y, Vonsattel J-PG et al (2007) Bim is elevated in alzheimer’s disease neurons and is required for -amyloid-induced neuronal apoptosis. J Neurosci. https://doi.org/10.1523/jneurosci.3524-06.2007

    Article  PubMed  PubMed Central  Google Scholar 

  187. Linseman DA, Phelps RA, Bouchard RJ et al (2002) Insulin-like growth factor-i blocks bcl-2 interacting mediator of cell death (Bim) induction and intrinsic death signaling in cerebellar granule neurons. J Neurosci. https://doi.org/10.1523/jneurosci.22-21-09287.2002

    Article  PubMed  PubMed Central  Google Scholar 

  188. Finegan KG, Wang X, Lee EJ et al (2009) Regulation of neuronal survival by the extracellular signal-regulated protein kinase 5. Cell Death Differ. https://doi.org/10.1038/cdd.2008.193

    Article  PubMed  Google Scholar 

  189. Canals JM, Checa N, Marco S et al (2018) Expression of brain-derived neurotrophic factor in cortical neurons is regulated by striatal target area. J Neurosci. https://doi.org/10.1523/jneurosci.21-01-00117.2001

    Article  Google Scholar 

  190. Almeida S, Laço M, Cunha-Oliveira T et al (2009) BDNF regulates BIM expression levels in 3-nitropropionic acid-treated cortical neurons. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2009.06.006

    Article  PubMed  Google Scholar 

  191. Kamada H, Nito C, Endo H, Chan PH (2007) Bad as a converging signaling molecule between survival PI3-K/Akt and death JNK in neurons after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 27:521–533. https://doi.org/10.1038/sj.jcbfm.9600367

    Article  CAS  PubMed  Google Scholar 

  192. Roberts ML, Virdee K, Sampson CPB et al (2000) The combination of Bcl-2 expression and NGF-deprivation facilitates the selective destruction of BAD protein in living sympathetic neurons. Mol Cell Neurosci. https://doi.org/10.1006/mcne.2000.0867

    Article  PubMed  Google Scholar 

  193. Huang HY, Lin SZ, Kuo JS et al (2007) G-CSF protects dopaminergic neurons from 6-OHDA-induced toxicity via the ERK pathway. Neurobiol Aging. https://doi.org/10.1016/j.neurobiolaging.2006.05.037

    Article  PubMed  PubMed Central  Google Scholar 

  194. Mukherjee A, Williams DW (2017) More alive than dead: Non-apoptotic roles for caspases in neuronal development, plasticity and disease. Cell Death Differ 24(8):1411–1421. https://doi.org/10.1038/cdd.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Radovanović V, Vlainić J, Hanžić N et al (2019) Neurotoxic effect of ethanolic extract of propolis in the presence of copper ions is mediated through enhanced production of ROS and stimulation of caspase-3/7 activity. Toxins 11:273

    Article  Google Scholar 

  196. Hou S, Wang L, Zhang G (2019) Mitofusin-2 regulates inflammation-mediated mouse neuroblastoma N2a cells dysfunction and endoplasmic reticulum stress via the Yap-Hippo pathway. J Physiol Sci. https://doi.org/10.1007/s12576-019-00685-6

    Article  PubMed  Google Scholar 

  197. Burnett SB, Vaughn LS, Strom JM et al (2019) A truncated PACT protein resulting from a frameshift mutation reported in movement disorder DYT16 triggers caspase activation and apoptosis. J Cell Biochem. https://doi.org/10.1002/jcb.29223

    Article  PubMed  PubMed Central  Google Scholar 

  198. Hollville E, Romero SE, Deshmukh M (2019) Apoptotic cell death regulation in neurons. FEBS J. https://doi.org/10.1111/febs.14970

    Article  PubMed  PubMed Central  Google Scholar 

  199. Han X, Sun S, Sun Y et al (2019) Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: implications for Parkinson disease. Autophagy. https://doi.org/10.1080/15548627.2019.1596481

    Article  PubMed  PubMed Central  Google Scholar 

  200. Martin DDO, Schmidt ME, Nguyen YT et al (2018) Identification of a novel caspase cleavage site in huntingtin that regulates mutant huntingtin clearance. FASEB J. https://doi.org/10.1096/fj.201701510rrr

    Article  PubMed  PubMed Central  Google Scholar 

  201. Wang X-J, Cao Q, Zhang Y, Su X-D (2014) Activation and regulation of caspase-6 and its role in neurodegenerative diseases. Annu Rev Pharmacol Toxicol. https://doi.org/10.1146/annurev-pharmtox-010814-124414

    Article  PubMed  Google Scholar 

  202. Yu T, Yu H, Zhang B et al (2019) Promising neuroprotective function for M2 microglia in kainic acid-induced neurotoxicity via the down-regulation of NF-κB and caspase 3 signaling pathways. Neuroscience. https://doi.org/10.1016/j.neuroscience.2019.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  203. Thawkar BS, Kaur G (2019) Inhibitors of NF-κB and P2X7/NLRP3/Caspase 1 pathway in microglia: Novel therapeutic opportunities in neuroinflammation induced early-stage Alzheimer’s disease. J Neuroimmunol 326:62–74. https://doi.org/10.1016/J.JNEUROIM.2018.11.010

    Article  CAS  PubMed  Google Scholar 

  204. Khan M, Rutten BPF, Kim MO (2019) MST1 regulates neuronal cell death via JNK/Casp3 signaling pathway in HFD mouse brain and HT22 cells. Int J Mol Sci 20:2504. https://doi.org/10.3390/IJMS20102504

    Article  CAS  PubMed Central  Google Scholar 

  205. Flores J, Noël A, Foveau B et al (2018) Caspase-1 inhibition alleviates cognitive impairment and neuropathology in an Alzheimer’s disease mouse model. Nat Commun. https://doi.org/10.1038/s41467-018-06449-x

    Article  PubMed  PubMed Central  Google Scholar 

  206. Bihaqi SW, Alansi B, Masoud AM et al (2018) Influence of early life lead (pb) exposure on α-synuclein, GSK-3β and caspase-3 mediated tauopathy: implications on alzheimer’s disease. Curr Alzheimer Res. https://doi.org/10.2174/1567205015666180801095925

    Article  PubMed  PubMed Central  Google Scholar 

  207. Erekat NS, Al-Jarrah MD (2018) Association of Parkinson Disease Induction with Cardiac Upregulation of Apoptotic Mediators P53 and Active Caspase-3: An Immunohistochemistry Study. Med Sci Monit Basic Res. https://doi.org/10.12659/msmbr.910307

  208. Rehker J, Rodhe J, Nesbitt RR et al (2017) Caspase-8, association with Alzheimer’s Disease and functional analysis of rare variants. PLoS ONE. https://doi.org/10.1371/journal.pone.0185777

    Article  PubMed  PubMed Central  Google Scholar 

  209. Sai K, Yang D, Yamamoto H et al (2006) A1 adenosine receptor signal and AMPK involving caspase-9/-3 activation are responsible for adenosine-induced RCR-1 astrocytoma cell death. Neurotoxicology 27:458–467. https://doi.org/10.1016/j.neuro.2005.12.008

    Article  CAS  PubMed  Google Scholar 

  210. Song X, Kim SY, Zhang L et al (2014) Role of AMP-activated protein kinase in cross-talk between apoptosis and autophagy in human colon cancer. Cell Death Dis. https://doi.org/10.1038/cddis.2014.463

    Article  PubMed  PubMed Central  Google Scholar 

  211. Salminen A, Kaarniranta K (2012) AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev 11:230–241. https://doi.org/10.1016/J.ARR.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  212. Sun B, Ou H, Ren F et al (2018) Propofol inhibited autophagy through Ca 2+ /CaMKKβ/AMPK/mTOR pathway in OGD/R-induced neuron injury. Mol Med. https://doi.org/10.1186/s10020-018-0054-1

    Article  PubMed  PubMed Central  Google Scholar 

  213. Zhao M, Chen J, Mao K et al (2019) Mitochondrial calcium dysfunction contributes to autophagic cell death induced by MPP + via AMPK pathway. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2018.12.148

    Article  PubMed  PubMed Central  Google Scholar 

  214. Domise M, Sauvé F, Didier S et al (2019) Neuronal AMP-activated protein kinase hyper-activation induces synaptic loss by an autophagy-mediated process. Cell Death Dis. https://doi.org/10.1038/s41419-019-1464-x

    Article  PubMed  PubMed Central  Google Scholar 

  215. Zhou L, Cheng Y (2019) Alpha-lipoic acid alleviated 6-OHDA-induced cell damage by inhibiting AMPK/mTOR mediated autophagy. Neuropharmacology 155:98–103. https://doi.org/10.1016/j.neuropharm.2019.04.009

    Article  CAS  PubMed  Google Scholar 

  216. Meares GP, Qin H, Liu Y et al (2013) AMP-activated protein kinase restricts IFN-γ signaling. J Immunol. https://doi.org/10.4049/jimmunol.1202390

    Article  PubMed  Google Scholar 

  217. Peixoto CA, Oliveira WH, Araújo SMR, Nunes AKS (2017) AMPK activation: Role in the signaling pathways of neuroinflammation and neurodegeneration. Exp Neurol 298:31–41. https://doi.org/10.1016/J.EXPNEUROL.2017.08.013

    Article  CAS  PubMed  Google Scholar 

  218. Chiang MC, Cheng YC, Chen SJ et al (2016) Metformin activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against Amyloid-beta-induced mitochondrial dysfunction. Exp Cell Res. https://doi.org/10.1016/j.yexcr.2016.08.013

    Article  PubMed  Google Scholar 

  219. Salminen A, Kaarniranta K, Kauppinen A (2016) Age-related changes in AMPK activation: Role for AMPK phosphatases and inhibitory phosphorylation by upstream signaling pathways. Ageing Res Rev 28:15–26. https://doi.org/10.1016/J.ARR.2016.04.003

    Article  CAS  PubMed  Google Scholar 

  220. Shahab L, Plattner F, Irvine EE et al (2014) Dynamic range of GSK3α not GSK3β is essential for bidirectional synaptic plasticity at hippocampal CA3-CA1 synapses. Hippocampus. https://doi.org/10.1002/hipo.22362

    Article  PubMed  PubMed Central  Google Scholar 

  221. Jiang L, Kosenko A, Yu C et al (2015) Activation of m1 muscarinic acetylcholine receptor induces surface transport of KCNQ channels through a CRMP-2-mediated pathway. J Cell Sci. https://doi.org/10.1242/jcs.175547

    Article  PubMed  PubMed Central  Google Scholar 

  222. Peineau S, Taghibiglou C, Bradley C et al (2007) LTP inhibits LTD in the hippocampus via regulation of GSK3β. Neuron. https://doi.org/10.1016/j.neuron.2007.01.029

    Article  PubMed  Google Scholar 

  223. Miras-Portugal MT, Gomez-Villafuertes R, Gualix J et al (2016) Nucleotides in neuroregeneration and neuroprotection. Neuropharmacology 104:243–254. https://doi.org/10.1016/J.NEUROPHARM.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  224. Morroni F, Sita G, Tarozzi A et al (2016) Early effects of Aβ1-42 oligomers injection in mice: Involvement of PI3K/Akt/GSK3 and MAPK/ERK1/2 pathways. Behav Brain Res. https://doi.org/10.1016/j.bbr.2016.08.002

    Article  PubMed  Google Scholar 

  225. Yi JH, Baek SJ, Heo S et al (2018) Direct pharmacological Akt activation rescues Alzheimer’s disease like memory impairments and aberrant synaptic plasticity. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2017.10.028

    Article  PubMed  Google Scholar 

  226. Deng Y, Xiong Z, Chen P et al (2014) β-Amyloid impairs the regulation of N-methyl-D-aspartate receptors by glycogen synthase kinase 3. Neurobiol Aging. https://doi.org/10.1016/j.neurobiolaging.2013.08.031

    Article  PubMed  Google Scholar 

  227. Zhang Z-X, Zhao R-P, Wang D-S, Wang A-N (2016) Fuzhisan ameliorates Aβ production and tau phosphorylation in hippocampal of 11month old APP/PS1 transgenic mice: A Western blot study. Exp Gerontol 84:88–95. https://doi.org/10.1016/j.exger.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  228. Noh MY, Koh SH, Kim Y et al (2009) Neuroprotective effects of donepezil through inhibition of GSK-3 activity in amyloid-β-induced neuronal cell death. J Neurochem. https://doi.org/10.1111/j.1471-4159.2008.05837.x

    Article  PubMed  Google Scholar 

  229. Yuan Y, Yan W, Sun J et al (2015) The molecular mechanism of rotenone-induced α-synuclein aggregation: Emphasizing the role of the calcium/GSK3β pathway. Toxicol Lett 233:163–171. https://doi.org/10.1016/j.toxlet.2014.11.029

    Article  CAS  PubMed  Google Scholar 

  230. Bijur GN, Jope RS (2001) proapoptotic stimuli induce nuclear accumulation of glycogen synthase kinase-3β. J Biol Chem. https://doi.org/10.1074/jbc.M105725200

    Article  PubMed  Google Scholar 

  231. Anuradha R, Saraswati M, Kumar KG, Rani SH (2014) Apoptosis of beta cells in diabetes mellitus. DNA Cell Biol. https://doi.org/10.1089/dna.2014.2352

    Article  PubMed  Google Scholar 

  232. Giampietri C, Petrungaro S, Coluccia P et al (2010) c-Flip overexpression affects satellite cell proliferation and promotes skeletal muscle aging. Cell Death Dis. https://doi.org/10.1038/cddis.2010.17

    Article  PubMed  PubMed Central  Google Scholar 

  233. Rahmani M, Aust MM, Benson EC et al (2014) PI3K/mTOR inhibition markedly potentiates HDAC inhibitor activity in NHL cells through BIM- and MCL-1-Dependent mechanisms in vitro and in vivo. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-14-0034

    Article  PubMed  PubMed Central  Google Scholar 

  234. Alao JP, Stavropoulou AV, Lam EWF, Coombes RC (2006) Role of glycogen synthase kinase 3 beta (GSK3β) in mediating the cytotoxic effects of the histone deacetylase inhibitor trichostatin A (TSA) in MCF-7 breast cancer cells. Mol Cancer. https://doi.org/10.1186/1476-4598-5-40

    Article  PubMed  PubMed Central  Google Scholar 

  235. Lin CF, Tsai CC, Huang WC et al (2016) Glycogen synthase kinase-3β and caspase-2 mediate ceramide-And etoposide-induced apoptosis by regulating the lysosomal-mitochondrial axis. PLoS ONE. https://doi.org/10.1371/journal.pone.0145460

    Article  PubMed  PubMed Central  Google Scholar 

  236. Maurer U, Charvet C, Wagman AS et al (2006) Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell. https://doi.org/10.1016/j.molcel.2006.02.009

    Article  PubMed  Google Scholar 

  237. Huang L, Wu S, Xing D (2011) Glycogen synthase kinase-3β facilitates cell apoptosis induced by high fluence low-power laser irradiation through acceleration of Bax translocation. SPIE 7887:788708. https://doi.org/10.1117/12.874138

    Article  CAS  Google Scholar 

  238. Linseman DA, Butts BD, Precht TA et al (2004) Glycogen synthase kinase-3β phosphorylates bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci 24:9993. https://doi.org/10.1523/JNEUROSCI.2057-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Rasola A, Bernardi P (2011) Mitochondrial permeability transition in Ca2+-dependent apoptosis and necrosis. Cell Calcium 50:222–233. https://doi.org/10.1016/j.ceca.2011.04.007

    Article  CAS  PubMed  Google Scholar 

  240. Johri A, Beal MF (2012) Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther 342:619. https://doi.org/10.1124/JPET.112.192138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Luca A, Calandra C, Luca M (2016) Gsk3 signalling and redox status in bipolar disorder: evidence from lithium efficacy. Oxid Med Cell Longev. https://doi.org/10.1155/2016/3030547

    Article  PubMed  PubMed Central  Google Scholar 

  242. Rojo AI, Medina-Campos ON, Rada P et al (2012) Signaling pathways activated by the phytochemical nordihydroguaiaretic acid contribute to a Keap1-independent regulation of Nrf2 stability: Role of glycogen synthase kinase-3. Free Radic Biol Med. https://doi.org/10.1016/j.freeradbiomed.2011.11.003

    Article  PubMed  Google Scholar 

  243. Azoulay-Alfaguter I, Elya R, Avrahami L et al (2015) Combined regulation of mTORC1 and lysosomal acidification by GSK-3 suppresses autophagy and contributes to cancer cell growth. Oncogene. https://doi.org/10.1038/onc.2014.390

    Article  PubMed  Google Scholar 

  244. Stretton C, Hoffmann TM, Munson MJ et al (2015) GSK3-mediated raptor phosphorylation supports amino-acid-dependent mTORC1-directed signalling. Biochem J. https://doi.org/10.1042/bj20150404

    Article  PubMed  Google Scholar 

  245. Windsperger A, Yang J, Chen R et al (2013) 1326 GSK-3β controls autophagic response by modulating LKB1-AMPK pathway in prostate cancer cells. J Urol. https://doi.org/10.1016/j.juro.2013.02.2680

    Article  Google Scholar 

  246. Sun A, Li C, Chen R et al (2016) GSK-3β controls autophagy by modulating LKB1-AMPK pathway in prostate cancer cells. Prostate. https://doi.org/10.1002/pros.23106

    Article  PubMed  PubMed Central  Google Scholar 

  247. Inoki K, Ouyang H, Zhu T et al (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell. https://doi.org/10.1016/j.cell.2006.06.055

    Article  PubMed  Google Scholar 

  248. Lin S-Y, Li TY, Liu Q et al (2012) Protein phosphorylation-acetylation cascade connects growth factor deprivation to autophagy. Autophagy 8:1385. https://doi.org/10.4161/AUTO.20959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Xu L-Z, Long Z-J, Peng F, et al (2014) Aurora kinase a suppresses metabolic stress-induced autophagic cell death by activating mTOR signaling in breast cancer cells. Oncotarget. https://doi.org/10.18632/oncotarget.2241

  250. Wang SH, Shih YL, Kuo TC et al (2009) Cadmium toxicity toward autophagy through ROS-Activated GSK-3β in mesangial cells. Toxicol Sci. https://doi.org/10.1093/toxsci/kfn266

    Article  PubMed  PubMed Central  Google Scholar 

  251. Lin CJ, Chen TH, Yang LY, Shih CM (2014) Resveratrol protects astrocytes against traumatic brain injury through inhibiting apoptotic and autophagic cell death. Cell Death Dis. https://doi.org/10.1038/cddis.2014.123

    Article  PubMed  PubMed Central  Google Scholar 

  252. Liu L, Li CJ, Lu Y et al (2015) Baclofen mediates neuroprotection on hippocampal CA1 pyramidal cells through the regulation of autophagy under chronic cerebral hypoperfusion. Sci Rep. https://doi.org/10.1038/srep14474

    Article  PubMed  PubMed Central  Google Scholar 

  253. Ha S, Ryu HY, Chung KM et al (2015) Regulation of autophagic cell death by glycogen synthase kinase-3β in adult hippocampal neural stem cells following insulin withdrawal. Mol Brain. https://doi.org/10.1186/s13041-015-0119-9

    Article  PubMed  PubMed Central  Google Scholar 

  254. Wakatsuki S, Tokunaga S, Shibata M, Araki T (2017) GSK3B-mediated phosphorylation of MCL1 regulates axonal autophagy to promote Wallerian degeneration. J Cell Biol. https://doi.org/10.1083/jcb.201606020

    Article  PubMed  PubMed Central  Google Scholar 

  255. Ma XH, Duan WJ, Mo YS et al (2018) Neuroprotective effect of paeoniflorin on okadaic acid-induced tau hyperphosphorylation via calpain/Akt/GSK-3β pathway in SH-SY5Y cells. Brain Res. https://doi.org/10.1016/j.brainres.2018.03.022

    Article  PubMed  Google Scholar 

  256. Ríos JA, Godoy JA, Inestrosa NC (2018) Wnt3a ligand facilitates autophagy in hippocampal neurons by modulating a novel GSK-3β-AMPK axis. Cell Commun Signal. https://doi.org/10.1186/s12964-018-0227-0

    Article  PubMed  PubMed Central  Google Scholar 

  257. Li D, Li X, Wu J et al (2015) Involvement of the JNK/FOXO3a/Bim pathway in neuronal apoptosis after hypoxic-ischemic brain damage in neonatal rats. PLoS ONE. https://doi.org/10.1371/journal.pone.0132998

    Article  PubMed  PubMed Central  Google Scholar 

  258. Kanamoto T, Mota M, Takeda K et al (2000) Role of apoptosis signal-regulating kinase in regulation of the c-Jun N-terminal kinase pathway and apoptosis in sympathetic neurons. Mol Cell Biol. https://doi.org/10.1128/mcb.20.1.196-204.2000

    Article  PubMed  PubMed Central  Google Scholar 

  259. Venugopal SK, Chen J, Zhang Y et al (2007) Role of MAPK phosphatase-1 in sustained activation of JNK during ethanol-induced apoptosis in hepatocyte-like VL-17A cells. J Biol Chem. https://doi.org/10.1074/jbc.M703729200

    Article  PubMed  Google Scholar 

  260. Chen Y, Ba L, Huang W et al (2017) Role of carvacrol in cardioprotection against myocardial ischemia/reperfusion injury in rats through activation of MAPK/ERK and Akt/eNOS signaling pathways. Eur J Pharmacol. https://doi.org/10.1016/j.ejphar.2016.11.053

    Article  PubMed  PubMed Central  Google Scholar 

  261. Chang YL, Chen CL, Kuo CL et al (2010) Glycyrrhetinic acid inhibits ICAM-1 expression via blocking JNK and NF-B pathways in TNF-α-activated endothelial cells. Acta Pharmacol Sin. https://doi.org/10.1038/aps.2010.34

    Article  PubMed  PubMed Central  Google Scholar 

  262. Shklover J, Mishnaevski K, Levy-Adam F, Kurant E (2015) JNK pathway activation is able to synchronize neuronal death and glial phagocytosis in Drosophila. Cell Death Dis. https://doi.org/10.1038/cddis.2015.27

    Article  PubMed  PubMed Central  Google Scholar 

  263. Sun Y, Liu W-Z, Liu T et al (2015) Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct 35:600–604. https://doi.org/10.3109/10799893.2015.1030412

    Article  CAS  Google Scholar 

  264. Ryan TA, Roper KM, Bond J et al (2018) A MAPK/c-Jun-mediated switch regulates the initial adaptive and cell death responses to mitochondrial damage in a neuronal cell model. Int J Biochem Cell Biol 104:73–86. https://doi.org/10.1016/j.biocel.2018.09.008

    Article  CAS  PubMed  Google Scholar 

  265. Saha RN, Jana M, Pahan K (2007) MAPK p38 regulates transcriptional activity of NF-κB in primary human astrocytes via acetylation of p65. J Immunol. https://doi.org/10.4049/jimmunol.179.10.7101

    Article  PubMed  Google Scholar 

  266. Papademetrio DL, Lompardía SL, Simunovich T et al (2016) Inhibition of survival pathways MAPK and NF-kB triggers apoptosis in pancreatic ductal adenocarcinoma cells via suppression of autophagy. Target Oncol. https://doi.org/10.1007/s11523-015-0388-3

    Article  PubMed  Google Scholar 

  267. Santa-Cecília FV, Socias B, Ouidja MO et al (2016) Doxycycline suppresses microglial activation by inhibiting the p38 MAPK and NF-kB signaling pathways. Neurotox Res. https://doi.org/10.1007/s12640-015-9592-2

    Article  PubMed  Google Scholar 

  268. Lai J, Liu Y, Liu C et al (2017) Indirubin inhibits LPS-induced inflammation via TLR4 abrogation mediated by the NF-kB and MAPK signaling pathways. Inflammation. https://doi.org/10.1007/s10753-016-0447-7

    Article  PubMed  Google Scholar 

  269. Xing J, Li R, Li N et al (2015) Anti-inflammatory effect of procyanidin B1 on LPS-treated THP1 cells via interaction with the TLR4–MD-2 heterodimer and p38 MAPK and NF-κB signaling. Mol Cell Biochem. https://doi.org/10.1007/s11010-015-2457-4

    Article  PubMed  PubMed Central  Google Scholar 

  270. Kim DC, Quang TH, Oh H, Kim YC (2017) Steppogenin isolated from Cudrania tricuspidata shows antineuroinflammatory effects via NF-κB and MAPK pathways in LPS-stimulated BV2 and primary rat microglial cells. Molecules. https://doi.org/10.3390/molecules22122130

    Article  PubMed  PubMed Central  Google Scholar 

  271. Guolan D, Lingli W, Wenyi H et al (2018) Anti-inflammatory effects of neferine on LPS-induced human endothelium via MAPK, and NF-κβ pathways. Pharmazie 73:541–544. https://doi.org/10.1691/PH.2018.8443

    Article  PubMed  Google Scholar 

  272. Kotlyarov A, Neininger A, Schubert C et al (1999) (1999) MAPKAP kinase 2 is essential for LPS-induced TNF-α biosynthesis. Nat Cell Biol 12(1):94–97. https://doi.org/10.1038/10061

    Article  CAS  Google Scholar 

  273. Fyhrquist N, Matikainen S, Lauerma A (2010) MK2 signaling: lessons on tissue specificity in modulation of inflammation. J Invest Dermatol 130:342–344. https://doi.org/10.1038/JID.2009.372

    Article  CAS  PubMed  Google Scholar 

  274. Neininger A, Kontoyiannis D, Kotlyarov A et al (2002) MK2 targets AU-rich elements and regulates biosynthesis of tumor necrosis factor and interleukin-6 independently at different post-transcriptional levels *. J Biol Chem 277:3065–3068. https://doi.org/10.1074/JBC.C100685200

    Article  CAS  PubMed  Google Scholar 

  275. Neault M, Couteau F, Bonneau É et al (2017) Molecular Regulation of Cellular Senescence by MicroRNAs: Implications in Cancer and Age-Related Diseases. Int Rev Cell Mol Biol 334:27–98. https://doi.org/10.1016/bs.ircmb.2017.04.001

    Article  CAS  PubMed  Google Scholar 

  276. Singh T, Yadav S (2020) Role of microRNAs in neurodegeneration induced by environmental neurotoxicants and aging. Ageing Res Rev 60:101068. https://doi.org/10.1016/J.ARR.2020.101068

    Article  CAS  PubMed  Google Scholar 

  277. Jia H, Qu M, Fan G et al (2020) miR-499-5p suppresses C-reactive protein and provides neuroprotection in hypoxic-ischemic encephalopathy in neonatal rat. Neurosci Res 161:44–50. https://doi.org/10.1016/J.NEURES.2019.12.002

    Article  CAS  PubMed  Google Scholar 

  278. Wang M, Sun H, Yao Y et al (2019) MicroRNA-217/138-5p downregulation inhibits inflammatory response, oxidative stress and the induction of neuronal apoptosis in MPP+-induced SH-SY5Y cells. Am J Transl Res 11:6619

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Hu J-J, Qin L-J, Liu Z-Y et al (2020) miR-15a regulates oxygen glucose deprivation/reperfusion (OGD/R)-induced neuronal injury by targeting BDNF. Kaohsiung J Med Sci 36:27–34. https://doi.org/10.1002/KJM2.12136

    Article  CAS  PubMed  Google Scholar 

  280. Zeng Z, Liu Y, Zheng W et al (2019) MicroRNA-129-5p alleviates nerve injury and inflammatory response of Alzheimer’s disease via downregulating SOX6. Cell Cycle 18:3095. https://doi.org/10.1080/15384101.2019.1669388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Shang Y, Dai S, Chen X et al (2019) MicroRNA-93 regulates the neurological function, cerebral edema and neuronal apoptosis of rats with intracerebral hemorrhage through TLR4/NF-κB signaling pathway. Cell Cycle 18:3160–3176. https://doi.org/10.1080/15384101.2019.1670509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Wang J, Wang W, Zhai H (2019) MicroRNA-124 enhances dopamine receptor expression and neuronal proliferation in mouse models of parkinson’s disease via the hedgehog signaling pathway by targeting EDN2. NeuroImmunoModulation. https://doi.org/10.1159/000501339

    Article  PubMed  Google Scholar 

  283. Ge H, Yan Z, Zhu H, Zhao H (2019) MiR-410 exerts neuroprotective effects in a cellular model of Parkinson’s disease induced by 6-hydroxydopamine via inhibiting the PTEN/AKT/mTOR signaling pathway. Exp Mol Pathol. https://doi.org/10.1016/j.yexmp.2019.05.002

    Article  PubMed  Google Scholar 

  284. Chen FZ, Zhao Y, Chen HZ (2019) MicroRNA-98 reduces amyloid β-protein production and improves oxidative stress and mitochondrial dysfunction through the Notch signaling pathway via HEY2 in Alzheimer’s disease mice. Int J Mol Med. https://doi.org/10.3892/ijmm.2018.3957

    Article  PubMed  PubMed Central  Google Scholar 

  285. Jing D, Yinzhu L, Jinjing P et al (2018) Targeting ninjurin 2 by miR-764 regulates hydrogen peroxide (H2O2)-induced neuronal cell death. Biochem Biophys Res Commun 505:1180–1188. https://doi.org/10.1016/j.bbrc.2018.09.184

    Article  CAS  PubMed  Google Scholar 

  286. Fu S, Zhang J, Zhang S (2018) Knockdown of miR-429 attenuates Aβ-induced neuronal damage by targeting SOX2 and BCL2 in mouse cortical neurons. Neurochem Res. https://doi.org/10.1007/s11064-018-2643-3

    Article  PubMed  PubMed Central  Google Scholar 

  287. Shanesazzade Z, Peymani M, Ghaedi K, Nasr Esfahani MH (2018) miR-34a/BCL-2 signaling axis contributes to apoptosis in MPP+-induced SH-SY5Y cells. Mol Genet Genomic Med 6:975–981. https://doi.org/10.1002/mgg3.469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Chitnis NS, Pytel D, Bobrovnikova-Marjon E et al (2012) MiR-211 Is a prosurvival microRNA that regulates chop expression in a PERK-dependent manner. Mol Cell. https://doi.org/10.1016/j.molcel.2012.08.025

    Article  PubMed  PubMed Central  Google Scholar 

  289. Wang HQ, Yu XD, Liu ZH et al (2011) Deregulated miR-155 promotes Fas-mediated apoptosis in human intervertebral disc degeneration by targeting FADD and caspase-3. J Pathol. https://doi.org/10.1002/path.2931

    Article  PubMed  PubMed Central  Google Scholar 

  290. Hudson RS, Yi M, Esposito D et al (2013) MicroRNA-106b-25 cluster expression is associated with early disease recurrence and targets caspase-7 and focal adhesion in human prostate cancer. Oncogene. https://doi.org/10.1038/onc.2012.424

    Article  PubMed  Google Scholar 

  291. Fang J, Song X-W, Tian J et al (2012) Overexpression of microRNA-378 attenuates ischemia-induced apoptosis by inhibiting caspase-3 expression in cardiac myocytes. Apoptosis 17:410–423. https://doi.org/10.1007/s10495-011-0683-0

    Article  CAS  PubMed  Google Scholar 

  292. Wu H, Wang F, Hu S et al (2012) MiR-20a and miR-106b negatively regulate autophagy induced by leucine deprivation via suppression of ULK1 expression in C2C12 myoblasts. Cell Signal. https://doi.org/10.1016/j.cellsig.2012.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  293. Chen H, Zhang Z, Lu Y et al (2017) Downregulation of ULK1 by microRNA-372 inhibits the survival of human pancreatic adenocarcinoma cells. Cancer Sci 108:1811–1819. https://doi.org/10.1111/cas.13315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Li W, Yang Y, Ba Z et al (2017) MicroRNA-93 regulates hypoxia-induced autophagy by targeting ULK1. Oxid Med Cell Longev. https://doi.org/10.1155/2017/2709053

    Article  PubMed  PubMed Central  Google Scholar 

  295. Ju JA, Huang CT, Lan SH et al (2013) Characterization of a colorectal cancer migration and autophagy-related microRNA miR-338-5p and its target gene PIK3C3. Biomarkers Genomic Med. https://doi.org/10.1016/j.bgm.2013.07.006

    Article  Google Scholar 

  296. Zhu H, Wu H, Liu X et al (2009) Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy. https://doi.org/10.4161/auto.9064

    Article  PubMed  PubMed Central  Google Scholar 

  297. Xu R, Liu S, Hong Chen H, Lao L (2016) MicroRNA-30a downregulation contributes to chemoresistance of osteosarcoma cells through activating Beclin-1-mediated autophagy. Oncol Rep. https://doi.org/10.3892/or.2015.4497

    Article  PubMed  PubMed Central  Google Scholar 

  298. Korkmaz G, Le Sage C, Tekirdag KA et al (2012) miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1. Autophagy. https://doi.org/10.4161/auto.8.2.18351

    Article  PubMed  Google Scholar 

  299. Menghini R, Casagrande V, Marino A et al (2014) MiR-216a: A link between endothelial dysfunction and autophagy. Cell Death Dis. https://doi.org/10.1038/cddis.2013.556

    Article  PubMed  PubMed Central  Google Scholar 

  300. Hou W, Song L, Zhao Y et al (2017) Inhibition of beclin-1-mediated autophagy by microRNA-17-5p enhanced the radiosensitivity of glioma cells. Oncol Res. https://doi.org/10.3727/096504016X14719078133285

    Article  PubMed  PubMed Central  Google Scholar 

  301. Mikhaylova O, Stratton Y, Hall D et al (2012) VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell. https://doi.org/10.1016/j.ccr.2012.02.019

    Article  PubMed  PubMed Central  Google Scholar 

  302. Frankel LB, Wen J, Lees M et al (2011) MicroRNA-101 is a potent inhibitor of autophagy. EMBO J. https://doi.org/10.1038/emboj.2011.331

    Article  PubMed  PubMed Central  Google Scholar 

  303. Li W, Yang Y, Hou X et al (2016) MicroRNA-495 regulates starvation-induced autophagy by targeting ATG3. FEBS Lett. https://doi.org/10.1002/1873-3468.12108

    Article  PubMed  PubMed Central  Google Scholar 

  304. Wang N, Yang L, Zhang H et al (2018) MicroRNA-9a-5p alleviates ischemia injury after focal cerebral ischemia of the Rat by targeting ATG5-mediated autophagy. Cell Physiol Biochem. https://doi.org/10.1159/000486224

    Article  PubMed  Google Scholar 

  305. Yan L, Shi E, Jiang X et al (2019) Inhibition of MicroRNA-204 conducts neuroprotection against spinal cord ischemia. Ann Thorac Surg. https://doi.org/10.1016/j.athoracsur.2018.07.082

    Article  PubMed  PubMed Central  Google Scholar 

  306. Liu P, Liu P, Wang Z et al (2018) Inhibition of MicroRNA-96 ameliorates cognitive impairment and inactivation autophagy following chronic cerebral hypoperfusion in the rat. Cell Physiol Biochem. https://doi.org/10.1159/000492844

    Article  PubMed  Google Scholar 

  307. Gong X, Wang H, Ye Y et al (2016) miR-124 regulates cell apoptosis and autophagy in dopaminergic neurons and protects them by regulating AMPK/mTOR pathway in Parkinson’s disease. Am J Transl Res 8:2127

    CAS  PubMed  PubMed Central  Google Scholar 

  308. Li W, Jiang Y, Wang Y et al (2018) MiR-181b regulates autophagy in a model of Parkinson’s disease by targeting the PTEN/Akt/mTOR signaling pathway. Neurosci Lett 675:83–88. https://doi.org/10.1016/J.NEULET.2018.03.041

    Article  CAS  PubMed  Google Scholar 

  309. Wen Z, Zhang J, Tang P et al (2018) Overexpression of miR-185 inhibits autophagy and apoptosis of dopaminergic neurons by regulating the AMPK/mTOR signaling pathway in Parkinson’s disease. Mol Med Rep 17:131. https://doi.org/10.3892/MMR.2017.7897

    Article  CAS  PubMed  Google Scholar 

  310. Sun S, Han X, Li X et al (2018) MicroRNA-212-5p prevents dopaminergic neuron death by inhibiting SIRT2 in MPTP-induced mouse model of parkinson’s disease. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2018.00381

    Article  PubMed  PubMed Central  Google Scholar 

  311. Yao L, Zhu Z, Wu J et al (2019) MicroRNA-124 regulates the expression of p62/p38 and promotes autophagy in the inflammatory pathogenesis of Parkinson’s disease. FASEB J 33:8648–8665. https://doi.org/10.1096/fj.201900363R

    Article  CAS  PubMed  Google Scholar 

  312. Wang H, Ye Y, Zhu Z et al (2016) MiR-124 regulates apoptosis and autophagy process in MPTP model of Parkinson’s disease by targeting to bim. Brain Pathol. https://doi.org/10.1111/bpa.12267

    Article  PubMed  PubMed Central  Google Scholar 

  313. Zhao XH, Wang YB, Yang J et al (2019) MicroRNA-326 suppresses iNOS expression and promotes autophagy of dopaminergic neurons through the JNK signaling by targeting XBP1 in a mouse model of Parkinson’s disease. J Cell Biochem. https://doi.org/10.1002/jcb.28761

    Article  PubMed  PubMed Central  Google Scholar 

  314. Sun L, Zhao M, Wang Y et al (2017) Neuroprotective effects of miR-27a against traumatic brain injury via suppressing FoxO3a-mediated neuronal autophagy. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2016.12.001

    Article  PubMed  PubMed Central  Google Scholar 

  315. Sun L, Liu A, Zhang J et al (2018) miR-23b improves cognitive impairments in traumatic brain injury by targeting ATG12-mediated neuronal autophagy. Behav Brain Res. https://doi.org/10.1016/j.bbr.2016.09.020

    Article  PubMed  Google Scholar 

  316. Ruan Z, Li Y, He R, Li X (2021) Inhibition of microRNA-10b-5p up-regulates HOXD10 to attenuate Alzheimer’s disease in rats via the Rho/ROCK signalling pathway. J Drug Target. https://doi.org/10.1080/1061186X.2020.1864739

    Article  PubMed  Google Scholar 

  317. Tian Z, Dong Q, Wu T, Guo J (2021) MicroRNA-20b-5p aggravates neuronal apoptosis induced by β-Amyloid via down-regulation of Ras homolog family member C in Alzheimer’s disease. Neurosci Lett. https://doi.org/10.1016/j.neulet.2020.135542

    Article  PubMed  Google Scholar 

  318. Li J, Li D, Zhou H, et al (2020) MicroRNA-338-5p alleviates neuronal apoptosis via directly targeting BCL2L11 in APP/PS1 mice. Aging (Albany NY) 12:20728–20742. https://doi.org/10.18632/aging.104005

  319. Liang C, Mu Y, Tian H et al (2021) MicroRNA-140 silencing represses the incidence of Alzheimer’s disease. Neurosci Lett. https://doi.org/10.1016/j.neulet.2021.135674

    Article  PubMed  Google Scholar 

  320. Chen M-L, Hong C-G, Yue T et al (2021) Inhibition of miR-331-3p and miR-9-5p ameliorates Alzheimer’s disease by enhancing autophagy. Theranostics 11:2395–2409. https://doi.org/10.7150/thno.47408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Zhang Y, Lv X, Liu C et al (2016) MiR-214-3p attenuates cognition defects via the inhibition of autophagy in SAMP8 mouse model of sporadic Alzheimer’s disease. Neurotoxicology. https://doi.org/10.1016/j.neuro.2016.07.004

    Article  PubMed  Google Scholar 

  322. Zhang Y, Liu C, Wang J et al (2016) MiR-299-5p regulates apoptosis through autophagy in neurons and ameliorates cognitive capacity in APPswe/PS1dE9 mice. Sci Rep 6:24566. https://doi.org/10.1038/srep24566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Lv Q, Zhong Z, Hu B et al (2021) MicroRNA-3473b regulates the expression of TREM2/ULK1 and inhibits autophagy in inflammatory pathogenesis of Parkinson disease. J Neurochem. https://doi.org/10.1111/jnc.15299

    Article  PubMed  Google Scholar 

  324. Zhou T, Lin D, Chen Y et al (2019) α-synuclein accumulation in SH-SY5Y cell impairs autophagy in microglia by exosomes overloading miR-19a-3p. Epigenomics 11:1661–1677. https://doi.org/10.2217/epi-2019-0222

    Article  CAS  PubMed  Google Scholar 

  325. Qian C, Ye Y, Mao H et al (2019) Downregulated lncRNA-SNHG1 enhances autophagy and prevents cell death through the miR-221/222 /p27/mTOR pathway in Parkinson’s disease. Exp Cell Res 384:111614. https://doi.org/10.1016/j.yexcr.2019.111614

    Article  CAS  PubMed  Google Scholar 

  326. Qazi TJ, Lu J, Duru L et al (2021) Upregulation of mir-132 induces dopaminergic neuronal death via activating SIRT1/P53 pathway. Neurosci Lett 740:135465. https://doi.org/10.1016/j.neulet.2020.135465

    Article  CAS  PubMed  Google Scholar 

  327. Choi DC, Yoo M, Kabaria S, Junn E (2018) MicroRNA-7 facilitates the degradation of alpha-synuclein and its aggregates by promoting autophagy. Neurosci Lett. https://doi.org/10.1016/j.neulet.2018.05.009

    Article  PubMed  PubMed Central  Google Scholar 

  328. Li W, Jiang Y, Wang Y et al (2018) MiR-181b regulates autophagy in a model of Parkinson’s disease by targeting the PTEN/Akt/mTOR signaling pathway. Neurosci Lett. https://doi.org/10.1016/j.neulet.2018.03.041

    Article  PubMed  PubMed Central  Google Scholar 

  329. Feng Z, Zhang L, Wang S, Hong Q (2020) Circular RNA circDLGAP4 exerts neuroprotective effects via modulating miR-134-5p/CREB pathway in Parkinson’s disease. Biochem Biophys Res Commun 522:388–394. https://doi.org/10.1016/j.bbrc.2019.11.102

    Article  CAS  PubMed  Google Scholar 

  330. Chiu C-C, Yeh T-H, Chen R-S et al (2019) Upregulated expression of MicroRNA-204-5p leads to the death of dopaminergic cells by targeting DYRK1A-mediated apoptotic signaling cascade. Front Cell Neurosci 13:399. https://doi.org/10.3389/fncel.2019.00399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Liu Y, Song Y, Zhu X (2017) MicroRNA-181a regulates apoptosis and autophagy process in Parkinson’s disease by inhibiting p38 mitogen-activated protein kinase (MAPK)/c-Jun N-terminal kinases (JNK) signaling pathways. Med Sci Monit https://doi.org/10.12659/MSM.900218

  332. Wen Z, Zhang J, Tang P et al (2018) Overexpression of miR-185 inhibits autophagy and apoptosis of dopaminergic neurons by regulating the AMPK/mTOR signaling pathway in Parkinson’s disease. Mol Med Rep. https://doi.org/10.3892/mmr.2017.7897

    Article  PubMed  PubMed Central  Google Scholar 

  333. Zhao J, Yang M, Li Q et al (2020) MiR-132-5p regulates apoptosis and autophagy in MPTP model of Parkinson’s disease by targeting ULK1. NeuroReport. https://doi.org/10.1097/WNR.0000000000001494

    Article  PubMed  PubMed Central  Google Scholar 

  334. Li C, Chen Y, Chen X et al (2017) Downregulation of microRNA-193b-3p promotes autophagy and cell survival by targeting TSC1/mTOR signaling in NSC-34 cells. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2017.00160

    Article  PubMed  PubMed Central  Google Scholar 

  335. Yu SJ, Yu MJ, Bu ZQ et al (2021) MicroRNA-670 aggravates cerebral ischemia/reperfusion injury via the Yap pathway. Neural Regen Res. https://doi.org/10.4103/1673-5374.300455

    Article  PubMed  PubMed Central  Google Scholar 

  336. Dai Q, Ma Y, Xu Z et al (2021) Downregulation of circular RNA HECTD1 induces neuroprotection against ischemic stroke through the microRNA-133b/TRAF3 pathway. Life Sci 264:118626. https://doi.org/10.1016/j.lfs.2020.118626

    Article  CAS  PubMed  Google Scholar 

  337. Liu W, Miao Y, Zhang L et al (2020) MiR-211 protects cerebral ischemia/reperfusion injury by inhibiting cell apoptosis. Bioengineered 11:189–200. https://doi.org/10.1080/21655979.2020.1729322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Deng Z, Ou H, Ren F et al (2020) LncRNA SNHG14 promotes OGD/R-induced neuron injury by inducing excessive mitophagy via miR-182-5p/BINP3 axis in HT22 mouse hippocampal neuronal cells. Biol Res 53:38. https://doi.org/10.1186/s40659-020-00304-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Li B, Huang Z, Meng J et al (2020) MiR-202-5p attenuates neurological deficits and neuronal injury in MCAO model rats and OGD-induced injury in Neuro-2a cells by targeting eIF4E-mediated induction of autophagy and inhibition of Akt/GSK-3β pathway. Mol Cell Probes 51:101497. https://doi.org/10.1016/j.mcp.2019.101497

    Article  CAS  PubMed  Google Scholar 

  340. Chen X, Lin S, Gu L et al (2019) Inhibition of miR-497 improves functional outcome after ischemic stroke by enhancing neuronal autophagy in young and aged rats. Neurochem Int. https://doi.org/10.1016/j.neuint.2019.01.005

    Article  PubMed  Google Scholar 

  341. Wang P, Liang J, Li Y et al (2014) Down-regulation of miRNA-30a alleviates cerebral ischemic injury through enhancing Beclin 1-mediated autophagy. Neurochem Res. https://doi.org/10.1007/s11064-014-1310-6

    Article  PubMed  PubMed Central  Google Scholar 

  342. Wu Y, Gao Z, Zhang J (2020) Transcription factor E2F1 aggravates neurological injury in ischemic stroke via microRNA-122-targeted sprouty2. Neuropsychiatr Dis Treat 16:2633–2647. https://doi.org/10.2147/NDT.S271320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Tian F, Yuan C, Yue H (2018) MiR-138/SIRT1 axis is implicated in impaired learning and memory abilities of cerebral ischemia/reperfusion injured rats. Exp Cell Res. https://doi.org/10.1016/j.yexcr.2018.03.042

    Article  PubMed  Google Scholar 

  344. Zhou J, Wu J-S, Yan Y, et al (2020) MiR-199a modulates autophagy and inflammation in rats with cerebral infarction via regulating mTOR expression. Eur Rev Med Pharmacol Sci 24:6338–6345. https://doi.org/10.26355/eurrev_202006_21532

  345. Wang D, Chen F, Fang B et al (2020) MiR-128-3p alleviates spinal cord ischemia/reperfusion injury associated neuroinflammation and cellular apoptosis via SP1 suppression in rat. Front Neurosci. https://doi.org/10.3389/fnins.2020.609613

    Article  PubMed  PubMed Central  Google Scholar 

  346. Zhou Z, Hu B, Lyu Q et al (2020) miR-384-5p promotes spinal cord injury recovery in rats through suppressing of autophagy and endoplasmic reticulum stress. Neurosci Lett 727:134937. https://doi.org/10.1016/j.neulet.2020.134937

    Article  CAS  PubMed  Google Scholar 

  347. Wang J, Rong Y, Ji C et al (2020) MicroRNA-421-3p-abundant small extracellular vesicles derived from M2 bone marrow-derived macrophages attenuate apoptosis and promote motor function recovery via inhibition of mTOR in spinal cord injury. J Nanobiotechnology 18:72. https://doi.org/10.1186/s12951-020-00630-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Li X, Lou X, Xu S et al (2018) Knockdown of miR-372 inhibits nerve cell apoptosis induced by spinal cord ischemia/reperfusion injury via enhancing autophagy by up-regulating beclin-1. J Mol Neurosci. https://doi.org/10.1007/s12031-018-1179-y

    Article  PubMed  PubMed Central  Google Scholar 

  349. Li D, Huang S, Yin Z et al (2019) Increases in miR-124-3p in microglial exosomes confer neuroprotective effects by targeting FIP200-mediated neuronal autophagy following traumatic brain injury. Neurochem Res. https://doi.org/10.1007/s11064-019-02825-1

    Article  PubMed  PubMed Central  Google Scholar 

  350. Li D, Huang S, Zhu J, et al (2019) Exosomes from MiR-21–5p-increased neurons play a role in neuroprotection by suppressing rab11a-mediated neuronal autophagy in vitro after traumatic brain injury. Med Sci Monit. https://doi.org/10.12659/MSM.915727

  351. Wang L, Song LF, Chen XY et al (2019) MiR-181b inhibits P38/JNK signaling pathway to attenuate autophagy and apoptosis in juvenile rats with kainic acid-induced epilepsy via targeting TLR4. CNS Neurosci Ther. https://doi.org/10.1111/cns.12991

    Article  PubMed  PubMed Central  Google Scholar 

  352. Wen X, Han XR, Wang YJ et al (2018) MicroRNA-421 suppresses the apoptosis and autophagy of hippocampal neurons in epilepsy mice model by inhibition of the TLR/MYD88 pathway. J Cell Physiol. https://doi.org/10.1002/jcp.26498

    Article  PubMed  PubMed Central  Google Scholar 

  353. Fei S, Cao L, Li S (2021) microRNA-139-5p alleviates neurological deficit in hypoxic-ischemic brain damage via HDAC4 depletion and BCL-2 activation. Brain Res Bull. https://doi.org/10.1016/j.brainresbull.2020.12.020

    Article  PubMed  Google Scholar 

  354. Du L, Jiang Y, Sun Y (2021) Astrocyte-derived exosomes carry microRNA-17-5p to protect neonatal rats from hypoxic-ischemic brain damage via inhibiting BNIP-2 expression. Neurotoxicology. https://doi.org/10.1016/j.neuro.2020.12.006

    Article  PubMed  Google Scholar 

  355. Li R, Jin Y, Li Q et al (2018) MiR-93-5p targeting PTEN regulates the NMDA-induced autophagy of retinal ganglion cells via AKT/mTOR pathway in glaucoma. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2018.01.044

    Article  PubMed  Google Scholar 

  356. Wang B, Li Y, You C (2021) miR-129-3p targeting of MCU protects against glucose fluctuation-mediated neuronal damage via a mitochondrial-dependent intrinsic apoptotic pathway. Diabetes Metab Syndr Obes Targets Ther. https://doi.org/10.2147/dmso.s285179

    Article  Google Scholar 

  357. Xu J, Sun M, Li X et al (2021) MicroRNA expression profiling after recurrent febrile seizures in rat and emerging role of miR-148a-3p/SYNJ1 axis. Sci Rep. https://doi.org/10.1038/s41598-020-79543-0

    Article  PubMed  PubMed Central  Google Scholar 

  358. Wen B, He C, Zhang Q et al (2020) Overexpression of microRNA-221 promotes the differentiation of stem cells from human exfoliated deciduous teeth to neurons through activation of Wnt/β-catenin pathway via inhibition of CHD8. Cell Cycle 19:3231–3248. https://doi.org/10.1080/15384101.2020.1816308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Guo D, Ma J, Yan L et al (2017) Down-Regulation of Lncrna MALAT1 Attenuates Neuronal Cell Death Through Suppressing Beclin1-Dependent Autophagy by Regulating Mir-30a in Cerebral Ischemic Stroke. Cell Physiol Biochem 43:182–194. https://doi.org/10.1159/000480337

    Article  CAS  PubMed  Google Scholar 

  360. Wu Q, Yi X (2018) Down-regulation of long noncoding RNA MALAT1 protects hippocampal neurons against excessive autophagy and apoptosis via the PI3K/Akt signaling pathway in rats with epilepsy. J Mol Neurosci 65:234–245. https://doi.org/10.1007/s12031-018-1093-3

    Article  CAS  PubMed  Google Scholar 

  361. Fu C-H, Lai F-F, Chen S et al (2020) Silencing of long non-coding RNA CRNDE promotes autophagy and alleviates neonatal hypoxic-ischemic brain damage in rats. Mol Cell Biochem 472:1–8. https://doi.org/10.1007/s11010-020-03754-2

    Article  CAS  PubMed  Google Scholar 

  362. Yi M, Dai X, Li Q et al (2019) Downregulated lncRNA CRNDE contributes to the enhancement of nerve repair after traumatic brain injury in rats. Cell Cycle 18:2332–2343. https://doi.org/10.1080/15384101.2019.1647024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Yin W-L, Yin W-G, Huang B-S, Wu L-X (2019) LncRNA SNHG12 inhibits miR-199a to upregulate SIRT1 to attenuate cerebral ischemia/reperfusion injury through activating AMPK signaling pathway. Neurosci Lett 690:188–195. https://doi.org/10.1016/j.neulet.2018.08.026

    Article  CAS  PubMed  Google Scholar 

  364. Cao Y, Pan L, Zhang X et al (2020) LncRNA SNHG3 promotes autophagy-induced neuronal cell apoptosis by acting as a ceRNA for miR-485 to up-regulate ATG7 expression. Metab Brain Dis 35:1361–1369. https://doi.org/10.1007/s11011-020-00607-1

    Article  CAS  PubMed  Google Scholar 

  365. Guo X, Wang Y, Zheng D et al (2021) LncRNA-MIAT promotes neural cell autophagy and apoptosis in ischemic stroke by up-regulating REDD1. Brain Res. https://doi.org/10.1016/j.brainres.2021.147436

    Article  PubMed  Google Scholar 

  366. Zhou Y, Ge Y, Liu Q et al (2021) LncRNA BACE1-AS promotes autophagy-mediated neuronal damage through the miR-214-3p/ATG5 signalling axis in alzheimer’s disease. Neuroscience 455:52–64. https://doi.org/10.1016/j.neuroscience.2020.10.028

    Article  CAS  PubMed  Google Scholar 

  367. Zhao J, Li H, Chang N (2020) LncRNA HOTAIR promotes MPP+-induced neuronal injury in Parkinson’s disease by regulating the miR-874–5p/ATG10 axis. EXCLI J 19:1141–1153. https://doi.org/10.17179/excli2020-2286

  368. Fan Y, Zhao X, Lu K, Cheng G (2020) LncRNA BDNF-AS promotes autophagy and apoptosis in MPTP-induced Parkinson’s disease via ablating microRNA-125b-5p. Brain Res Bull 157:119–127. https://doi.org/10.1016/j.brainresbull.2020.02.003

    Article  CAS  PubMed  Google Scholar 

  369. Wang X, Zhang M, Liu H (2019) LncRNA17A regulates autophagy and apoptosis of SH-SY5Y cell line as an in vitro model for Alzheimer’s disease. Biosci Biotechnol Biochem 83:609–621. https://doi.org/10.1080/09168451.2018.1562874

    Article  CAS  PubMed  Google Scholar 

  370. Li Z, Hao S, Yin H et al (2016) Autophagy ameliorates cognitive impairment through activation of PVT1 and apoptosis in diabetes mice. Behav Brain Res 305:265–277. https://doi.org/10.1016/j.bbr.2016.03.023

    Article  PubMed  Google Scholar 

  371. Zhou Z, Xu H, Liu B et al (2019) Suppression of lncRNA RMRP ameliorates oxygen-glucose deprivation/re-oxygenation-induced neural cells injury by inhibiting autophagy and PI3K/Akt/mTOR-mediated apoptosis. Biosci Rep. https://doi.org/10.1042/BSR20181367

    Article  PubMed  PubMed Central  Google Scholar 

  372. Ren X-D, Wan C-X, Niu Y-L (2019) Overexpression of lncRNA TCTN2 protects neurons from apoptosis by enhancing cell autophagy in spinal cord injury. FEBS Open Bio 9:1223–1231. https://doi.org/10.1002/2211-5463.12651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Sun W, Li Y-N, Ye J-F, et al (2018) MEG3 is involved in the development of glaucoma through promoting the autophagy of retinal ganglion cells. Eur Rev Med Pharmacol Sci 22:2534–2540. https://doi.org/10.26355/eurrev_201805_14942

  374. Peng T, Liu X, Wang J et al (2019) Long noncoding RNA HAGLROS regulates apoptosis and autophagy in Parkinson’s disease via regulating miR-100/ATG10 axis and PI3K/Akt/mTOR pathway activation. Artif Cells Nanomed Biotechnol 47:2764–2774. https://doi.org/10.1080/21691401.2019.1636805

    Article  CAS  PubMed  Google Scholar 

  375. Aminyavari S, Zahmatkesh M, Farahmandfar M et al (2019) Protective role of Apelin-13 on amyloid β25–35-induced memory deficit; Involvement of autophagy and apoptosis process. Prog Neuro-Psychopharmacol Biol Psychiatry 89:322–334. https://doi.org/10.1016/j.pnpbp.2018.10.005

    Article  CAS  Google Scholar 

  376. Venkatesan R, Park YU, Ji E et al (2017) Malathion increases apoptotic cell death by inducing lysosomal membrane permeabilization in N2a neuroblastoma cells: a model for neurodegeneration in Alzheimer’s disease. Cell Death Discov 3:17007. https://doi.org/10.1038/cddiscovery.2017.7

    Article  PubMed  PubMed Central  Google Scholar 

  377. Cao Y, Li Q, Liu L et al (2019) Modafinil protects hippocampal neurons by suppressing excessive autophagy and apoptosis in mice with sleep deprivation. Br J Pharmacol 176:1282–1297. https://doi.org/10.1111/bph.14626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Guo Y, Wang F, Li H et al (2018) Metformin protects against spinal cord injury by regulating autophagy via the mTOR signaling pathway. Neurochem Res 43:1111–1117. https://doi.org/10.1007/s11064-018-2525-8

    Article  CAS  PubMed  Google Scholar 

  379. Ren Z, Wang C, Wang T et al (2019) Ganoderma lucidum extract ameliorates MPTP-induced parkinsonism and protects dopaminergic neurons from oxidative stress via regulating mitochondrial function, autophagy, and apoptosis. Acta Pharmacol Sin. https://doi.org/10.1038/s41401-018-0077-

    Article  PubMed  PubMed Central  Google Scholar 

  380. Singh S, Singh AK, Garg G, Rizvi SI (2018) Fisetin as a caloric restriction mimetic protects rat brain against aging induced oxidative stress, apoptosis and neurodegeneration. Life Sci 193:171–179. https://doi.org/10.1016/j.lfs.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  381. Yang W, Tian Z-K, Yang H-X et al (2019) Fisetin improves lead-induced neuroinflammation, apoptosis and synaptic dysfunction in mice associated with the AMPK/SIRT1 and autophagy pathway. Food Chem Toxicol 134:110824. https://doi.org/10.1016/j.fct.2019.110824

    Article  CAS  PubMed  Google Scholar 

  382. Singh AK, Singh S, Tripathi VK et al (2018) Rapamycin confers neuroprotection against aging-induced oxidative stress, mitochondrial dysfunction, and neurodegeneration in old rats through activation of autophagy. Rejuvenation Res 22:60–70. https://doi.org/10.1089/rej.2018.2070

    Article  CAS  PubMed  Google Scholar 

  383. Farkhondeh T, Pourbagher-Shahri AM, Ashrafizadeh M et al (2020) Green tea catechins inhibit microglial activation which prevents the development of neurological disorders. Neural Regen Res 15:1792. https://doi.org/10.4103/1673-5374.280300

    Article  PubMed  PubMed Central  Google Scholar 

  384. Xu Y, Liu S, Zhu L et al (2021) Green tea protects against hippocampal neuronal apoptosis in diabetic encephalopathy by inhibiting JNK/MLCK signaling. Mol Med Rep 24:1–13. https://doi.org/10.3892/MMR.2021.12214

    Article  CAS  Google Scholar 

  385. Fu G, Wang H, Cai Y et al (2018) Theaflavin alleviates inflammatory response and brain injury induced by cerebral hemorrhage via inhibiting the nuclear transcription factor kappa β-related pathway in rats. Drug Des Devel Ther 12:1609. https://doi.org/10.2147/DDDT.S164324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Zhou R, Li X, Li L, Zhang H (2019) Theaflavins alleviate sevoflurane-induced neurocytotoxicity via Nrf2 signaling pathway. Int J Neurosci 130:1–8. https://doi.org/10.1080/00207454.2019.1667788

    Article  CAS  PubMed  Google Scholar 

  387. Wang K, Chen Z, Huang J et al (2017) Naringenin prevents ischaemic stroke damage via anti-apoptotic and anti-oxidant effects. Clin Exp Pharmacol Physiol 44:862–871. https://doi.org/10.1111/1440-1681.12775

    Article  CAS  PubMed  Google Scholar 

  388. Wang K, Chen Z, Huang L et al (2017) Naringenin reduces oxidative stress and improves mitochondrial dysfunction via activation of the Nrf2/ARE signaling pathway in neurons. Int J Mol Med 40:1582–1590. https://doi.org/10.3892/IJMM.2017.3134

    Article  CAS  PubMed  Google Scholar 

  389. Cui J, Wang G, Kandhare AD et al (2018) Neuroprotective effect of naringin, a flavone glycoside in quinolinic acid-induced neurotoxicity: Possible role of PPAR-γ, Bax/Bcl-2, and caspase-3. Food Chem Toxicol 121:95–108. https://doi.org/10.1016/J.FCT.2018.08.028

    Article  CAS  PubMed  Google Scholar 

  390. Meng X, Fu M, Wang S et al (2021) Naringin ameliorates memory deficits and exerts neuroprotective effects in a mouse model of Alzheimer’s disease by regulating multiple metabolic pathways. Mol Med Rep 23:1–13. https://doi.org/10.3892/MMR.2021.11971

    Article  Google Scholar 

  391. Guo J, Yang G, He Y et al (2020) Involvement of α7nAChR in the protective effects of genistein against β-amyloid-induced oxidative stress in neurons via a PI3K/Akt/Nrf2 pathway-related mechanism. Cell Mol Neurobiol 412(41):377–393. https://doi.org/10.1007/S10571-020-01009-8

    Article  Google Scholar 

  392. Jiang T, Wang X, Ding C, Du X (2017) Genistein attenuates isoflurane-induced neurotoxicity and improves impaired spatial learning and memory by regulating cAMP/CREB and BDNF-TrkB-PI3K/Akt signaling. Korean J Physiol Pharmacol 21:579–589. https://doi.org/10.4196/KJPP.2017.21.6.579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  393. Subedi L, Ji E, Shin D et al (2017) Equol, a dietary daidzein gut metabolite attenuates microglial activation and potentiates neuroprotection in vitro. Nutr 9:207. https://doi.org/10.3390/NU9030207

    Article  Google Scholar 

  394. Tsai M-C, Lin S-H, Hidayah K, Lin C-I (2019) Equol pretreatment protection of SH-SY5Y cells against Aβ (25–35)-induced cytotoxicity and cell-cycle reentry via sustaining estrogen receptor alpha expression. Nutr 11:2356. https://doi.org/10.3390/NU11102356

    Article  CAS  Google Scholar 

  395. Anusha C, Sumathi T, Joseph LD (2017) Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis. Chem Biol Interact 269:67–79. https://doi.org/10.1016/J.CBI.2017.03.016

    Article  CAS  PubMed  Google Scholar 

  396. Han Y, Zhang T, Su J et al (2017) Apigenin attenuates oxidative stress and neuronal apoptosis in early brain injury following subarachnoid hemorrhage. J Clin Neurosci 40:157–162. https://doi.org/10.1016/J.JOCN.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  397. Kim Y, Kim J, He M et al (2021) Apigenin ameliorates scopolamine-induced cognitive dysfunction and neuronal damage in mice. Mol 26:5192. https://doi.org/10.3390/MOLECULES26175192

    Article  CAS  Google Scholar 

  398. Liu S, Su Y, Sun B et al (2020) Luteolin protects against CIRI, potentially via regulation of the SIRT3/AMPK/mTOR signaling pathway. Neurochem Res 4510(45):2499–2515. https://doi.org/10.1007/S11064-020-03108-W

    Article  Google Scholar 

  399. Tan X, Yang Y, Xu J et al (2020) Luteolin exerts neuroprotection via modulation of the p62/Keap1/Nrf2 pathway in intracerebral hemorrhage. Front Pharmacol. https://doi.org/10.3389/FPHAR.2019.01551

    Article  PubMed  PubMed Central  Google Scholar 

  400. Li L, Zhou R, Lv H et al (2021) Inhibitive effect of luteolin on sevoflurane-induced neurotoxicity through activation of the autophagy pathway by HMOX1. ACS Chem Neurosci. https://doi.org/10.1021/ACSCHEMNEURO.1C00157

    Article  PubMed  Google Scholar 

  401. Peruru DS (2021) Therapeutic potential of diosmin, a citrus flavonoid against arsenic-induced neurotoxicity via suppression of NOX 4 and its subunits. Indian J Pharmacol 53:132. https://doi.org/10.4103/IJP.IJP_837_19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  402. Morroni F, Sita G, Graziosi A, et al (2018) Neuroprotective effect of caffeic acid phenethyl ester in a mouse model of alzheimer’s disease involves Nrf2/HO-1 pathway. Aging Dis 9:605. https://doi.org/10.14336/AD.2017.0903

  403. Chandrasekhar Y, Phani Kumar G, Ramya EM, Anilakumar KR (2018) Gallic acid protects 6-OHDA induced neurotoxicity by attenuating oxidative stress in human dopaminergic cell line. Neurochem Res 43:1150–1160. https://doi.org/10.1007/S11064-018-2530-Y

    Article  CAS  PubMed  Google Scholar 

  404. Youn K, Jun M (2020) Geraniin Protects PC12 Cells Against Aβ25–35-Mediated Neuronal Damage: Involvement of NF-κB and MAPK Signaling Pathways. https://home.liebertpub.com/jmf 23:928–937. https://doi.org/10.1089/JMF.2019.4613

  405. Huang J, Xiao L, Wei J et al (2017) Protective effect of arctigenin on ethanol-induced neurotoxicity in PC12 cells. Mol Med Rep 15:2235–2240. https://doi.org/10.3892/MMR.2017.6222

    Article  CAS  PubMed  Google Scholar 

  406. Liang S, Zheng Y, Lei L et al (2020) Corydalis edulis total alkaloids (CETA) ameliorates cognitive dysfunction in rat model of Alzheimer disease through regulation of the antioxidant stress and MAP2/NF-κB. J Ethnopharmacol 251:112540. https://doi.org/10.1016/J.JEP.2019.112540

    Article  CAS  PubMed  Google Scholar 

  407. Li Z-Q, Zhang F, Shi J-S (2022) Potential neuroprotection by Dendrobium nobile Lindl alkaloid in Alzheimer’s disease models. Neural Regen Res 17:972. https://doi.org/10.4103/1673-5374.324824

    Article  PubMed  Google Scholar 

  408. Zheng M, Chen M, Liu C et al (2021) Alkaloids extracted from Uncaria rhynchophylla demonstrate neuroprotective effects in MPTP-induced experimental parkinsonism by regulating the PI3K/Akt/mTOR signaling pathway. J Ethnopharmacol 266:113451. https://doi.org/10.1016/J.JEP.2020.113451

    Article  CAS  PubMed  Google Scholar 

  409. Liu J, Zhu T, Niu Q et al (2020) Dendrobium nobile alkaloids protects against H2O2-induced neuronal injury by suppressing JAK–STATs pathway activation in N2A cells. Biol Pharm Bull 43:716–724. https://doi.org/10.1248/BPB.B19-01083

    Article  CAS  PubMed  Google Scholar 

  410. Lee D, Choi HG, Hwang JH et al (2020) Neuroprotective effect of tricyclic pyridine alkaloids from fusarium lateritium SSF2, against glutamate-induced oxidative stress and apoptosis in the HT22 hippocampal neuronal cell line. Antioxidants 9:1115. https://doi.org/10.3390/ANTIOX9111115

    Article  CAS  PubMed Central  Google Scholar 

  411. Liu D, Dong Z, Xiang F et al (2019) (2019) Dendrobium alkaloids promote neural function after cerebral ischemia-reperfusion injury through inhibiting pyroptosis induced neuronal death in both in vivo and in vitro models. Neurochem Res 452(45):437–454. https://doi.org/10.1007/S11064-019-02935-W

    Article  Google Scholar 

  412. Li Z, Jiang T, Lu Q et al (2019) Berberine attenuated the cytotoxicity induced by t-BHP via inhibiting oxidative stress and mitochondria dysfunction in PC-12 cells. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-019-00756-7

    Article  PubMed  PubMed Central  Google Scholar 

  413. Wang X, Zhang R, Lin Y, Shi P (2020) Inhibition of NF-kappaB might enhance the protective role of roflupram on SH-SY5Y cells under amyloid beta stimulation via PI3K/AKT/mTOR signaling pathway. Int J Neurosci. https://doi.org/10.1080/00207454.2020.1759588

    Article  PubMed  Google Scholar 

  414. Qi Y, Cheng X, Gong G et al (2020) Synergistic neuroprotective effect of schisandrin and nootkatone on regulating inflammation, apoptosis and autophagy via the PI3K/AKT pathway. Food Funct 11:2427–2438. https://doi.org/10.1039/c9fo02927c

    Article  CAS  PubMed  Google Scholar 

  415. Gugliandolo A, Pollastro F, Bramanti P, Mazzon E (2020) Cannabidiol exerts protective effects in an in vitro model of Parkinson’s disease activating AKT/mTOR pathway. Fitoterapia 143:104553. https://doi.org/10.1016/j.fitote.2020.104553

    Article  CAS  PubMed  Google Scholar 

  416. Li P, Li X, Yao L et al (2020) Soybean isoflavones prevent atrazine-induced neurodegenerative damage by inducing autophagy. Ecotoxicol Environ Saf 190:110065. https://doi.org/10.1016/J.ECOENV.2019.110065

    Article  CAS  PubMed  Google Scholar 

  417. Farmer K, Abd-Elrahman KS, Derksen A et al (2020) mGluR5 allosteric modulation promotes neurorecovery in a 6-OHDA-toxicant model of parkinson’s disease. Mol Neurobiol. https://doi.org/10.1007/s12035-019-01818-z

    Article  PubMed  Google Scholar 

  418. Abd-Elrahman KS, Ferguson SSG (2019) Modulation of mTOR and CREB pathways following mGluR5 blockade contribute to improved Huntington’s pathology in zQ175 mice. Mol Brain. https://doi.org/10.1186/s13041-019-0456-1

    Article  PubMed  PubMed Central  Google Scholar 

  419. Bai H, Ding Y, Li X et al (2020) Polydatin protects SH-SY5Y in models of Parkinson’s disease by promoting Atg5-mediated but parkin-independent autophagy. Neurochem Int. https://doi.org/10.1016/j.neuint.2020.104671

    Article  PubMed  Google Scholar 

  420. Salama RM, Abdel-Latif GA, Abbas SS et al (2020) Neuroprotective effect of crocin against rotenone-induced Parkinson’s disease in rats: Interplay between PI3K/Akt/mTOR signaling pathway and enhanced expression of miRNA-7 and miRNA-221. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2019.107900

    Article  PubMed  Google Scholar 

  421. Sun Y, Jiang X, Pan R et al (2020) Escins isolated from aesculus chinensis bge promote the autophagic degradation of mutant huntingtin and inhibit its induced apoptosis in HT22 cells. Front Pharmacol. https://doi.org/10.3389/fphar.2020.00116

    Article  PubMed  PubMed Central  Google Scholar 

  422. Wang M, Hua X, Niu H et al (2019) Cornel iridoid glycoside protects against white matter lesions induced by cerebral ischemia in rats via activation of the brain-derived neurotrophic factor/neuregulin-1 pathway. Neuropsychiatr Dis Treat 15:3327–3340. https://doi.org/10.2147/NDT.S228417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  423. Wang P, Lu Y, Han D et al (2019) Neuroprotection by nicotinamide mononucleotide adenylyltransferase 1 with involvement of autophagy in an aged rat model of transient cerebral ischemia and reperfusion. Brain Res. https://doi.org/10.1016/j.brainres.2019.146391

    Article  PubMed  PubMed Central  Google Scholar 

  424. Bellozi PMQ, Gomes GF, De Oliveira LR et al (2019) NVP-BEZ235 (dactolisib) has protective effects in a transgenic mouse model of Alzheimer’s disease. Front Pharmacol. https://doi.org/10.3389/fphar.2019.01345

    Article  PubMed  PubMed Central  Google Scholar 

  425. Cao R, Li L, Ying Z et al (2019) A small molecule protects mitochondrial integrity by inhibiting mTOR activity. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1911246116

    Article  PubMed  PubMed Central  Google Scholar 

  426. Suresh SN, Manjithaya R (2019) A small molecule autophagy inducer exerts cytoprotection against α-synuclein toxicity. Eur J Pharmacol. https://doi.org/10.1016/j.ejphar.2019.172635

    Article  PubMed  Google Scholar 

  427. Yin P, Wang X, Wang S et al (2019) Maresin 1 improves cognitive decline and ameliorates inflammation in a mouse model of alzheimer’s disease. Front Cell Neurosci. https://doi.org/10.3389/FNCEL.2019.00466

    Article  PubMed  PubMed Central  Google Scholar 

  428. Fan L, Qiu X, Zhu Z et al (2019) Nitazoxanide, an anti-parasitic drug, efficiently ameliorates learning and memory impairments in AD model mice. Acta Pharmacol Sin. https://doi.org/10.1038/s41401-019-0220-1

    Article  PubMed  PubMed Central  Google Scholar 

  429. Zhou H, Shao M, Guo B et al (2019) Tetramethylpyrazine analogue T-006 promotes the clearance of alpha-synuclein by enhancing proteasome activity in parkinson’s disease models. Neurotherapeutics. https://doi.org/10.1007/s13311-019-00759-8

    Article  PubMed  PubMed Central  Google Scholar 

  430. Schreiber KH, Arriola Apelo SI, Yu D et al (2019) A novel rapamycin analog is highly selective for mTORC1 in vivo. Nat Commun. https://doi.org/10.1038/s41467-019-11174-0

    Article  PubMed  PubMed Central  Google Scholar 

  431. Wang L, Jin G, Yu H et al (2019) Protective effect of tenuifolin against alzheimer’s disease. Neurosci Lett 705:195–201. https://doi.org/10.1016/j.neulet.2019.04.045

    Article  CAS  PubMed  Google Scholar 

  432. Chen J, Long Z, Li Y et al (2019) Alteration of the Wnt/GSK3β/β-catenin signalling pathway by rapamycin ameliorates pathology in an Alzheimer’s disease model. Int J Mol Med. https://doi.org/10.3892/ijmm.2019.4198

    Article  PubMed  PubMed Central  Google Scholar 

  433. Sun Q, Wei LL, Zhang M et al (2019) Rapamycin inhibits activation of AMPK-mTOR signaling pathway-induced Alzheimer’s disease lesion in hippocampus of rats with type 2 diabetes mellitus. Int J Neurosci. https://doi.org/10.1080/00207454.2018.1491571

    Article  PubMed  Google Scholar 

  434. Tramutola A, Lanzillotta C, Barone E et al (2018) Intranasal rapamycin ameliorates Alzheimer-like cognitive decline in a mouse model of Down syndrome. Transl Neurodegener. https://doi.org/10.1186/s40035-018-0133-9

    Article  PubMed  PubMed Central  Google Scholar 

  435. Singh AK, Kashyap MP, Tripathi VK et al (2017) Neuroprotection through rapamycin-induced activation of autophagy and PI3K/Akt1/mTOR/CREB signaling against amyloid-β-induced oxidative stress, synaptic/neurotransmission dysfunction, and neurodegeneration in adult rats. Mol Neurobiol. https://doi.org/10.1007/s12035-016-0129-3

    Article  PubMed  Google Scholar 

  436. Liu YC, Gao XX, Chen L, You X (2017) Rapamycin suppresses Aβ25–35- or LPS-induced neuronal inflammation via modulation of NF-κB signaling. Neuroscience. https://doi.org/10.1016/j.neuroscience.2017.05.005

    Article  PubMed  PubMed Central  Google Scholar 

  437. Chen S, Cai F, Wang J et al (2019) Salidroside protects SHSY5Y from pathogenic alphasynuclein by promoting cell autophagy via mediation of mTOR/p70S6K signaling. Mol Med Rep 20:529–538. https://doi.org/10.3892/mmr.2019.10285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  438. Chen Y, Xu S, Wang N et al (2019) Dynasore suppresses mTORC1 activity and induces autophagy to regulate the clearance of protein aggregates in neurodegenerative diseases. Neurotox Res. https://doi.org/10.1007/s12640-019-00027-9

    Article  PubMed  PubMed Central  Google Scholar 

  439. Lee HJ, Lee JO, Lee YW et al (2019) Lif, a novel myokine, protects against amyloid-beta-induced neurotoxicity via akt-mediated autophagy signaling in hippocampal cells. Int J Neuropsychopharmacol. https://doi.org/10.1093/ijnp/pyz016

    Article  PubMed  PubMed Central  Google Scholar 

  440. Chu Q, Yu L, Zheng Z et al (2019) Apios americana Medik flowers extract protects PC12 cells against H 2 O 2 induced neurotoxicity via regulating autophagy. Food Chem Toxicol. https://doi.org/10.1016/j.fct.2018.12.003

    Article  PubMed  Google Scholar 

  441. Zhang Z, Wang X, Zhang D, et al (2019) Geniposide-mediated protection against amyloid deposition and behavioral impairment correlates with downregulation of mTOR signaling and enhanced autophagy in a mouse model of Alzheimer’s disease. Aging (Albany NY) https://doi.org/10.18632/aging.101759

  442. Zhao Y, Wang Q, Wang Y et al (2019) Glutamine protects against oxidative stress injury through inhibiting the activation of PI3K/Akt signaling pathway in parkinsonian cell model. Environ Health Prev Med 24:4. https://doi.org/10.1186/s12199-018-0757-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  443. Shan SR, Jiang F, Xu SM (2019) Effects of H102 on the memory recognition ability and AMPK-mTOR autophagy-related pathway in AD mice]. Zhongguo Ying Yong Sheng Li Xue Za Zhi 35:1–4. https://doi.org/10.12047/j.cjap.5749.2019.001

  444. Yang C-C, Lin C-C, Hsiao L-D, Yang C-M (2018) Galangin inhibits thrombin-induced MMP-9 expression in SK-N-SH cells via protein kinase-dependent NF-kappaB phosphorylation. Int J Mol Sci. https://doi.org/10.3390/ijms19124084

    Article  PubMed  PubMed Central  Google Scholar 

  445. Polis B, Srikanth KD, Elliott E et al (2018) L-norvaline reverses cognitive decline and synaptic loss in a murine model of alzheimer’s disease. Neurotherapeutics. https://doi.org/10.1007/s13311-018-0669-5

    Article  PubMed  PubMed Central  Google Scholar 

  446. Zhu J, Dou S, Jiang Y et al (2019) Apelin-36 exerts the cytoprotective effect against MPP(+)-induced cytotoxicity in SH-SY5Y cells through PI3K/Akt/mTOR autophagy pathway. Life Sci 224:95–108. https://doi.org/10.1016/j.lfs.2019.03.047

    Article  CAS  PubMed  Google Scholar 

  447. Gu HF, Li N, Tang YL et al (2019) Nicotinate-curcumin ameliorates cognitive impairment in diabetic rats by rescuing autophagic flux in CA1 hippocampus. CNS Neurosci Ther. https://doi.org/10.1111/cns.13059

    Article  PubMed  PubMed Central  Google Scholar 

  448. Zhou T, Zhuang J, Wang Z et al (2019) Glaucocalyxin A as a natural product increases amyloid β clearance and decreases tau phosphorylation involving the mammalian target of rapamycin signaling pathway. NeuroReport. https://doi.org/10.1097/WNR.0000000000001202

    Article  PubMed  Google Scholar 

  449. Song HL, Demirev AV, Kim NY et al (2019) Ouabain activates transcription factor EB and exerts neuroprotection in models of Alzheimer’s disease. Mol Cell Neurosci. https://doi.org/10.1016/j.mcn.2018.12.007

    Article  PubMed  Google Scholar 

  450. Huang L, Lin M, Zhong X et al (2019) Galangin decreases p-tau, Aβ 42 and β-secretase levels, and suppresses autophagy in okadaic acid-induced PC12 cells via an Akt/GSK3β/mTOR signaling-dependent mechanism. Mol Med Rep. https://doi.org/10.3892/mmr.2019.9824

    Article  PubMed  PubMed Central  Google Scholar 

  451. Song GL, Chen C, Wu QY et al (2018) Selenium-enriched yeast inhibited β-amyloid production and modulated autophagy in a triple transgenic mouse model of Alzheimer’s disease. Metallomics. https://doi.org/10.1039/c8mt00041g

    Article  PubMed  Google Scholar 

  452. Shao Q, Zhang X, Chen Y et al (2018) Anti-neuroinflammatory effects of 20C from Gastrodia elata via regulating autophagy in LPS-activated BV-2 cells through MAPKs and TLR4/Akt/mTOR signaling pathways. Mol Immunol. https://doi.org/10.1016/j.molimm.2018.04.0144

    Article  PubMed  Google Scholar 

  453. Arabit JGJ, Elhaj R, Schriner SE et al (2018) Rhodiola rosea improves lifespan, locomotion, and neurodegeneration in a drosophila melanogaster model of huntington’s disease. Biomed Res Int. https://doi.org/10.1155/2018/6726874

    Article  PubMed  PubMed Central  Google Scholar 

  454. Kong F-J, Wu J-H, Sun S-Y et al (2018) Liraglutide ameliorates cognitive decline by promoting autophagy via the AMP-activated protein kinase/mammalian target of rapamycin pathway in a streptozotocin-induced mouse model of diabetes. Neuropharmacology 131:316–325. https://doi.org/10.1016/j.neuropharm.2018.01.001

    Article  CAS  PubMed  Google Scholar 

  455. Ou Z, Kong X, Sun X et al (2018) Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav Immun. https://doi.org/10.1016/j.bbi.2017.12.009

    Article  PubMed  Google Scholar 

  456. Qu Y, Liu Y, Chen L et al (2018) Nobiletin prevents cadmium-induced neuronal apoptosis by inhibiting reactive oxygen species and modulating JNK/ERK1/2 and Akt/mTOR networks in rats. Neurol Res. https://doi.org/10.1080/01616412.2018.1424685

    Article  PubMed  Google Scholar 

  457. Guo X, Lv J, Lu J et al (2018) Protopanaxadiol derivative DDPU improves behavior and cognitive deficit in AD mice involving regulation of both ER stress and autophagy. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2017.11.033

    Article  PubMed  Google Scholar 

  458. Kim YD, Il JE, Nah J et al (2017) Pimozide reduces toxic forms of tau in TauC3 mice via 5′ adenosine monophosphate-activated protein kinase-mediated autophagy. J Neurochem. https://doi.org/10.1111/jnc.14109

    Article  PubMed  Google Scholar 

  459. Li Z, Chen X, Lu W et al (2017) Anti-oxidative stress activity is essential for amanita caesarea mediated neuroprotection on glutamate-induced apoptotic HT22 cells and an Alzheimer’s disease mouse model. Int J Mol Sci. https://doi.org/10.3390/ijms18081623

    Article  PubMed  PubMed Central  Google Scholar 

  460. Xiao H, Zhang Q, Peng Y et al (2017) 7-(4-Hydroxy-3-methoxyphenyl)-1-phenyl-4E-hepten-3-one alleviates Abeta1-42 induced cytotoxicity through PI3K-mTOR pathways. Biochem Biophys Res Commun 484:365–371. https://doi.org/10.1016/j.bbrc.2017.01.125

    Article  CAS  PubMed  Google Scholar 

  461. Zhang ZH, Wu QY, Zheng R et al (2017) Selenomethionine mitigates cognitive decline by targeting both tau hyperphosphorylation and autophagic clearance in an Alzheimer’s disease mouse model. J Neurosci. https://doi.org/10.1523/JNEUROSCI.3229-16.2017

    Article  PubMed  PubMed Central  Google Scholar 

  462. Li C, Guo XD, Lei M et al (2017) Thamnolia vermicularis extract improves learning ability in APP/PS1 transgenic mice by ameliorating both Aβ and Tau pathologies. Acta Pharmacol Sin. https://doi.org/10.1038/aps.2016.94

    Article  PubMed  PubMed Central  Google Scholar 

  463. Zhang R, Zhang N, Zhang H et al (2017) Celastrol prevents cadmium-induced neuronal cell death by blocking reactive oxygen species-mediated mammalian target of rapamycin pathway. Br J Pharmacol. https://doi.org/10.1111/bph.13655

    Article  PubMed  PubMed Central  Google Scholar 

  464. Xie L, Yu S, Yang K et al (2017) Hydrogen sulfide inhibits autophagic neuronal cell death by reducing oxidative stress in spinal cord ischemia reperfusion injury. Oxid Med Cell Longev. https://doi.org/10.1155/2017/8640284

    Article  PubMed  PubMed Central  Google Scholar 

  465. Deng M, Huang L, Ning B et al (2016) β-asarone improves learning and memory and reduces Acetyl Cholinesterase and Beta-amyloid 42 levels in APP/PS1 transgenic mice by regulating Beclin-1-dependent autophagy. Brain Res. https://doi.org/10.1016/j.brainres.2016.10.008

    Article  PubMed  Google Scholar 

  466. Guo XD, Sun GL, Zhou TT et al (2016) Small molecule LX2343 ameliorates cognitive deficits in AD model mice by targeting both amyloid β production and clearance. Acta Pharmacol Sin. https://doi.org/10.1038/aps.2016.80

    Article  PubMed  PubMed Central  Google Scholar 

  467. Liu J, Su H, Qu QM (2016) Carnosic acid prevents beta-amyloid-induced injury in human neuroblastoma SH-SY5Y cells via the induction of autoph agy. Neurochem Res. https://doi.org/10.1007/s11064-016-1945-6

    Article  PubMed  PubMed Central  Google Scholar 

  468. Walter C, Clemens LE, Müller AJ et al (2016) Activation of AMPK-induced autophagy ameliorates Huntington disease pathology in vitro. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2016.04.041

    Article  PubMed  Google Scholar 

  469. Tseng YT, Chen CS, Jong YJ et al (2016) Loganin possesses neuroprotective properties, restores SMN protein and activates protein synthesis positive regulator Akt/mTOR in experimental models of spinal muscular atrophy. Pharmacol Res. https://doi.org/10.1016/j.phrs.2016.05.023

    Article  PubMed  Google Scholar 

  470. Zhou Q, Chen B, Wang X et al (2016) Sulforaphane protects against rotenone-induced neurotoxicity in vivo: Involvement of the mTOR, Nrf2, and autophagy pathways. Sci Rep. https://doi.org/10.1038/srep32206

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the senior management of Delhi Technological University for their constant support and guidance.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

RG, RK and PK conceived and designed this project. Data collected and analyzed by RG and RK. Art work is done by RG and PK. Manuscript has been written by RG and PK.

Corresponding author

Correspondence to Pravir Kumar.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

The authors consent to publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Ambasta, R.K. & Pravir Kumar Autophagy and apoptosis cascade: which is more prominent in neuronal death?. Cell. Mol. Life Sci. 78, 8001–8047 (2021). https://doi.org/10.1007/s00018-021-04004-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-04004-4

Keywords

Navigation