Skip to main content

Advertisement

Log in

PRMT7 ablation in cardiomyocytes causes cardiac hypertrophy and fibrosis through β-catenin dysregulation

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Angiotensin II (AngII) has potent cardiac hypertrophic effects mediated through activation of hypertrophic signaling like Wnt/β-Catenin signaling. In the current study, we examined the role of protein arginine methyltransferase 7 (PRMT7) in cardiac function. PRMT7 was greatly decreased in hypertrophic hearts chronically infused with AngII and cardiomyocytes treated with AngII. PRMT7 depletion in rat cardiomyocytes resulted in hypertrophic responses. Consistently, mice lacking PRMT7 exhibited the cardiac hypertrophy and fibrosis. PRMT7 overexpression abrogated the cellular hypertrophy elicited by AngII, while PRMT7 depletion exacerbated the hypertrophic response caused by AngII. Similar with AngII treatment, the cardiac transcriptome analysis of PRMT7-deficient hearts revealed the alteration in gene expression profile related to Wnt signaling pathway. Inhibition of PRMT7 by gene deletion or an inhibitor treatment enhanced the activity of β-catenin. PRMT7 deficiency decreases symmetric dimethylation of β-catenin. Mechanistic studies reveal that methylation of arginine residue 93 in β-catenin decreases the activity of β-catenin. Taken together, our data suggest that PRMT7 is important for normal cardiac function through suppression of β-catenin activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

All data related to this work is presented in the paper and its supplements. The materials used in this study are available to any qualified researcher upon reasonable request addressed to J.S.K.

References

  1. Kehat I, Molkentin JD (2010) Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation 122:2727–2735

    Article  PubMed  Google Scholar 

  2. Bergmann MW (2010) Wnt signaling in adult cardiac hypertrophy and remodeling: lessons learned from cardiac development. Circ Res 107:1198–1208

    Article  CAS  PubMed  Google Scholar 

  3. Baurand A, Zelarayan L, Betney R, Gehrke C, Dunger S, Noack C, Busjahn A, Huelsken J, Taketo MM, Birchmeier W, Dietz R, Bergmann MW (2007) β-Catenin downregulation is required for adaptive cardiac remodeling. Circ Res 100:1353–1362

    Article  CAS  PubMed  Google Scholar 

  4. Zhao Y, Wang C, Wang C, Hong X, Miao J, Liao Y, Zhou L, Liu Y (2018) An essential role for Wnt/β-Catenin signaling in mediating hypertensive heart disease. Sci Rep 8:8996

    Article  PubMed  PubMed Central  Google Scholar 

  5. Duan J, Gherghe C, Liu D, Hamlett E, Srikantha L, Rodgers L, Regan JN, Rojas M, Willis M, Leask A, Majesky M, Deb A (2012) Wnt1/β-Catenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBO J 31:429–442

    Article  CAS  PubMed  Google Scholar 

  6. Angers S, Moon RT (2009) Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 10:468477

    Article  Google Scholar 

  7. MacDonald BT, Tamai K, He X (2009) Wnt/β-Catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Levy L, Wei Y, Labalette C, Wu Y, Renard C-A, Buendia MA, Neuveut C (2004) Acetylation of β-Catenin by p300 regulates β-Cateni-Tcf4 interaction. Mol Cell Biol 24:3404–3414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Krause CD, Yang Z-H, Kim Y-S, Lee J-H, Cook JR, Pestka S (2007) Protein arginine methyltransferases: evolution and assessment of their pharmacological and therapeutic potential. Pharmacol Ther 113:50–87

    Article  CAS  PubMed  Google Scholar 

  10. Biggar KK, Li SS (2015) Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol 16:5–17

    Article  CAS  PubMed  Google Scholar 

  11. Liu F, Wan L, Zou H, Pan Z, Zhou W, Lu X (2020) PRMT7 promotes the growth of renal cell carcinoma through modulating the β-Catenin/C-Myc axis. Int J Biochem Cell Biol 120:105686

    Article  CAS  PubMed  Google Scholar 

  12. Jeong HJ, Lee HJ, Vuong TA, Choi KS, Choi D, Koo SH, Cho SC, Cho H, Kang JS (2016) PRMT7 deficiency causes reduced skeletal muscle oxidative metabolism and age-related obesity. Diabetes 65:1868–1882

    Article  CAS  PubMed  Google Scholar 

  13. Blanc RS, Vogel G, Chen T, Crist C, Richard S (2016) PRMT7 preserves satellite cell regenerative capacity. Cell Rep 14:1528–1539

    Article  CAS  PubMed  Google Scholar 

  14. Kernohan KD, McBride A, Xi Y, Martin N, Schwartzentruber J, Dyment DA, Majewski J, Blaser S, Constorium CC, Boycott KM, Chitayat D (2017) Loss of arginine methyltransferase PRMT7 causes syndromic intellectual disability with microcephaly and brachydactyly. Clin Genet 91:708–716

    Article  CAS  PubMed  Google Scholar 

  15. Akawi N, McRae J, Ansari M, Balasubramanian M, Blyth M, Brady AF, Clayton S, Cole T, Deshpande C, Fitzgerald TW, Foulds N, Francis R, Gabriel G, Gerety SS, Goodship J, Hobson E, Jones WD, Joss S, King D, Klena N, Kumar A, Lees M, Lelliott C, Lord J, McMullan D, O’Regan M, Osio D, Piombo V, Prigmore E, Rajan D, Rosser E, Sifrim A, Smith A, Swaminathan GJ, Turnpenny P, Whitworth J, Wright C, Firth HV, Barrett JC, Lo CW, FitzPatrick DR, Hurles ME, the DDD study (2015) Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families. Nat Genet 47:1363–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pyun JH, Kim HJ, Jeong MH, Ahn BY, Vuong TA, Lee DI, Choi S, Koo SH, Cho H, Kang JS (2018) Cardiac specific PRMT1 ablation causes heart failure through CAMKII dysregulation. Nat Commun 9:5107

    Article  PubMed  PubMed Central  Google Scholar 

  17. Murata K, Lu W, Hashimoto M, Ono N, Muratani M, Nishikata K, Kim JD, Ebilhara S, Ishida J, Fukamizu A (2018) PRMT1 deficiency in mouse juvenile heart induces dilated cardiomyopathy and reveals cryptic alternative splicing products. iScience 8:200–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cassis LA, Marshall DE, Fettinger MJ, Rosenbluth B, Lodder RA (1998) Mechanisms contributing to angiotensin II regulation of body weight. Am J Physiol 274:E867–E876

    CAS  PubMed  Google Scholar 

  19. Olivares-Silva F, Gregorio ND, Espitia-Corredor J, Espinoza C, Vivar R, Silva D, Osorio JM, Lavandero S, Peiro C, Sanchez-Ferrer C, Diaz-Araya G (2021) Resolvin-D1 attenuation of angiotensin II-induced cardiac inflammation in mice is associated with prevention of cardiac remodeling and hypertension. Biochim Biophys Acta Mol Basis Dis 1867:166241

    Article  CAS  PubMed  Google Scholar 

  20. Lee SJ, Hwang J, Jeong HJ, Yoo M, Go GY, Lee JR, Leem YE, Park JW, Seo DW, Kim YK, Hahn MJ, Han JW, Kang JS, Bae GU (2016) PKN2 and Cdo interact to activate AKT and promote myoblast differentiation. Cell Death Dis 7:e2431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jeong MH, Kim HJ, Pyun JH, Choi KS, Lee DI, Solhjoo S, O’Rourke B, Tomaselli GF, Jeong DS, Cho H, Kang JS (2017) Cdon deficiency causes cardiac remodeling through hyperactivation of Wnt/ζ-Catenin signaling. Proc Natl Acad Sci U S A 114:E1345–E1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jeong MH, Ho SM, Vuong TA, Jo SB, Liu G, Aaronson SA, Leem YE, Kang JS (2014) Cdo suppresses canonical Wnt signalling via interaction with Lrp6 thereby promoting neuronal differentiation. Nat Commun 5:5455

    Article  PubMed  Google Scholar 

  23. Leem YE, Jeong HJ, Kim HJ, Koh J, Kang KJ, Bae GU, Cho H, Kang JS (2016) Cdo regulates surface expression of Kir2.1 K+ channel in myoblast differentiation. PLoS ONE 11:e0158707

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vuong TA, Jeong HJ, Lee HJ, Kim BG, Leem YE, Cho H, Kang JS (2020) PRMT7 methylates and suppresses GLI2 binding to SUFU thereby promoting its activation. Cell Death Differ 27:15–28

    Article  CAS  PubMed  Google Scholar 

  25. Kwon YR, Jeong MH, Leem YE, Lee SJ, Kim HJ, Bae GU, Kang JS (2014) The Shh coreceptor Cdo is required for differentiation of midbrain dopaminergic neurons. Stem Cell Res 13:262–274

    Article  CAS  PubMed  Google Scholar 

  26. Lee HJ, Jo SB, Romer AI, Lim HJ, Kim MJ, Koo SH, Krauss RS, Kang JS (2015) Overweight in mice and enhanced adipogenesis in vitro are associated with lack of the hedgehog coreceptor Boc. Diabetes 64:2092–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jeong MH, Leem YE, Kim HJ, Kang K, Cho H, Kang JS (2016) A Shh coreceptor Cdo is required for efficient cardiomyogenesis of pluripotent stem cells. J Mol Cell Cardiol 93:57–66

    Article  CAS  PubMed  Google Scholar 

  28. Vuong TA, Leem YE, Kimg BG, Cho H, Lee SJ, Bae GU, Kang JS (2017) A Sonic hedgehog coreceptor, BOC regulates neuronal differentiation and neurite outgrowth via interaction with ABL and JNK activation. Cell Signal 30:30–40

    Article  CAS  PubMed  Google Scholar 

  29. Yousefi F, Shabaninejad Z, Vakili S, Derakhshan M, Movahedpour A, Dabiri H, Ghasemi Y, Mahjoubin-Tehran M, Nikoozadeh A, Savardashtaki A, Mirzaei H, Hamblin MR (2020) TGF-β and Wnt signaling pathways in cardiac fibrosis: non-coding RNAs come into focus. Cell Commun Signal 18:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Garcia-Hoz C, Sanchez-Fernandez G, Garcia-Escudero R, Fernandez-Velasco M, Palacios-Garcia J, Ruiz-Meana M, Diaz-Meco MT, Leitges M, Moscat J, Garcia-Dorado D, Bosca L, Major F Jr, Ribas C (2012) Protein kinase C (PKC)ζ-mediated Gαq stimulation of ERK5 protein pathway in cardiomyocytes and cardiac fibroblasts. J Biol Chem 287:7792–7802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Feng Y, Maity R, Whitelegge JP, Hadjikyriacou A, Li Z, Zurita-Lopez C, Al-Hadid Q, Clark AT, Bedford MT, Masson JY, Clarke SG (2013) Mammalian protein arginine methyltransferase (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions. J Biol Chem 288:37010–37025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Onwuli DO, Rigau-Roca L, Cawthorne C, Beltran-Alvarez P (2017) mapping arginine methylation in the human body and cardiac disease. Proteomics Clin Appl 11:1600106

    Article  Google Scholar 

  33. Nakamura M, Sadoshima J (2018) Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 15:387–407

    Article  CAS  PubMed  Google Scholar 

  34. Nomura N, Tani T, Konda T, Kim K, Kitai T, Nomoto N, Suganuma N, Nakamura H, Sumida T, Fujii Y, Kawai J, Kaji S, Furukawa Y (2018) Significance of isolated papillary muscle hypertrophy: a comparison of left ventricular hypertrophy diagnosed using electrocardiography vs echocardiography. Echocardiography 35:292–300

    Article  PubMed  Google Scholar 

  35. Sheehy SP, Huang S, Parker KK (2009) Time-warped comparison of gene expression in adaptive and maladaptive cardiac hypertrophy. Cir Cardiovasc Genet 2:116–124

    Article  CAS  Google Scholar 

  36. Malekar P, Hagenmueller M, Anyanwu A, Buss S, Streit MR, Weiss CS, Wolf D, Riffel J, Bauer A, Katus HA, Hardt SE (2010) Wnt signaling is critical for maladaptive cardiac hypertrophy and accelerates myocardial remodeling. Hypertension 55:939–945

    Article  CAS  PubMed  Google Scholar 

  37. Yu L, Meng W, Ding J, Cheng M (2016) Klotho inhibits angiotensin II-induced cardiomyocytes hypertrophy through suppression of the AT1R/β-Catenin pathway. Biochem Biophys Res Commun 473:455–461

    Article  CAS  PubMed  Google Scholar 

  38. Dhar S, Vemulapalli V, Patananan AN, Huang GL, Lorenzo AD, Richard S, Comb MJ, Guo A, Clarke SG, Bedford MT (2013) Loss of the major type I arginine methyltransferase PRMT1 causes substrate scavenging by other PRMTs. Sci Rep 3:1311

    Article  PubMed  PubMed Central  Google Scholar 

  39. Choi S, Jeong HJ, Kim H, Choi D, Cho SC, Seong JK, Koo SH, Kang JS (2019) Skeletal muscle-specific PRMT1 deletion causes muscle atrophy via deregulation of the PRMT6-FOXO3 axis. Autophagy 15:1069–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen M, Yi B, Sun J (2014) Inhibition of cardiomyocyte hypertrophy by protein arginine methyltransferase 5. J Biol Chem 289:24325–24335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tee WW, Pardo M, Theunissen TW, Yu L, Choudhary JS, Hajkova P, Surani MA (2010) PRMT5 is essential for early mouse development and acts in the cytoplasm to maintain ES cell pluripotency. Genes Dev 24:2772–2777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jin Y, Zhou J, Xu F, Jin B, Cui L, Wang U, Du X, Li J, Li P, Ren R, Pan J (2016) Targeting methyltransferase PRMT5 eliminates leukemia stem cells in chronic myelogenous leukemia. J Clin Invest 126:3961–3980

    Article  PubMed  PubMed Central  Google Scholar 

  43. Choi D, Oh KJ, Han HS, Yoon YS, Jung CY, Kim ST, Koo SH (2012) Protein arginine methyltransferase 1 regulates hepatic glucose production in a FoxO1-dependent manner. Hepatology 56:1546–1556

    Article  CAS  PubMed  Google Scholar 

  44. Geng P, Zhang Y, Liu X, Zhang N, Liu Y, Liu X, Lin C, Yan X, Li Z, Wang G, Li Y, Tan J, Liu DX, Huang B, Lu J (2017) Automethylation of protein arginine methyltransferase 7 and its impact on breast cancer progression. FASEB J 31:2287–2300

    Article  CAS  PubMed  Google Scholar 

  45. Cha B, Kim W, Kim YK, Hwan BN, Park SY, Yoon JW, Par WS, Cho JW, Bedford MT, Jho EH (2011) Methylation by protein arginine methyltransferase 1 increases stability of Axin, a negative regulator of Wnt signaling. Oncogene 30:2379–2389

    Article  CAS  PubMed  Google Scholar 

  46. Albrecht LV, Ploper D, Tejeda-Munoz N, Robertis EMD (2018) Arginine methylation is required for canonical Wnt signaling and endolysosomal trafficking. Proc Natl Acad Sci U S A 115:E5317–E5325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation Grant funded by the Korean Government (MSIP) (NRF-2019R1A2C2006233; NRF-2017M3A9D8048710; 2016R1A5A2945889).

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

BYA, MHJ, JHP, HJJ, TAV, JHB, SA, SWK, YKK, DR, HJK, HC, GUB, and JSK contributed to the experimental design, research and data analysis. BYA, MHJ, GUB, and JSK wrote the manuscript.

Corresponding authors

Correspondence to Gyu-Un Bae or Jong-Sun Kang.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Ethics approval and consent to participate

All experimental protocols were approved by the Institutional Animal Care for Ethics and Use Committee of Sunkyunkwan University (SUSM, SKKUIACUC 2018-11-14-2), and the study followed institutional and National Institutes of Health guidelines for laboratory animal care.

Consent for publication

Authors, the undersigned, give our consent for the publication of identifiable details, which can include photograph(s) and/or videos and/or case history and/or details within the text (“Material”) to be published in the Cellular and Molecular Life Sciences.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

18_2021_4097_MOESM1_ESM.pdf

Fig. S1. PRMT7 expression in hearts and cardiomyocytes. (a) Immunohistochemistry for PRMT7 in normal human left atrial appendage. Rabbit IgG was used as isotype control. Scale bar: 100 µm. (b) Representative images for immunostaining of PRMT7 in mouse heart tissue. CX43 (red): gap junction protein Connexin 43 for the formation of heart structures. DAPI (4′,6-diamidino-2-phenylindole): blue-fluorescent DNA stain. Scale bar: 20 µm. (c) Representative images for immunostaining of PRMT7 in neonatal rat ventricular cardiomyocytes (NRVMs). Scale bar: 10 µm

18_2021_4097_MOESM2_ESM.pdf

Fig. S2. PRMT7 deletion induces cardiomyocyte hypertrophy. (a) The capacitance of NRVM cells transfected with control or shPRMT7. n=3, *p<0.05. Data represent mean ±SEM. (b) Representative images for isolated primary cardiomyocytes from WT and KO heart. Scale bar: 100 μm. Arrow= cardiomyocytes, Asterisk= non-cardiomyocytes. (c) Quantification of cell surface area in panel b. *p<0.05, #p<0.005, NS: not significant, n=143 for WT, n=73 for KO. Data represent mean ±SEM. (d) Physiological analysis for cellular capacitances isolated atrial (left) and ventricular (right) myocytes in WT and KO. **p<0.01. Data represent mean ±SD

18_2021_4097_MOESM3_ESM.pdf

Fig. S3. A negative correlation between PRMT7 and β-Catenin. (a) A schematic illustration demonstrating the stepwise workflow of a transcriptome analysis: collect the gene expression profile for hearts, normalize the value of gene expression to Z-score, and analyze the correlation between PRMT7 and potential target genes. (b) The scatter plots presenting the correlated expression patterns between PRMT7 (X-axis) and the target genes; Ctnnb1, Axin2, Gsk3b, and Isl1 (Y-axis). (c) The scatter plot presenting the correlated expression patterns between PRMT7 (X-axis) and Ctnnb1 (Y-axis) in 4 organisms; Homo sapiens, Mus musculus, Canis lupus, and Danio rerio

18_2021_4097_MOESM4_ESM.pdf

Fig. S4. Symmetric arginine di-methylation of β-Catenin is regulated likely by PRMT7. In vitro methylation analysis of recombinant GST-tagged β-Catenin in the presence SAM and purified HA-PRMT7 (P7) and HA-tagged inactive form of PMRT7 (iP7) by immunoprecipitation. The methylation status was detected by immunoblotting with anti-MMA and anti-Sym10 antibodies

18_2021_4097_MOESM5_ESM.pdf

Fig. S5. Working hypothesis. PRMT7 modulates the level of β-Catenin via methylation at arginine 93 in cardiomyocytes. PRMT7 deficiency in cardiomyocytes causes elevated β-Catenin activities, leading to cardiac hypertrophy and fibrosis. Illustration was created with BioRender

Supplementary file6 (DOCX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, BY., Jeong, MH., Pyun, JH. et al. PRMT7 ablation in cardiomyocytes causes cardiac hypertrophy and fibrosis through β-catenin dysregulation. Cell. Mol. Life Sci. 79, 99 (2022). https://doi.org/10.1007/s00018-021-04097-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-021-04097-x

Keywords

Navigation