Skip to main content

Advertisement

Log in

GRASP depletion-mediated Golgi fragmentation impairs glycosaminoglycan synthesis, sulfation, and secretion

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Synthesis of glycosaminoglycans, such as heparan sulfate (HS) and chondroitin sulfate (CS), occurs in the lumen of the Golgi, but the relationship between Golgi structural integrity and glycosaminoglycan synthesis is not clear. In this study, we disrupted the Golgi structure by knocking out GRASP55 and GRASP65 and determined its effect on the synthesis, sulfation, and secretion of HS and CS. We found that GRASP depletion increased HS synthesis while decreasing CS synthesis in cells, altered HS and CS sulfation, and reduced both HS and CS secretion. Using proteomics, RNA-seq and biochemical approaches, we identified EXTL3, a key enzyme in the HS synthesis pathway, whose level is upregulated in GRASP knockout cells; while GalNAcT1, an essential CS synthesis enzyme, is robustly reduced. In addition, we found that GRASP depletion decreased HS sulfation via the reduction of PAPSS2, a bifunctional enzyme in HS sulfation. Our study provides the first evidence that Golgi structural defect may significantly alter the synthesis and secretion of glycosaminoglycans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Li J, Ahat E, Wang Y (2019) Golgi Structure and function in health, stress, and diseases. Results Probl Cell Differ 67:441–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xiang Y, Wang Y (2010) GRASP55 and GRASP65 play complementary and essential roles in Golgi cisternal stacking. J Cell Biol 188:237–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bekier ME 2nd, Wang L, Li J, Huang H, Tang D, Zhang X, Wang Y (2017) Knockout of the Golgi stacking proteins GRASP55 and GRASP65 impairs Golgi structure and function. Mol Biol Cell 28:2833–2842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ahat E, Li J, Wang Y (2019) New insights into the golgi stacking proteins. Front Cell Dev Biol 7:131

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang Y, Seemann J (2021) Rapid degradation of GRASP55 and GRASP65 reveals their immediate impact on the Golgi structure. J Cell Biol. https://doi.org/10.1083/jcb.202007052

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xiang Y, Zhang X, Nix DB, Katoh T, Aoki K, Tiemeyer M, Wang Y (2013) Regulation of protein glycosylation and sorting by the Golgi matrix proteins GRASP55/65. Nat Commun 4:1659

    Article  PubMed  CAS  Google Scholar 

  7. Ahat E, Xiang Y, Zhang X, Bekier ME, Wang Y (2019) GRASP depletion-mediated Golgi destruction decreases cell adhesion and migration via the reduction of alpha5beta1 integrin. Mol Biol Cell 30:766–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang X, Wang L, Lak B, Li J, Jokitalo E, Wang Y (2018) GRASP55 Senses Glucose Deprivation through O-GlcNAcylation to Promote Autophagosome-Lysosome Fusion. Dev Cell 45:245-261 e246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang X, Wang Y (2018) GRASP55 facilitates autophagosome maturation under glucose deprivation. Mol Cell Oncol 5:e1494948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Gee HY, Noh SH, Tang BL, Kim KH, Lee MG (2011) Rescue of DeltaF508-CFTR trafficking via a GRASP-dependent unconventional secretion pathway. Cell 146:746–760

    Article  CAS  PubMed  Google Scholar 

  11. Cruz-Garcia D, Brouwers N, Duran JM, Mora G, Curwin AJ, Malhotra V (2017) A diacidic motif determines unconventional secretion of wild-type and ALS-linked mutant SOD1. J Cell Biol. https://doi.org/10.1083/jcb.201704056

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nüchel J, Tauber M, Nolte JL, Mörgelin M, Türk C, Eckes B, Demetriades C, Plomann M (2021) An mTORC1-GRASP55 signaling axis controls unconventional secretion to reshape the extracellular proteome upon stress. Mol Cell. https://doi.org/10.1016/j.molcel.2021.06.017

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ahat E, Bui S, Zhang J, da Veiga Leprevost F, Sharkey L, Reid W, Nesvizhskii A, Paulson H, Wang Y (2021) GRASP55 regulates mutant huntingtin unconventional secretion and aggregation. bioRxiv https://doi.org/10.1101/2021.10.05.463252

  14. Annaval T, Wild R, Cretinon Y, Sadir R, Vives RR, Lortat-Jacob H (2020) Heparan sulfate proteoglycans biosynthesis and post synthesis mechanisms combine few enzymes and few core proteins to generate extensive structural and functional diversity. Molecules. https://doi.org/10.3390/molecules25184215

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kim BT, Kitagawa H, Tamura J, Saito T, Kusche-Gullberg M, Lindahl U, Sugahara K (2001) Human tumor suppressor EXT gene family members EXTL1 and EXTL3 encode alpha 1,4- N-acetylglucosaminyltransferases that likely are involved in heparan sulfate/ heparin biosynthesis. Proc Natl Acad Sci U S A 98:7176–7181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kitagawa H, Shimakawa H, Sugahara K (1999) The tumor suppressor EXT-like gene EXTL2 encodes an alpha1, 4-N-acetylhexosaminyltransferase that transfers N-acetylgalactosamine and N-acetylglucosamine to the common glycosaminoglycan-protein linkage region. The key enzyme for the chain initiation of heparan sulfate. J Biol Chem 274:13933–13937

    Article  CAS  PubMed  Google Scholar 

  17. Kreuger J, Kjellen L (2012) Heparan sulfate biosynthesis: regulation and variability. J Histochem Cytochem 60:898–907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Carlsson P, Presto J, Spillmann D, Lindahl U, Kjellén L (2008) Heparin/heparan sulfate biosynthesis: processive formation of N-sulfated domains. J Biol Chem 283:20008–20014

    Article  CAS  PubMed  Google Scholar 

  19. Maeda N (2015) Proteoglycans and neuronal migration in the cerebral cortex during development and disease. Front Neurosci 9:98

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fuda H, Shimizu C, Lee YC, Akita H, Strott CA (2002) Characterization and expression of human bifunctional 3’-phosphoadenosine 5’-phosphosulphate synthase isoforms. Biochem J 365:497–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stelzer C, Brimmer A, Hermanns P, Zabel B, Dietz UH (2007) Expression profile of Papss2 (3’-phosphoadenosine 5’-phosphosulfate synthase 2) during cartilage formation and skeletal development in the mouse embryo. Dev Dyn 236:1313–1318

    Article  CAS  PubMed  Google Scholar 

  22. Kamiyama S, Sasaki N, Goda E, Ui-Tei K, Saigo K, Narimatsu H, Jigami Y, Kannagi R, Irimura T, Nishihara S (2006) Molecular cloning and characterization of a novel 3’-phosphoadenosine 5’-phosphosulfate transporter, PAPST2. J Biol Chem 281:10945–10953

    Article  CAS  PubMed  Google Scholar 

  23. Dick G, Akslen-Hoel LK, Grondahl F, Kjos I, Maccarana M, Prydz K (2015) PAPST1 regulates sulfation of heparan sulfate proteoglycans in epithelial MDCK II cells. Glycobiology 25:30–41

    Article  CAS  PubMed  Google Scholar 

  24. Zhao J, Zhu Y, Song X, Xiao Y, Su G, Liu X, Wang Z, Xu Y, Liu J, Eliezer D, Ramlall TF, Lippens G, Gibson J, Zhang F, Linhardt RJ, Wang L, Wang C (2020) 3-O-Sulfation of heparan sulfate enhances tau interaction and cellular uptake. Angew Chem Int Ed Engl 59:1818–1827

    Article  CAS  PubMed  Google Scholar 

  25. Prydz K (2015) Determinants of glycosaminoglycan (GAG) structure. Biomolecules 5:2003–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kobayashi S, Morimoto K, Shimizu T, Takahashi M, Kurosawa H, Shirasawa T (2000) Association of EXT1 and EXT2, hereditary multiple exostoses gene products, in Golgi apparatus. Biochem Biophys Res Commun 268:860–867

    Article  CAS  PubMed  Google Scholar 

  27. Uliana AS, Giraudo CG, Maccioni HJ (2006) Cytoplasmic tails of SialT2 and GalNAcT impose their respective proximal and distal Golgi localization. Traffic 7:604–612

    Article  CAS  PubMed  Google Scholar 

  28. Adusumalli R, Åsheim HC, Lupashin V, Blackburn JB, Prydz K (2021) Proteoglycan synthesis in conserved oligomeric Golgi subunit deficient HEK293T cells is affected differently, depending on the lacking subunit. Traffic 22:230–239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Stevenson NL, Bergen DJM, Skinner REH, Kague E, Martin-Silverstone E, Robson Brown KA, Hammond CL, Stephens DJ (2017) Giantin-knockout models reveal a feedback loop between Golgi function and glycosyltransferase expression. J Cell Sci 130:4132–4143

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Avnur Z, Geiger B (1984) Immunocytochemical localization of native chondroitin-sulfate in tissues and cultured cells using specific monoclonal antibody. Cell 38:811–822

    Article  CAS  PubMed  Google Scholar 

  31. Aquino RS, Lee ES, Park PW (2010) Diverse functions of glycosaminoglycans in infectious diseases. Prog Mol Biol Transl Sci 93:373–394

    Article  CAS  PubMed  Google Scholar 

  32. Pan C, Nelson MS, Reyes M, Koodie L, Brazil JJ, Stephenson EJ, Zhao RC, Peters C, Selleck SB, Stringer SE, Gupta P (2005) Functional abnormalities of heparan sulfate in mucopolysaccharidosis-I are associated with defective biologic activity of FGF-2 on human multipotent progenitor cells. Blood 106:1956–1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Götte M, Spillmann D, Yip GW, Versteeg E, Echtermeyer FG, van Kuppevelt TH, Kiesel L (2008) Changes in heparan sulfate are associated with delayed wound repair, altered cell migration, adhesion and contractility in the galactosyltransferase I (beta4GalT-7) deficient form of Ehlers-Danlos syndrome. Hum Mol Genet 17:996–1009

    Article  PubMed  CAS  Google Scholar 

  34. Le Jan S, Hayashi M, Kasza Z, Eriksson I, Bishop JR, Weibrecht I, Heldin J, Holmborn K, Jakobsson L, Söderberg O, Spillmann D, Esko JD, Claesson-Welsh L, Kjellén L, Kreuger J (2012) Functional overlap between chondroitin and heparan sulfate proteoglycans during VEGF-induced sprouting angiogenesis. Arterioscler Thromb Vasc Biol 32:1255–1263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Sasarman F, Maftei C, Campeau PM, Brunel-Guitton C, Mitchell GA, Allard P (2016) Biosynthesis of glycosaminoglycans: associated disorders and biochemical tests. J Inherit Metab Dis 39:173–188

    Article  CAS  PubMed  Google Scholar 

  36. Tian E, Stevens SR, Guan Y, Springer DA, Anderson SA, Starost MF, Patel V, Ten Hagen KG, Tabak LA. 2015. Galnt1 is required for normal heart valve development and cardiac function. PLoS One 10:e0115861.

  37. Miyata S, Komatsu Y, Yoshimura Y, Taya C, Kitagawa H (2012) Persistent cortical plasticity by upregulation of chondroitin 6-sulfation. Nat Neurosci 15(414–422):S411-412

    Google Scholar 

  38. Joshi G, Chi Y, Huang Z, Wang Y (2014) Abeta-induced Golgi fragmentation in Alzheimer’s disease enhances Abeta production. Proc Natl Acad Sci U S A 111:E1230-1239

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gosavi P, Houghton FJ, McMillan PJ, Hanssen E, Gleeson PA (2018) The Golgi ribbon in mammalian cells negatively regulates autophagy by modulating mTOR activity. J Cell Sci. https://doi.org/10.1242/jcs.211987

    Article  PubMed  Google Scholar 

  40. Philips MR (2004) Sef: a MEK/ERK catcher on the Golgi. Mol Cell 15:168–169

    Article  CAS  PubMed  Google Scholar 

  41. Baumann J, Ignashkova TI, Chirasani SR, Ramirez-Peinado S, Alborzinia H, Gendarme M, Kuhnigk K, Kramer V, Lindemann RK, Reiling JH (2018) Golgi stress-induced transcriptional changes mediated by MAPK signaling and three ETS transcription factors regulate MCL1 splicing. Mol Biol Cell 29:42–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weiss RJ, Spahn PN, Toledo AG, Chiang AW, Kellman BP, Li J, Benner C, Glass CK, Gordts PL, Lewis NE (2020) ZNF263 is a transcriptional regulator of heparin and heparan sulfate biosynthesis. Proc Natl Acad Sci 117:9311–9317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Uhlin-Hansen L, Yanagishita M (1993) Differential effect of brefeldin A on the biosynthesis of heparan sulfate and chondroitin/dermatan sulfate proteoglycans in rat ovarian granulosa cells in culture. J Biol Chem 268:17370–17376

    Article  CAS  PubMed  Google Scholar 

  44. Meneghetti MCZ, Deboni P, Palomino CMV, Braga LP, Cavalheiro RP, Viana GM, Yates EA, Nader HB, Lima MA (2021) ER-Golgi dynamics of HS-modifying enzymes via vesicular trafficking is a critical prerequisite for the delineation of HS biosynthesis. Carbohydr Polym 255:117477

    Article  CAS  PubMed  Google Scholar 

  45. Wang Y, Wei JH, Bisel B, Tang D, Seemann J (2008) Golgi Cisternal Unstacking Stimulates COPI Vesicle Budding and Protein Transport. PLoS ONE 3:e1647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lee I, Tiwari N, Dunlop MH, Graham M, Liu X, Rothman JE (2014) Membrane adhesion dictates Golgi stacking and cisternal morphology. Proc Natl Acad Sci U S A 111:1849–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sola RJ, Griebenow K (2009) Effects of glycosylation on the stability of protein pharmaceuticals. J Pharm Sci 98:1223–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Freeman C, Hopwood J (1992) Lysosomal degradation of heparin and heparan sulphate. Adv Exp Med Biol 313:121–134

    Article  CAS  PubMed  Google Scholar 

  49. Tang D, Yuan H, Wang Y (2010) The Role of GRASP65 in Golgi Cisternal Stacking and Cell Cycle Progression. Traffic 11:827–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Huang YF, Aoki K, Akase S, Ishihara M, Liu YS, Yang G, Kizuka Y, Mizumoto S, Tiemeyer M, Gao XD, Aoki-Kinoshita KF, Fujita M (2021) Global mapping of glycosylation pathways in human-derived cells. Dev Cell 56:1195-1209 e1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ge Yu, Judith Meyers Opp and the University of Michigan Advanced Genomics Core for their contribution in the RNA-Seq experiment. We thank Drs. Venkatesha Basrur, Felipe da Veiga Leprevost, Alexey Nesvizhskii and the Mass Spectrometry-Based Proteomics Resource Facility in the Department of Pathology at the University of Michigan for their contribution in Proteomics analysis. We thank the members of the Wang lab and Linhardt lab for stimulating discussions and technical support.

Funding

Y. W. was supported by the National Institutes of Health (Grant R35GM130331), Mizutani Foundation for Glycoscience, MCubed, and the Fast Forward Protein Folding Disease Initiative of the University of Michigan; E.A. was supported by a University of Michigan Rackham Predoctoral fellowship. R.J.L, F.Z. and Y.S. was supported by GlycoMIP a National Science Foundation Materials Innovation Platform funded through Cooperative Agreement DMR-1933525.GlycoMIP.

Author information

Authors and Affiliations

Authors

Contributions

E.A., Y.S., F.Z., R.L. and Y.W. designed the experiments; E.A. prepared the samples and Y.S., K.X. performed labeling and LC–MS experiments. E.A. performed most of the other experiments. W.R. and S.B. performed data search and analysis from the RNA-seq and Proteomics experiments. J.L. and E.A. performed the flow cytometry experiment. E.A., Y.S., R.L. and Y.W. analyzed the data. E.A. and Y.W. made the figures and wrote the first draft; Y.S. K.X., F.Z. and R.L. edited the manuscript. All authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Robert J. Linhardt or Yanzhuang Wang.

Ethics declarations

Conflict of Interest

The authors declare that no competing interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2340 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahat, E., Song, Y., Xia, K. et al. GRASP depletion-mediated Golgi fragmentation impairs glycosaminoglycan synthesis, sulfation, and secretion. Cell. Mol. Life Sci. 79, 199 (2022). https://doi.org/10.1007/s00018-022-04223-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04223-3

Keywords

Navigation