Skip to main content
Log in

Keratin 8 is a scaffolding and regulatory protein of ERAD complexes

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Early recognition and enhanced degradation of misfolded proteins by the endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD) cause defective protein secretion and membrane targeting, as exemplified for Z-alpha-1-antitrypsin (Z-A1AT), responsible for alpha-1-antitrypsin deficiency (A1ATD) and F508del-CFTR (cystic fibrosis transmembrane conductance regulator) responsible for cystic fibrosis (CF). Prompted by our previous observation that decreasing Keratin 8 (K8) expression increased trafficking of F508del-CFTR to the plasma membrane, we investigated whether K8 impacts trafficking of soluble misfolded Z-A1AT protein. The subsequent goal of this study was to elucidate the mechanism underlying the K8-dependent regulation of protein trafficking, focusing on the ERAD pathway. The results show that diminishing K8 concentration in HeLa cells enhances secretion of both Z-A1AT and wild-type (WT) A1AT with a 13-fold and fourfold increase, respectively. K8 down-regulation triggers ER failure and cellular apoptosis when ER stress is jointly elicited by conditional expression of the µs heavy chains, as previously shown for Hrd1 knock-out. Simultaneous K8 silencing and Hrd1 knock-out did not show any synergistic effect, consistent with K8 acting in the Hrd1-governed ERAD step. Fractionation and co-immunoprecipitation experiments reveal that K8 is recruited to ERAD complexes containing Derlin2, Sel1 and Hrd1 proteins upon expression of Z/WT-A1AT and F508del-CFTR. Treatment of the cells with c407, a small molecule inhibiting K8 interaction, decreases K8 and Derlin2 recruitment to high-order ERAD complexes. This was associated with increased Z-A1AT secretion in both HeLa and Z-homozygous A1ATD patients’ respiratory cells. Overall, we provide evidence that K8 acts as an ERAD modulator. It may play a scaffolding protein role for early-stage ERAD complexes, regulating Hrd1-governed retrotranslocation initiation/ubiquitination processes. Targeting K8-containing ERAD complexes is an attractive strategy for the pharmacotherapy of A1ATD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Bakunts A, Orsi A, Vitale M et al (2017) Ratiometric sensing of BiP-client versus BiP levels by the unfolded protein response determines its signaling amplitude. Elife 6:e27518. https://doi.org/10.7554/eLife.27518

    Article  PubMed Central  PubMed  Google Scholar 

  2. Baldridge RD, Rapoport TA (2016) Autoubiquitination of the Hrd1 ligase triggers protein retrotranslocation in ERAD. Cell 166:394–407. https://doi.org/10.1016/j.cell.2016.05.048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Besingi RN, Clark PL (2015) Extracellular protease digestion to evaluate membrane protein cell surface localization. Nat Protoc 10:2074–2080. https://doi.org/10.1038/nprot.2015.131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Carlson EJ, Pitonzo D, Skach WR (2006) p97 functions as an auxiliary factor to facilitate TM domain extraction during CFTR ER-associated degradation. EMBO J 25:4557–4566. https://doi.org/10.1038/sj.emboj.7601307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Chakraborty P, Teckman J (2014) Alpha-1-antitrypsin deficiency liver disease: science and therapeutic potential 50 years later. J Gastroenterol Pancreatol Liver Disord 1(3):1–9. https://doi.org/10.15226/2374-815X/1/3/00113

    Article  CAS  Google Scholar 

  6. Christianson JC, Ye Y (2014) Cleaning up in the endoplasmic reticulum: ubiquitin in charge. Nat Struct Mol Biol 21:325–335. https://doi.org/10.1038/nsmb.2793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Colas J, Faure G, Saussereau E et al (2012) Disruption of cytokeratin-8 interaction with F508del-CFTR corrects its functional defect. Hum Mol Genet 21:623–634. https://doi.org/10.1093/hmg/ddr496

    Article  CAS  PubMed  Google Scholar 

  8. Coulombe PA, Omary MB (2002) “Hard” and “soft” principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol 14:110–122. https://doi.org/10.1016/s0955-0674(01)00301-5

    Article  CAS  PubMed  Google Scholar 

  9. Coulombe PA, Wong P (2004) Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds. Nat Cell Biol 6:699–706. https://doi.org/10.1038/ncb0804-699

    Article  CAS  PubMed  Google Scholar 

  10. da Cunha MF, Pranke I, Sassi A et al (2022) Systemic bis-phosphinic acid derivative restores chloride transport in Cystic Fibrosis mice. Sci Rep 12(1):6132. https://doi.org/10.1038/s41598-022-09678-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Davezac N, Tondelier D, Lipecka J et al (2004) Global proteomic approach unmasks involvement of keratins 8 and 18 in the delivery of cystic fibrosis transmembrane conductance regulator (CFTR)/deltaF508-CFTR to the plasma membrane. Proteomics 4:3833–3844. https://doi.org/10.1002/pmic.200400850

    Article  CAS  PubMed  Google Scholar 

  12. Dong X-M, Liu E-D, Meng Y-X et al (2016) Keratin 8 limits TLR-triggered inflammatory responses through inhibiting TRAF6 polyubiquitination. Sci Rep 6:32710. https://doi.org/10.1038/srep32710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Duan Y, Sun Y, Zhang F et al (2012) Keratin K18 increases cystic fibrosis transmembrane conductance regulator (CFTR) surface expression by binding to its C-terminal hydrophobic patch. J Biol Chem 287(48):40547–40559. https://doi.org/10.1074/jbc.M112.403584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. El Khouri E, Le Pavec G, Toledano MB, Delaunay-Moisan A (2013) RNF185 is a novel E3 ligase of endoplasmic reticulum-associated degradation (ERAD) that targets cystic fibrosis transmembrane conductance regulator (CFTR). J Biol Chem 288:31177–31191. https://doi.org/10.1074/jbc.M113.470500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Eura Y, Miyata T, Kokame K (2020) Derlin-3 is required for changes in ERAD complex formation under ER stress. Int J Mol Sci 21:6146. https://doi.org/10.3390/ijms21176146

    Article  CAS  PubMed Central  Google Scholar 

  16. Fregno I, Fasana E, Bergmann TJ, et al (2018) ER‐to‐lysosome‐associated degradation of proteasome‐resistant ATZ polymers occurs via receptor‐mediated vesicular transport. EMBO J. https://doi.org/10.15252/embj.201899259

    Article  PubMed Central  PubMed  Google Scholar 

  17. Garza RM, Sato BK, Hampton RY (2009) In vitro analysis of Hrd1p-mediated retrotranslocation of its multispanning membrane substrate 3-Hydroxy-3-methylglutaryl (HMG)-CoA reductase. J Biol Chem 284:14710–14722. https://doi.org/10.1074/jbc.M809607200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ghouse R, Chu A, Wang Y, Perlmutter DH (2014) Mysteries of α1-antitrypsin deficiency: emerging therapeutic strategies for a challenging disease. Dis Model Mech 7:411–419. https://doi.org/10.1242/dmm.014092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Glenn KA, Wen H, Dankle G (2012) Lectin-like ubiquitin ligases degrade alpha-1 antitrypsin-Z. FASEB J 26:IB112

    Google Scholar 

  20. Graham KS, Le A, Sifers RN (1990) Accumulation of the insoluble PiZ variant of human alpha 1-antitrypsin within the hepatic endoplasmic reticulum does not elevate the steady-state level of grp78/BiP. J Biol Chem 265:20463–20468

    Article  CAS  PubMed  Google Scholar 

  21. Herrmann H, Aebi U (2004) Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu Rev Biochem 73:749–789. https://doi.org/10.1146/annurev.biochem.73.011303.073823

    Article  CAS  PubMed  Google Scholar 

  22. Jensen TJ, Loo MA, Pind S et al (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83:129–135. https://doi.org/10.1016/0092-8674(95)90241-4

    Article  CAS  PubMed  Google Scholar 

  23. Joly P, Vignaud H, Martino JD et al (2017) ERAD defects and the HFE-H63D variant are associated with increased risk of liver damages in alpha 1-antitrypsin deficiency. PLoS ONE 12:e0179369. https://doi.org/10.1371/journal.pone.0179369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kerem B, Rommens JM, Buchanan JA et al (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245(4922):1073–1080. https://doi.org/10.1126/science.2570460

    Article  CAS  PubMed  Google Scholar 

  25. Khodayari N, Marek G, Lu Y et al (2017) Erdj3 has an essential role for Z variant alpha-1-antitrypsin degradation. J Cell Biochem. https://doi.org/10.1002/jcb.26069

    Article  PubMed Central  PubMed  Google Scholar 

  26. Khodayari N, Wang RL, Marek G et al (2017) SVIP regulates Z variant alpha-1 antitrypsin retro-translocation by inhibiting ubiquitin ligase gp78. PLoS ONE 12:e0172983. https://doi.org/10.1371/journal.pone.0172983

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kim S, Skach W (2012) Mechanisms of CFTR folding at the endoplasmic reticulum. Front Pharmacol 3:201. https://doi.org/10.3389/fphar.2012.00201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kroeger H, Miranda E, MacLeod I et al (2009) Endoplasmic reticulum-associated degradation (ERAD) and autophagy cooperate to degrade polymerogenic mutant serpins. J Biol Chem 284:22793–22802. https://doi.org/10.1074/jbc.M109.027102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Liao J, Lowthert LA, Ghori N, Omary MB (1995) The 70-kDa heat shock proteins associate with glandular intermediate filaments in an ATP-dependent manner. J Biol Chem 270:915–922. https://doi.org/10.1074/jbc.270.2.915

    Article  CAS  PubMed  Google Scholar 

  30. Lilley BN, Ploegh HL (2004) A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429(6994):834–840. https://doi.org/10.1038/nature02592. (PMID: 15215855)

    Article  CAS  PubMed  Google Scholar 

  31. Lim Y, Kim S, Yoon HN, Ku NO (2021) Keratin 8/18 regulate the Akt signaling pathway. Int J Mol Sci 22(17):9227. https://doi.org/10.3390/ijms22179227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Lomas DA, Evans DL, Finch JT, Carrell RW (1992) The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature 357:605–607. https://doi.org/10.1038/357605a0

    Article  CAS  PubMed  Google Scholar 

  33. Lomas DA, Irving JA, Arico-Muendel C et al (2021) Development of a small molecule that corrects misfolding and increases secretion of Z α1 -antitrypsin. EMBO Mol Med 13:e13167. https://doi.org/10.15252/emmm.202013167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Mashukova A, Forteza R, Salas PJ (2016) Functional analysis of keratin-associated proteins in intestinal epithelia: heat-shock protein chaperoning and kinase rescue. Methods Enzymol 569:139–154. https://doi.org/10.1016/bs.mie.2015.08.019

    Article  CAS  PubMed  Google Scholar 

  35. Mehrtash AB, Hochstrasser M (2019) Ubiquitin-dependent protein degradation at the endoplasmic reticulum and nuclear envelope. Semin Cell Dev Biol 93:111–124. https://doi.org/10.1016/j.semcdb.2018.09.013

    Article  CAS  PubMed  Google Scholar 

  36. Nakatsukasa K, Huyer G, Michaelis S, Brodsky JL (2008) Dissecting the ER-associated degradation of a misfolded polytopic membrane protein. Cell 132:101–112. https://doi.org/10.1016/j.cell.2007.11.023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Nomura J, Hosoi T, Kaneko M et al (2016) Neuroprotection by endoplasmic reticulum stress-induced HRD1 and chaperones: possible therapeutic targets for Alzheimer’s and Parkinson’s disease. Med Sci 4:14. https://doi.org/10.3390/medsci4030014

    Article  CAS  Google Scholar 

  38. Odolczyk N, Fritsch J, Norez C et al (2013) Discovery of novel potent ΔF508-CFTR correctors that target the nucleotide binding domain. EMBO Mol Med 5:1484–1501. https://doi.org/10.1002/emmm.201302699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Okiyoneda T, Lukacs GL (2012) Fixing cystic fibrosis by correcting CFTR domain assembly. J Cell Biol 199:199–204. https://doi.org/10.1083/jcb.201208083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Okiyoneda T, Veit G, Dekkers JF et al (2013) Mechanism-based corrector combination restores ΔF508-CFTR folding and function. Nat Chem Biol 9:444–454. https://doi.org/10.1038/nchembio.1253

    Article  CAS  PubMed  Google Scholar 

  41. Perlmutter DH (2006) The role of autophagy in alpha-1-antitrypsin deficiency: a specific cellular response in genetic diseases associated with aggregation-prone proteins. Autophagy 2:258–263

    Article  CAS  PubMed  Google Scholar 

  42. Petrosyan A, Ali MF, Cheng P-W (2015) Keratin 1 plays a critical role in golgi localization of core 2 N-Acetylglucosaminyltransferase M via interaction with its cytoplasmic tail. J Biol Chem 290:6256–6269. https://doi.org/10.1074/jbc.M114.618702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Pranke IM, Hatton A, Simonin J et al (2017) Correction of CFTR function in nasal epithelial cells from cystic fibrosis patients predicts improvement of respiratory function by CFTR modulators. Sci Rep 7:7375. https://doi.org/10.1038/s41598-017-07504-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Premchandar A, Kupniewska A, Tarnowski K et al (2015) Analysis of distinct molecular assembly complexes of keratin K8 and K18 by hydrogen-deuterium exchange. J Struct Biol 192:426–440. https://doi.org/10.1016/j.jsb.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  45. Rabinovich E, Kerem A, Fröhlich K-U, et al (2002) AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol Cell Biol 22:626–634. https://doi.org/10.1128/MCB.22.2.626-634.2002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Rahmati M, Moosavi MA, McDermott MF (2018) ER stress: a therapeutic target in rheumatoid arthritis? Trends Pharmacol Sci 39:610–623. https://doi.org/10.1016/j.tips.2018.03.010

    Article  CAS  PubMed  Google Scholar 

  47. Ramachandran S, Osterhaus SR, Parekh KR, et al (2016) SYVN1, NEDD8, and FBXO2 proteins regulate ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) ubiquitin-mediated proteasomal degradation. J Biol Chem 291:25489–25504. https://doi.org/10.1074/jbc.M116.754283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Ruggiano A, Foresti O, Carvalho P (2014) ER-associated degradation: protein quality control and beyond. J Cell Biol 204:869–879. https://doi.org/10.1083/jcb.201312042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Salas PJ, Forteza R, Mashukova A (2016) Multiple roles for keratin intermediate filaments in the regulation of epithelial barrier function and apico-basal polarity. Tissue Barriers 4:e1178368. https://doi.org/10.1080/21688370.2016.1178368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Schmidt BZ, Perlmutter DH (2005) Grp78, Grp94, and Grp170 interact with alpha1-antitrypsin mutants that are retained in the endoplasmic reticulum. Am J Physiol Gastrointest Liver Physiol 289:G444-455. https://doi.org/10.1152/ajpgi.00237.2004

    Article  CAS  PubMed  Google Scholar 

  51. Schoebel S, Mi W, Stein A, Ovchinnikov S, Pavlovicz R, DiMaio F, Baker D, Chambers MG, Su H, Li D, Rapoport TA, Liao M (2017) Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3. Nature 548(7667):352–355. https://doi.org/10.1038/nature23314. (Epub 2017 Jul 6. PMID: 28682307; PMCID: PMC5736104)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Shen Y, Ballar P, Fang S (2006) Ubiquitin ligase gp78 increases solubility and facilitates degradation of the Z variant of alpha-1-antitrypsin. Biochem Biophys Res Commun 349:1285–1293. https://doi.org/10.1016/j.bbrc.2006.08.173

    Article  CAS  PubMed  Google Scholar 

  53. Stein A, Ruggiano A, Carvalho P, Rapoport TA (2014) Key steps in ERAD of luminal ER proteins reconstituted with purified components. Cell 158:1375–1388. https://doi.org/10.1016/j.cell.2014.07.050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Stoller JK, Aboussouan LS (2012) A review of α1-antitrypsin deficiency. Am J Respir Crit Care Med 185:246–259. https://doi.org/10.1164/rccm.201108-1428CI

    Article  CAS  PubMed  Google Scholar 

  55. Teckman JH, Burrows J, Hidvegi T et al (2001) The proteasome participates in degradation of mutant alpha 1-antitrypsin Z in the endoplasmic reticulum of hepatoma-derived hepatocytes. J Biol Chem 276:44865–44872. https://doi.org/10.1074/jbc.M103703200

    Article  CAS  PubMed  Google Scholar 

  56. Toivola DM, Krishnan S, Binder HJ et al (2004) Keratins modulate colonocyte electrolyte transport via protein mistargeting. J Cell Biol 164:911–921. https://doi.org/10.1083/jcb.200308103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Toivola DM, Strnad P, Habtezion A, Omary MB (2010) Intermediate filaments take the heat as stress proteins. Trends Cell Biol 20:79–91. https://doi.org/10.1016/j.tcb.2009.11.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Valley HC, Bukis KM, Bell A, Cheng Y, Wong E, Jordan NJ, Allaire NE, Sivachenko A, Liang F, Bihler H, Thomas PJ, Mahiou J, Mense M (2019) Isogenic cell models of cystic fibrosis-causing variants in natively expressing pulmonary epithelial cells. J Cyst Fibros 18(4):476–483. https://doi.org/10.1016/j.jcf.2018.12.001 (Epub 2018 Dec 15 PMID: 30563749)

    Article  CAS  PubMed  Google Scholar 

  59. van’t Wout EFA, Dickens JA, van Schadewijk A et al (2014) Increased ERK signalling promotes inflammatory signalling in primary airway epithelial cells expressing Z α1-antitrypsin. Hum Mol Genet 23:929–941. https://doi.org/10.1093/hmg/ddt487

    Article  CAS  Google Scholar 

  60. Varga K, Jurkuvenaite A, Wakefield J et al (2004) Efficient intracellular processing of the endogenous cystic fibrosis transmembrane conductance regulator in epithelial cell lines. J Biol Chem 279:22578–22584. https://doi.org/10.1074/jbc.M401522200

    Article  CAS  PubMed  Google Scholar 

  61. Vasic V, Denkert N, Schmidt CC et al (2020) Hrd1 forms the retrotranslocation pore regulated by auto-ubiquitination and binding of misfolded proteins. Nat Cell Biol 22:274–281. https://doi.org/10.1038/s41556-020-0473-4

    Article  CAS  PubMed  Google Scholar 

  62. Vitale M, Bakunts A, Orsi A et al (2019) Inadequate BiP availability defines endoplasmic reticulum stress. Elife. https://doi.org/10.7554/eLife.41168

    Article  PubMed Central  PubMed  Google Scholar 

  63. Wang H, Li Q, Shen Y, et al (2011) The ubiquitin ligase Hrd1 promotes degradation of the Z variant alpha 1-antitrypsin and increases its solubility. Mol Cell Biochem 346:137–145. https://doi.org/10.1007/s11010-010-0600-9

    Article  CAS  Google Scholar 

  64. Wu T, Zhang S, Xu J et al (2020) HRD1, an important player in pancreatic β-cell failure and therapeutic target for type 2 diabetic mice. Diabetes 69:940–953. https://doi.org/10.2337/db19-1060

    Article  CAS  PubMed  Google Scholar 

  65. Yagishita N, Aratani S, Leach C et al (2012) RING-finger type E3 ubiquitin ligase inhibitors as novel candidates for the treatment of rheumatoid arthritis. Int J Mol Med 30:1281–1286. https://doi.org/10.3892/ijmm.2012.1129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429(6994):841–847. https://doi.org/10.1038/nature02656. (PMID: 15215856)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Eric Chevet for A1AT/Z-A1AT plasmids, Annemarie van Schadewijk for help in culturing the HBE cells, and Anush Bakhunts for µs expressing HeLa cells. We thank Dr Grazyna Faure, Dr. Stefano Fumagali and Dr Olivier Namy for helpful discussions and advices. We thank Muriel Girard, Dominique Debray, Francois Vermeulen, Linda Boulanger and Marianne Schulte for providing the A1AT/Z-A1AT primary cells and Prof. Hideki Nishitoh for HEK Derlin1/2 KO cells. We thank Dr Chiara Guerrera and Dr Joanna Lipecka from Proteomic SFR Necker core facility for protein identifications. We are very grateful to Isabelle Hatin for technical assistance, and the cell imaging platform for assistance with microscopy experiments. The authors are very grateful to Mucoviscidose ABCF2 for support.

Funding

This work was supported by Agence Nationale de la Recherche (ANR-13-BSV1-0019–01, and ANR-18-CE14-0004) and Chancellerie des universites de Paris (legs Poix, 15LEG005_9UMS1151).

Author information

Authors and Affiliations

Authors

Contributions

IMP participated in the experimental strategy preparation, conceived the protocols, performed experiments, analyzed and interpreted results and wrote the manuscript; BC performed biochemistry experiments; AP performed mass spectrometry experiments and analysis; NB and KFT performed some biochemistry experiments; SB established the shRNAK8 cell line; DT performed cell biology experiments; AG participated in primary cell culture and biochemistry experiments; JS provided the A1AT/Z-A1AT primary cells; GLL participated in the experimental strategy preparation; PSH, MD and DAL participated in the writing of the manuscript; JAI participated in preparing the experimental strategy and edited the manuscript; AD-M participated in designing the experimental strategy and editing of the manuscript; EA participated in preparing the experimental strategy; AH performed cell biology experiments and wrote the manuscript; IS-G participated in preparing the experimental strategy and writing of the manuscript; AE conceived of and coordinated the project and wrote the manuscript. All authors reviewed the manuscript and approved its submission.

Corresponding authors

Correspondence to Iwona Maria Pranke or Aleksander Edelman.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval and consent to participate

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Ile-de-France 2 (CPP IDF2: 2010–05-03–3). Written informed consent was obtained from all individual participants included in the study or parents of children under 16.

Consent to publish

Not applicable.

Author comments

This data has been published on a pre-print server bioRXiv ('https://www.biorxiv.org/content/10.1101/2022.02.01.478623v1').

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6445 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pranke, I.M., Chevalier, B., Premchandar, A. et al. Keratin 8 is a scaffolding and regulatory protein of ERAD complexes. Cell. Mol. Life Sci. 79, 503 (2022). https://doi.org/10.1007/s00018-022-04528-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04528-3

Keywords

Navigation