Skip to main content

Advertisement

Log in

Omentin-1 drives cardiomyocyte cell cycle arrest and metabolic maturation by interacting with BMP7

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mammalian cardiomyocytes (CMs) undergo maturation during postnatal heart development to meet the increased demands of growth. Here, we found that omentin-1, an adipokine, facilitates CM cell cycle arrest and metabolic maturation. Deletion of omentin-1 causes mouse heart enlargement and dysfunction in adulthood and CM maturation retardation in juveniles, including delayed cell cycle arrest and reduced fatty acid oxidation. Through RNA sequencing, molecular docking analysis, and proximity ligation assays, we found that omentin-1 regulates CM maturation by interacting directly with bone morphogenetic protein 7 (BMP7). Omentin-1 prevents BMP7 from binding to activin type II receptor B (ActRIIB), subsequently decreasing the downstream pathways mothers against DPP homolog 1 (SMAD1)/Yes-associated protein (YAP) and p38 mitogen-activated protein kinase (p38 MAPK). In addition, omentin-1 is required and sufficient for the maturation of human embryonic stem cell-derived CMs. Together, our findings reveal that omentin-1 is a pro-maturation factor for CMs that is essential for postnatal heart development and cardiac function maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The sequencing datasets involved in this work have been deposited in the NCBI database under project accession number PRJNA681365.

References

  1. Zaffran S, Frasch M (2002) Early signals in cardiac development. Circ Res 91:457–469. https://doi.org/10.1161/01.res.0000034152.74523.a8

    Article  CAS  PubMed  Google Scholar 

  2. Guo Y, Pu WT (2020) Cardiomyocyte maturation: new phase in development. Circ Res 126:1086–1106. https://doi.org/10.1161/CIRCRESAHA.119.315862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kannan S, Kwon C (2020) Regulation of cardiomyocyte maturation during critical perinatal window. J Physiol 598:2941–2956. https://doi.org/10.1113/JP276754

    Article  CAS  PubMed  Google Scholar 

  4. Sim CB, Phipson B, Ziemann M et al (2021) Sex-specific control of human heart maturation by the progesterone receptor. Circulation 143:1614–1628. https://doi.org/10.1161/CIRCULATIONAHA.120.051921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Puente BN, Kimura W, Muralidhar SA et al (2014) The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 157:565–579. https://doi.org/10.1016/j.cell.2014.03.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li Y, Feng J, Song S et al (2020) gp130 controls cardiomyocyte proliferation and heart regeneration. Circulation 142:967–982. https://doi.org/10.1161/CIRCULATIONAHA.119.044484

    Article  CAS  PubMed  Google Scholar 

  7. Li R, Xiang C, Li Y, Nie Y (2023) Targeting immunoregulation for cardiac regeneration. J Mol Cell Cardiol 177:1–8. https://doi.org/10.1016/j.yjmcc.2023.02.003

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y, Li Y, Feng J et al (2020) Mydgf promotes cardiomyocyte proliferation and neonatal heart regeneration. Theranostics 10:9100–9112. https://doi.org/10.7150/thno.44281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guo Y, Cao Y, Jardin BD et al (2021) Sarcomeres regulate murine cardiomyocyte maturation through MRTF-SRF signaling. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.2008861118

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fukuda R, Gunawan F, Ramadass R et al (2019) Mechanical forces regulate cardiomyocyte myofilament maturation via the VCL-SSH1-CFL axis. Dev Cell 51:62–77. https://doi.org/10.1016/j.devcel.2019.08.006

    Article  CAS  PubMed  Google Scholar 

  11. Gong G, Song M, Csordas G, Kelly DP, Matkovich SJ, Dorn GW 2nd (2015) Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science 350:aad2459. https://doi.org/10.1126/science.aad2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuppusamy KT, Jones DC, Sperber H et al (2015) Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. Proc Natl Acad Sci U S A 112:E2785-2794. https://doi.org/10.1073/pnas.1424042112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lopaschuk GD, Jaswal JS (2010) Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol 56:130–140. https://doi.org/10.1097/FJC.0b013e3181e74a14

    Article  CAS  PubMed  Google Scholar 

  14. Wilsbacher L, McNally EM (2016) Genetics of cardiac developmental disorders: cardiomyocyte proliferation and growth and relevance to heart failure. Annu Rev Pathol 11:395–419. https://doi.org/10.1146/annurev-pathol-012615-044336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ai S, Peng Y, Li C et al (2017) EED orchestration of heart maturation through interaction with HDACs is H3K27me3-independent. Elife. https://doi.org/10.7554/eLife.24570

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liang X, Sun Y, Ye M et al (2009) Targeted ablation of PINCH1 and PINCH2 from murine myocardium results in dilated cardiomyopathy and early postnatal lethality. Circulation 120:568–576. https://doi.org/10.1161/CIRCULATIONAHA.109.864686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu P, Liu J, Zhao J, Wilkins BJ, Lupino K, Wu H, Pei L (2018) Single-nucleus transcriptomic survey of cell diversity and functional maturation in postnatal mammalian hearts. Genes Dev 32:1344–1357. https://doi.org/10.1101/gad.316802.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu C, Spinozzi S, Chen JY et al (2019) Nexilin Is a new component of junctional membrane complexes required for cardiac T-tubule formation. Circulation 140:55–66. https://doi.org/10.1161/CIRCULATIONAHA.119.039751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Metrich M, Bezdek Pomey A, Berthonneche C, Sarre A, Nemir M, Pedrazzini T (2015) Jagged1 intracellular domain-mediated inhibition of Notch1 signalling regulates cardiac homeostasis in the postnatal heart. Cardiovasc Res 108:74–86. https://doi.org/10.1093/cvr/cvv209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Parikh SS, Blackwell DJ, Gomez-Hurtado N et al (2017) Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes. Circ Res 121:1323–1330. https://doi.org/10.1161/CIRCRESAHA.117.311920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sakamoto T, Matsuura TR, Wan S et al (2020) A critical role for estrogen-related receptor signaling in cardiac maturation. Circ Res 126:1685–1702. https://doi.org/10.1161/CIRCRESAHA.119.316100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guo Y, Jardin BD, Zhou P et al (2018) Hierarchical and stage-specific regulation of murine cardiomyocyte maturation by serum response factor. Nat Commun 9:3837. https://doi.org/10.1038/s41467-018-06347-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mahmoud AI, Kocabas F, Muralidhar SA et al (2013) Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature 497:249–253. https://doi.org/10.1038/nature12054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nguyen NUN, Canseco DC, Xiao F et al (2020) A calcineurin-Hoxb13 axis regulates growth mode of mammalian cardiomyocytes. Nature 582:271–276. https://doi.org/10.1038/s41586-020-2228-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chattergoon NN, Giraud GD, Louey S, Stork P, Fowden AL, Thornburg KL (2012) Thyroid hormone drives fetal cardiomyocyte maturation. FASEB J 26:397–408. https://doi.org/10.1096/fj.10-179895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chattergoon NN, Louey S, Scanlan T, Lindgren I, Giraud GD, Thornburg KL (2019) Thyroid hormone receptor function in maturing ovine cardiomyocytes. J Physiol 597:2163–2176. https://doi.org/10.1113/JP276874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bassat E, Mutlak YE, Genzelinakh A et al (2017) The extracellular matrix protein agrin promotes heart regeneration in mice. Nature 547:179–184. https://doi.org/10.1038/nature22978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lau WB, Ohashi K, Wang Y, Ogawa H, Murohara T, Ma XL, Ouchi N (2017) Role of adipokines in cardiovascular disease. Circ J 81:920–928. https://doi.org/10.1253/circj.CJ-17-0458

    Article  CAS  PubMed  Google Scholar 

  29. Smekal A, Vaclavik J (2017) Adipokines and cardiovascular disease: A comprehensive review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 161:31–40. https://doi.org/10.5507/bp.2017.002

    Article  PubMed  Google Scholar 

  30. Kuba K, Zhang L, Imai Y et al (2007) Impaired heart contractility in Apelin gene-deficient mice associated with aging and pressure overload. Circ Res 101:e32-42. https://doi.org/10.1161/CIRCRESAHA.107.158659

    Article  CAS  PubMed  Google Scholar 

  31. Liao Y, Takashima S, Maeda N et al (2005) Exacerbation of heart failure in adiponectin-deficient mice due to impaired regulation of AMPK and glucose metabolism. Cardiovasc Res 67:705–713. https://doi.org/10.1016/j.cardiores.2005.04.018

    Article  CAS  PubMed  Google Scholar 

  32. Hall ME, Smith G, Hall JE, Stec DE (2012) Cardiomyocyte-specific deletion of leptin receptors causes lethal heart failure in Cre-recombinase-mediated cardiotoxicity. Am J Physiol Regul Integr Comp Physiol 303:R1241-1250. https://doi.org/10.1152/ajpregu.00292.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McGaffin KR, Witham WG, Yester KA, Romano LC, O’Doherty RM, McTiernan CF, O’Donnell CP (2011) Cardiac-specific leptin receptor deletion exacerbates ischaemic heart failure in mice. Cardiovasc Res 89:60–71. https://doi.org/10.1093/cvr/cvq288

    Article  CAS  PubMed  Google Scholar 

  34. Narumi T, Watanabe T, Kadowaki S et al (2014) Impact of serum omentin-1 levels on cardiac prognosis in patients with heart failure. Cardiovasc Diabetol 13:84. https://doi.org/10.1186/1475-2840-13-84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang Y, Lin Y, Zhang S et al (2016) Circulating Omentin-1 levels are decreased in dilated cardiomyopathy patients with overt heart failure. Dis Markers 2016:6762825. https://doi.org/10.1155/2016/6762825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yildiz SS, Sahin I, Cetinkal G et al (2018) Usefulness of serum omentin-1 levels for the prediction of adverse cardiac events in patients with hypertrophic cardiomyopathy. Med Princ Pract 27:107–114. https://doi.org/10.1159/000487396

    Article  PubMed  PubMed Central  Google Scholar 

  37. Matsuo K, Shibata R, Ohashi K et al (2015) Omentin functions to attenuate cardiac hypertrophic response. J Mol Cell Cardiol 79:195–202. https://doi.org/10.1016/j.yjmcc.2014.11.019

    Article  CAS  PubMed  Google Scholar 

  38. Kataoka Y, Shibata R, Ohashi K et al (2014) Omentin prevents myocardial ischemic injury through AMP-activated protein kinase- and Akt-dependent mechanisms. J Am Coll Cardiol 63:2722–2733. https://doi.org/10.1016/j.jacc.2014.03.032

    Article  CAS  PubMed  Google Scholar 

  39. Cardoso-Moreira M, Halbert J, Valloton D et al (2019) Gene expression across mammalian organ development. Nature 571:505–509. https://doi.org/10.1038/s41586-019-1338-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rao SS, Hu Y, Xie PL et al (2018) Omentin-1 prevents inflammation-induced osteoporosis by downregulating the pro-inflammatory cytokines. Bone Res 6:9. https://doi.org/10.1038/s41413-018-0012-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li J, Zhu D, Hu S, Nie Y (2022) CRISPR-CasRx knock-in mice for RNA degradation. Sci China Life Sci 65:2248–2256. https://doi.org/10.1007/s11427-021-2059-5

    Article  CAS  PubMed  Google Scholar 

  42. Li Y, Li H, Pei J, Hu S, Nie Y (2021) Transplantation of murine neonatal cardiac macrophage improves adult cardiac repair. Cell Mol Immunol 18:492–494. https://doi.org/10.1038/s41423-020-0371-5

    Article  CAS  PubMed  Google Scholar 

  43. Ackers-Johnson M, Li PY, Holmes AP, O’Brien SM, Pavlovic D, Foo RS (2016) A simplified, langendorff-free method for concomitant isolation of viable cardiac myocytes and nonmyocytes from the adult mouse heart. Circ Res 119:909–920. https://doi.org/10.1161/CIRCRESAHA.116.309202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yue Z, Chen J, Lian H et al (2019) PDGFR-beta signaling regulates cardiomyocyte proliferation and myocardial regeneration. Cell Rep 28:966–978. https://doi.org/10.1016/j.celrep.2019.06.065

    Article  CAS  PubMed  Google Scholar 

  45. Li H, Liu C, Bao M, Liu W, Nie Y, Lian H, Hu S (2020) Optimized Langendorff perfusion system for cardiomyocyte isolation in adult mouse heart. J Cell Mol Med 24:14619–14625. https://doi.org/10.1111/jcmm.15773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Feng J, Li Y, Nie Y (2022) Methods of mouse cardiomyocyte isolation from postnatal heart. J Mol Cell Cardiol 168:35–43. https://doi.org/10.1016/j.yjmcc.2022.04.007

    Article  CAS  PubMed  Google Scholar 

  47. Karakikes I, Senyei GD, Hansen J et al (2014) Small molecule-mediated directed differentiation of human embryonic stem cells toward ventricular cardiomyocytes. Stem Cells Transl Med 3:18–31. https://doi.org/10.5966/sctm.2013-0110

    Article  CAS  PubMed  Google Scholar 

  48. Burridge PW, Matsa E, Shukla P et al (2014) Chemically defined generation of human cardiomyocytes. Nat Methods 11:855–860. https://doi.org/10.1038/nmeth.2999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang C, Ding T, Zhang Y et al (2023) The longevity protein p66Shc is required for neonatal heart regeneration. J Mol Cell Cardiol 177:21–27. https://doi.org/10.1016/j.yjmcc.2023.02.004

    Article  CAS  PubMed  Google Scholar 

  50. Chu Q, Jiang H, Zhang L et al (2020) CACCT: an automated tool of detecting complicated cardiac malformations in mouse models. Adv Sci (Weinh) 7:1903592. https://doi.org/10.1002/advs.201903592

    Article  PubMed  Google Scholar 

  51. Bodis K, Jelenik T, Lundbom J et al (2020) Expansion and impaired mitochondrial efficiency of deep subcutaneous adipose tissue in recent-onset type 2 diabetes. J Clin Endocrinol Metab 105:e1331-1343. https://doi.org/10.1210/clinem/dgz267

    Article  PubMed  Google Scholar 

  52. Phielix E, Jelenik T, Nowotny P, Szendroedi J, Roden M (2014) Reduction of non-esterified fatty acids improves insulin sensitivity and lowers oxidative stress, but fails to restore oxidative capacity in type 2 diabetes: a randomised clinical trial. Diabetologia 57:572–581. https://doi.org/10.1007/s00125-013-3127-2

    Article  CAS  PubMed  Google Scholar 

  53. Merino D, Villar AV, Garcia R et al (2016) BMP-7 attenuates left ventricular remodelling under pressure overload and facilitates reverse remodelling and functional recovery. Cardiovasc Res 110:331–345. https://doi.org/10.1093/cvr/cvw076

    Article  CAS  PubMed  Google Scholar 

  54. Au-Yeung CL, Yeung TL, Achreja A et al (2020) ITLN1 modulates invasive potential and metabolic reprogramming of ovarian cancer cells in omental microenvironment. Nat Commun 11:3546. https://doi.org/10.1038/s41467-020-17383-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang Z, Sun D, Hu JX et al (2016) Neogenin promotes BMP2 activation of YAP and Smad1 and enhances astrocytic differentiation in developing mouse neocortex. J Neurosci 36:5833–5849. https://doi.org/10.1523/JNEUROSCI.4487-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Menzel J, di Giuseppe R, Biemann R et al (2017) Association between chemerin, omentin-1 and risk of heart failure in the population-based EPIC-Potsdam study. Sci Rep 7:14171. https://doi.org/10.1038/s41598-017-14518-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sam F, Duhaney TA, Sato K et al (2010) Adiponectin deficiency, diastolic dysfunction, and diastolic heart failure. Endocrinology 151:322–331. https://doi.org/10.1210/en.2009-0806

    Article  CAS  PubMed  Google Scholar 

  58. Kubin T, Poling J, Kostin S et al (2011) Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell 9:420–432. https://doi.org/10.1016/j.stem.2011.08.013

    Article  CAS  PubMed  Google Scholar 

  59. Talman V, Teppo J, Poho P et al (2018) Molecular atlas of postnatal mouse heart development. J Am Heart Assoc 7:e010378. https://doi.org/10.1161/JAHA.118.010378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Uosaki H, Cahan P, Lee DI et al (2015) Transcriptional landscape of cardiomyocyte maturation. Cell Rep 13:1705–1716. https://doi.org/10.1016/j.celrep.2015.10.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Carrion M, Frommer KW, Perez-Garcia S, Muller-Ladner U, Gomariz RP, Neumann E (2019) The adipokine network in rheumatic joint diseases. Int J Mol Sci 20:4091. https://doi.org/10.3390/ijms20174091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu H, Wu J, Wang H, Sheng L, Tang N, Li Y, Hao T (2015) Association of serum omentin-1 concentrations with the presence and severity of preeclampsia. Ann Clin Biochem 52:245–250. https://doi.org/10.1177/0004563214541247

    Article  CAS  PubMed  Google Scholar 

  63. Tahmasebpour N, Hosseinpour Feizi MA, Ziamajidi N, Pouladi N, Montazeri V, Farhadian M, Abbasalipourkabir R (2020) Association of Omentin-1 with oxidative stress and clinical significances in patients with breast cancer. Adv Pharm Bull 10:106–113. https://doi.org/10.15171/apb.2020.013

    Article  CAS  PubMed  Google Scholar 

  64. Tan BK, Adya R, Farhatullah S, Lewandowski KC, O’Hare P, Lehnert H, Randeva HS (2008) Omentin-1, a novel adipokine, is decreased in overweight insulin-resistant women with polycystic ovary syndrome: ex vivo and in vivo regulation of omentin-1 by insulin and glucose. Diabetes 57:801–808. https://doi.org/10.2337/db07-0990

    Article  CAS  PubMed  Google Scholar 

  65. Wang Q, Feng X, Zhou C, Li P, Kang J (2013) Decreased levels of serum omentin-1 in patients with obstructive sleep apnoea syndrome. Ann Clin Biochem 50:230–235. https://doi.org/10.1177/0004563212473275

    Article  CAS  PubMed  Google Scholar 

  66. Zhou JY, Chan L, Zhou SW (2014) Omentin: linking metabolic syndrome and cardiovascular disease. Curr Vasc Pharmacol 12:136–143. https://doi.org/10.2174/1570161112999140217095038

    Article  CAS  PubMed  Google Scholar 

  67. Çimen AR, Cerit ET, Iyidir OT et al (2017) Serum omentin-1 levels and endothelial dysfunction in obesity. Acta Endocrinol (Buchar) 13:138–143. https://doi.org/10.4183/aeb.2017.138

    Article  PubMed  Google Scholar 

  68. Zengi S, Zengi O, Kirankaya A, Kucuk SH, Kutanis EE, Yigit O (2019) Serum omentin-1 levels in obese children. J Pediatr Endocrinol Metab 32:247–251. https://doi.org/10.1515/jpem-2018-0231

    Article  CAS  PubMed  Google Scholar 

  69. Zhang Q, Zhu L, Zheng M et al (2014) Changes of serum omentin-1 levels in normal subjects, type 2 diabetes and type 2 diabetes with overweight and obesity in Chinese adults. Ann Endocrinol (Paris) 75:171–175. https://doi.org/10.1016/j.ando.2014.04.013

    Article  PubMed  Google Scholar 

  70. Rothermel J, Lass N, Barth A, Reinehr T (2020) Link between omentin-1, obesity and insulin resistance in children: Findings from a longitudinal intervention study. Pediatr Obes 15:e12605. https://doi.org/10.1111/ijpo.12605

    Article  PubMed  Google Scholar 

  71. Yang HY, Ma Y, Lu XH et al (2015) The correlation of plasma omentin-1 with insulin resistance in non-obese polycystic ovary syndrome. Ann Endocrinol (Paris) 76:620–627. https://doi.org/10.1016/j.ando.2015.08.002

    Article  PubMed  Google Scholar 

  72. Watanabe K, Watanabe R, Konii H et al (2016) Counteractive effects of omentin-1 against atherogenesis†. Cardiovasc Res 110:118–128. https://doi.org/10.1093/cvr/cvw016

    Article  CAS  PubMed  Google Scholar 

  73. Menzel J, Di Giuseppe R, Biemann R et al (2016) Association between omentin-1, adiponectin and bone health under consideration of osteoprotegerin as possible mediator. J Endocrinol Invest 39:1347–1355. https://doi.org/10.1007/s40618-016-0544-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yin J, Hou P, Wu Z, Nie Y (2015) Decreased levels of serum omentin-1 in patients with inflammatory bowel disease. Med Sci Monit 21:118–122. https://doi.org/10.1265/msm.892081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jin Z, Xia F, Dong J et al (2021) Omentin-1 attenuates glucocorticoid-induced cardiac injury by phosphorylating GSK3β. J Mol Endocrinol 66:273–283. https://doi.org/10.1530/jme-20-0236

    Article  CAS  PubMed  Google Scholar 

  76. Zhou JP, Tong XY, Zhu LP et al (2017) Plasma Omentin-1 level as a predictor of good coronary collateral circulation. J Atheroscler Thromb 24:940–948. https://doi.org/10.5551/jat.37440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ji H, Wan L, Zhang Q, Chen M, Zhao X (2019) The effect of omentin-1 on the proliferation and apoptosis of colon cancer stem cells and the potential mechanism. J buon 24:91–98

    PubMed  Google Scholar 

  78. Li D, Mei H, Pu J et al (2015) Intelectin 1 suppresses the growth, invasion and metastasis of neuroblastoma cells through up-regulation of N-myc downstream regulated gene 2. Mol Cancer 14:47. https://doi.org/10.1186/s12943-015-0320-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li D, Zhao X, Xiao Y et al (2015) Intelectin 1 suppresses tumor progression and is associated with improved survival in gastric cancer. Oncotarget 6:16168–16182. https://doi.org/10.18632/oncotarget.3753

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhang YY, Zhou LM (2013) Omentin-1, a new adipokine, promotes apoptosis through regulating Sirt1-dependent p53 deacetylation in hepatocellular carcinoma cells. Eur J Pharmacol 698:137–144. https://doi.org/10.1016/j.ejphar.2012.11.016

    Article  CAS  PubMed  Google Scholar 

  81. Kazama K, Okada M, Yamawaki H (2014) A novel adipocytokine, omentin, inhibits platelet-derived growth factor-BB-induced vascular smooth muscle cell migration through antioxidative mechanism. Am J Physiol Heart Circ Physiol 306:H1714-1719. https://doi.org/10.1152/ajpheart.00048.2014

    Article  CAS  PubMed  Google Scholar 

  82. Zhao LR, Du YJ, Chen L et al (2015) Omentin-1 promotes the growth of neural stem cells via activation of Akt signaling. Mol Med Rep 11:1859–1864. https://doi.org/10.3892/mmr.2014.2937

    Article  CAS  PubMed  Google Scholar 

  83. Yin L, Huang D, Liu X, Wang Y, Liu J, Liu F, Yu B (2017) Omentin-1 effects on mesenchymal stem cells: proliferation, apoptosis, and angiogenesis in vitro. Stem Cell Res Ther 8:224. https://doi.org/10.1186/s13287-017-0676-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cabral VLF, Wang F, Peng X et al (2022) Omentin-1 promoted proliferation and ameliorated inflammation, apoptosis, and degeneration in human nucleus pulposus cells. Arch Gerontol Geriatr 102:104748. https://doi.org/10.1016/j.archger.2022.104748

    Article  CAS  PubMed  Google Scholar 

  85. Wu SS, Liang QH, Liu Y, Cui RR, Yuan LQ, Liao EY (2013) Omentin-1 stimulates human osteoblast proliferation through PI3K/Akt signal pathway. Int J Endocrinol 2013:368970. https://doi.org/10.1155/2013/368970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yang RZ, Lee MJ, Hu H et al (2006) Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol Endocrinol Metab 290:E1253-1261. https://doi.org/10.1152/ajpendo.00572.2004

    Article  CAS  PubMed  Google Scholar 

  87. de Souza Batista CM, Yang RZ, Lee MJ et al (2007) Omentin plasma levels and gene expression are decreased in obesity. Diabetes 56:1655–1661. https://doi.org/10.2337/db06-1506

    Article  CAS  PubMed  Google Scholar 

  88. Jialal I, Devaraj S, Kaur H, Adams-Huet B, Bremer AA (2013) Increased chemerin and decreased omentin-1 in both adipose tissue and plasma in nascent metabolic syndrome. J Clin Endocrinol Metab 98:E514-517. https://doi.org/10.1210/jc.2012-3673

    Article  CAS  PubMed  Google Scholar 

  89. Pan HY, Guo L, Li Q (2010) Changes of serum omentin-1 levels in normal subjects and in patients with impaired glucose regulation and with newly diagnosed and untreated type 2 diabetes. Diabetes Res Clin Pract 88:29–33. https://doi.org/10.1016/j.diabres.2010.01.013

    Article  CAS  PubMed  Google Scholar 

  90. Auguet T, Quintero Y, Riesco D et al (2011) New adipokines vaspin and omentin. circulating levels and gene expression in adipose tissue from morbidly obese women. BMC Med Genet 12:60. https://doi.org/10.1186/1471-2350-12-60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li Z, Zhang Y, Tian F, Wang Z, Song H, Chen H, Wu B (2020) Omentin-1 promotes mitochondrial biogenesis via PGC1α-AMPK pathway in chondrocytes. Arch Physiol Biochem. https://doi.org/10.1080/13813455.2020.1819337

    Article  PubMed  Google Scholar 

  92. Groppe J, Greenwald J, Wiater E et al (2002) Structural basis of BMP signalling inhibition by the cystine knot protein Noggin. Nature 420:636–642. https://doi.org/10.1038/nature01245

    Article  CAS  PubMed  Google Scholar 

  93. Rebbapragada A, Benchabane H, Wrana JL, Celeste AJ, Attisano L (2003) Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol Cell Biol 23:7230–7242. https://doi.org/10.1128/MCB.23.20.7230-7242.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cao Y, Wang Y, Zhou Z et al (2022) Liver-heart cross-talk mediated by coagulation factor XI protects against heart failure. Science 377:1399–1406. https://doi.org/10.1126/science.abn0910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dale JK, Vesque C, Lints TJ, Sampath TK, Furley A, Dodd J, Placzek M (1997) Cooperation of BMP7 and SHH in the induction of forebrain ventral midline cells by prechordal mesoderm. Cell 90:257–269. https://doi.org/10.1016/s0092-8674(00)80334-7

    Article  CAS  PubMed  Google Scholar 

  96. Luo G, Hofmann C, Bronckers AL, Sohocki M, Bradley A, Karsenty G (1995) BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev 9:2808–2820. https://doi.org/10.1101/gad.9.22.2808

    Article  CAS  PubMed  Google Scholar 

  97. Tseng YH, Kokkotou E, Schulz TJ et al (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454:1000–1004. https://doi.org/10.1038/nature07221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zeisberg EM, Tarnavski O, Zeisberg M et al (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13:952–961. https://doi.org/10.1038/nm1613

    Article  CAS  PubMed  Google Scholar 

  99. Tan CY, Wong JX, Chan PS et al (2019) Yin Yang 1 suppresses dilated cardiomyopathy and cardiac fibrosis through regulation of Bmp7 and Ctgf. Circ Res 125:834–846. https://doi.org/10.1161/CIRCRESAHA.119.314794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Murphy SA, Miyamoto M, Kervadec A et al (2021) PGC1/PPAR drive cardiomyocyte maturation at single cell level via YAP1 and SF3B2. Nat Commun 12:1648. https://doi.org/10.1038/s41467-021-21957-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Hui Xie (Movement System Injury and Repair Research Center, Xiangya Hospital, Changsha, China) for the generation and provision of omentin-1−/− mice. We acknowledge the experimental research center of the Chinese Academy of Medical Sciences for the use of the IonOptix Systems. We also acknowledge the service of the public laboratory platform at the State Key Laboratory of Cardiovascular Disease for their assistance in flow cytometry (Shuo Gao), tissue sectioning (Jian Meng and Zhenyu Xu), and CardioExcyte 96 function analysis experiments (Kejia Zhong). We are grateful Weijing Liu, Zheng Qiao, Chiyin Wang, Wenlong Zhang, Shijie Sun, Haorui Liu, Wenzheng Chen, Zehao Yao, Yunxiaoxiao Wu, Hao Wang, Yuan Zhang, Yuan Liu, and Shanshan Xu for the proof, and polishing of the manuscript.

Funding

This work was supported by the National Key Research and Development Project of China (grant number 2019YFA0801500), the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (CAMS-I2M, 2021-I2M-1–072; 2021-I2M-C&T-A-011), the National Natural Science Foundation of China (grant number 81873509, 81970243, 81822004, 81670267, 81873479, and 31801068), and the Innovation-driven Project of Central South University (No. 2020CX017).

Author information

Authors and Affiliations

Authors

Contributions

HY conceived the project, performed experiments, analyzed data, and wrote the manuscript. SS analyzed RNA-seq data and edited the manuscript. JL and JF performed primary CM isolation experiments. YL performed apical resection models. ZC performed echocardiography. QS and XQ performed animal experiments. XB and XL rewrote and revised the manuscript. HL and LL analyzed data. YB and GZ participated in project design. YN designed and planned the project and wrote the manuscript.

Corresponding authors

Correspondence to Yongping Bai, Guogang Zhang or Yu Nie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The animal experiments were conducted in accordance with the Guide for the Use and Care of Laboratory Animals. All animal protocols were approved by the Institutional Animal Care and Use Committee (IACUC), Fuwai Hospital, Chinese Academy of Medical Sciences.

Consent for publication

All the authors have consented to publication in CMLS.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Song, S., Li, J. et al. Omentin-1 drives cardiomyocyte cell cycle arrest and metabolic maturation by interacting with BMP7. Cell. Mol. Life Sci. 80, 186 (2023). https://doi.org/10.1007/s00018-023-04829-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04829-1

Keywords

Navigation