Skip to main content
Log in

Spatial Behaviour of Solutions of the Moore-Gibson-Thompson Equation

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this note we study the spatial behaviour of the Moore-Gibson-Thompson equation. As it is a hyperbolic equation, we prove that the solutions do not grow along certain spatial-time lines. Given the presence of dissipation, we show that the solutions also decay exponentially in certain directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that the introduction of a relaxation parameter is natural in view that the waves for the type III heat conduction propagates instantaneously and therefore this theory violates the principle of causality (see [11, 27]). Then, we use a similar argument to the one involved in the Cattaneo-Maxwell heat conduction and the thermoelasticity with one relaxation time [16].

  2. This assumption is fundamental in the studies related with the MGT equation. It guarantees the stability of the solutions.

  3. A description of the way to prove the existence, uniqueness and regularity of the solutions to this problem can be found in the appendix of this paper.

References

  1. Bofill, F., Quintanilla, R.: Spatial estimates for dynamical problems in several elasticity theories. Ricerche di Matematica 46, 425–441 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Brezis, H.: Analyse Fonctionelle. Théorie et Applications, Masson, Paris (1983)

    Google Scholar 

  3. Chirita, S., Quintanilla, R.: Saint-Venant‘s principle in linear elastodynamics. J. Elast. 42, 201–215 (1996)

    Article  MathSciNet  Google Scholar 

  4. Roy Choudhuri, S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stresses 30, 231–238 (2007)

    Article  Google Scholar 

  5. Conejero, J.A., Lizama, C., Ródenas, F.: Chaotic behaviour of the solutions of the Moore-Gibson-Thompson equation. Appl. Math. Inf. Sci. 9, 2233–2238 (2015)

    MathSciNet  Google Scholar 

  6. Conti, M., Pata, V., Quintanilla, R.: Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature. Asymptotic Anal. 120, 1–21 (2020)

    Article  MathSciNet  Google Scholar 

  7. Dell‘Oro, F., Lasiecka, I., Pata, V.: The Moore-Gibson-Thompson equation with memory in the critical case. J. Diff. Equa. 261, 4188–4222 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. Dell‘Oro, F., Pata, V.: On the Moore-Gibson-Thompson equation and its relation to linear viscoelasticity. Appl. Math. Optim. 76, 641–655 (2017)

    Article  MathSciNet  Google Scholar 

  9. Dell‘Oro, F., Pata, V.: On a fourth-order equation of Moore-Gibson-Thompson type Milan. J. Math. 85, 215–234 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Flavin, J. N., Knops, R. J., Payne, L. E. Energy bounds in dynamical problems for a semi-infinite elastic beam, in Elasticity: Mathematical Methods and Applications (Ellis-Horwood Chichester, 1989) pp. 101–111

  11. Giorgi, C., Grandi, D., Pata, V.: On the Green-Naghdi type III heat conduction model. Discrete Contin. Dyn. Syst. Ser. B 19, 2133–2143 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stresses 15, 253–264 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  13. Green, A. E. and Naghdi, P. M. Thermoelasticity without energy dissipation, Green, A. E. Naghdi, P. M. J. Elast. 1993 ; 31, 189–208

  14. Green, A. E. and Naghdi, P. M. A verified procedure for construction of theories of deformable media. I. Classical continuum physics, II. Generalized continua, III. Mixtures of interacting continua, Proc. Roy. Society London A 1995; 448, 335–356, 357–377, 378–388

  15. Horgan, C.O., Quintanilla, R.: Spatial behaviour of solutions of the dual-phase-lag heat equation Math. Meth. Appl. Sci. 28, 43–57 (2005)

    Article  Google Scholar 

  16. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, New York (2010)

    MATH  Google Scholar 

  17. Kaltenbacher, B., Lasiecka, I., Marchand, R.: Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound. Control Cybernet. 40, 971–988 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Lasiecka, I., Wang, X.: Moore-Gibson-Thompson equation with memory, part II: general decay of energy. J. Diff. Equa. 259, 7610–7635 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. Lasiecka, I., Wang, X.: Moore-Gibson-Thompson equation with memory, part I: exponential decay of energy. Z. Angew. Math. Phys. 67, 17 (2016)

    Article  MathSciNet  Google Scholar 

  20. Lesduarte, M.C., Quintanilla, R.: Spatial behavior in high-order partial differential equations. Math. Methods Appl. Sci. 41, 2480–2493 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Marchand, R., McDevitt, T., Triggiani, R.: An abstract semigroup approach to the third order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability. Math. Methods Appl. Sci. 35, 1896–1929 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  22. Pellicer, M., Quintanilla, R.: On uniqueness and instability for some thermomechanical problems involving the Moore-Gibson-Thompson equation. Z. Angew. Math. Phys. 71, 84 (2020)

  23. Pellicer, M., Said-Houari, B.: Wellposedness and decay rates for the Cauchy problem of the Moore-Gibson-Thompson equation arising in high intensity ultrasound. Appl. Math. Optim. 35, 1–32 (2017)

    MATH  Google Scholar 

  24. Pellicer, M., Sola-Morales, J.: Optimal scalar products in the Moore-Gibson-Thompson equation. Evol. Equ. Control Theory 8, 203–220 (2019)

    Article  MathSciNet  Google Scholar 

  25. Quintanilla, R.: Moore-Gibson-Thompson thermoelasticity. Math. Mech. Solids 24, 4020–4031 (2019)

    Article  MathSciNet  Google Scholar 

  26. Quintanilla, R., Racke, R.: Spatial behavior in phase-lag heat conduction. Diff. Int. Equa. 28, 291–308 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Renardy, M., Hrusa, W.J., Nohel, J.A.: Mathematical Problems in Viscoelasticity. John Wiley & Sons Inc, New York (1987)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referee for her(his) useful comments that improved the final version of the paper. The research of MO-S was funded, in part, by the National Institute of Biomedical Imaging and Bioengineering of the NIH under award R01EB029766. The research of RQ was supported by the project “Análisis Matemático Aplicado a la Termomecánica” (PID2019-105118GB-I00) of the Spanish Ministry of Science, Innovation and Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ostoja-Starzewski.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by G. P. Galdi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In the development of the paper we have assumed the existence, uniqueness and regularity of the solutions to the proposed problem (3-6). To be precise we have used that

$$\begin{aligned} \hat{u}\in W^{2,2}(R);\, \, \, \tilde{u}, \, u, \, \, \dot{u}\in W_0^{1,2}(R). \end{aligned}$$
(51)

In this appendix we prove that these properties hold whenever we assume that

$$\begin{aligned} g\in C^4\left( 0,T,W^{2,2}(D) \cap W_0^{1.2}(D )\right) , \end{aligned}$$
(52)

as well as

$$\begin{aligned} g\left( x_1,x_2,0,0\right) =u^0\left( x_1,x_2,0\right) ,\, \, \, \dot{g}\left( x_1,x_2,0,0\right) = \vartheta ^0\left( x_1,x_2,0\right) ,\, \, \, \ddot{g}\left( x_1,x_2,0,0\right) =\phi ^0\left( x_1,x_2,0\right) ,\, \, \, \end{aligned}$$
(53)

and

$$\begin{aligned}&k^* u^0+k\vartheta ^0 \in W^{2,2}(R), \, \, \, \, u^0-{g} \left( x_1,x_2,0\right) \exp \left( -{ \gamma } x_3\right) \in W_0^{1,2}(R),\nonumber \\&\quad \vartheta ^0 -\dot{g} (x_1,x_2,0) \exp (-{ \gamma } x_3),\, \, \phi ^0-\ddot{g} (x_1,x_2,0) \exp (-{ \gamma } x_3)\in W_0^{1,2}(R), \end{aligned}$$
(54)

where \({ \gamma } \) is an arbitrary positive constant.

First, we will need the following result:

Theorem 6.1

Let us consider the problem determined by the equation

$$\begin{aligned} \tau \dddot{w}+\ddot{w}-k\triangle \dot{w}-k^{*}\triangle w=f(\mathbf {x} ,t), \end{aligned}$$
(55)

the initial conditions

$$\begin{aligned} w(\mathbf {x},0)=a^{0}(\mathbf {x}),\,\,\dot{w}(\mathbf {x},0)=b^{0}(\mathbf {x} ),\,\,\ddot{w}(\mathbf {x},0)=c^{0}(\mathbf {x}), \end{aligned}$$
(56)

and the boundary conditions

$$\begin{aligned} w(\mathbf {x},t) =0,\,\,\,\mathbf {x}\in \partial R \times [0,\infty ), \end{aligned}$$
(57)

where \(a^0 (\mathbf {x})\in W_0^{1,2} (R),\, \, \, b^0(\mathbf {x})\in W_0^{1,2}(R),\, \, \, c^0(\mathbf {x}) \in W_0^{1,2} (R) \text{ and } k^*a^0 (\mathbf {x})+k b^0(\mathbf {x})\in L^2(R).\) We also assume that \(f(\mathbf {x} ,t)\in C^1(0,T, L^2(R))\). Then, there exists a unique solution \(w(\mathbf {x} ,t) \in W_0^{1,2}(R)\) such that \(\dot{w}(\mathbf {x} ,t) \in W_0^{1,2}(R)\) , \(\ddot{w}(\mathbf {x} ,t) \in L^{2}(R)\), \(\hat{w}(\mathbf {x} ,t) \in W^{2,2}(R)\), \(\tilde{w}(\mathbf {x} ,t) \in W_0^{1,2}(R)\)

Proof

We consider the Hilbert space \({\mathcal {H}} =W_{0}^{1,2}(R)\times W_{0}^{1,2}(R)\times L^{2}(R)\) and we can write our problem as

$$\begin{aligned} \frac{d}{dt} \begin{pmatrix} w \\ \theta \\ \varphi \end{pmatrix} ={\mathcal {A}} \begin{pmatrix} w \\ \theta \\ \varphi \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ f \end{pmatrix} ,\,\,\,w(0)=a^{0}(\mathbf {x}),\,\,\theta (0)=b^{0}(\mathbf {x}),\,\,\varphi (0)=c^{0}(\mathbf {x}), \end{aligned}$$
(58)

where

$$\begin{aligned} {\mathcal {A}} \begin{pmatrix} w \\ \theta \\ \varphi \end{pmatrix} = \begin{pmatrix} \theta \\ \varphi \\ \tau ^{-1}[k^{*}\Delta w+k\Delta \theta -\varphi ] \end{pmatrix} . \end{aligned}$$
(59)

The domain of this operator is the subspace of \({\mathcal {H}}\) such that \( k^{*}\Delta w+k\Delta \theta \in L^{2}(R)\) and \(\varphi \in W_{0}^{1,2}(R)\). Following the arguments proposed in ([25], p. 4025), we can prove that \({\mathcal {A}}\) generates a \(C^{0}\)-semigroup of contractions. As \(f(\mathbf {x},t)\in C^{1}(0,T,L^{2}(R))\) we can conclude the existence and uniqueness of solutions (see [2], p.117). We also know that the solutions belong to the domain of \({\mathcal {A}}\) and then the required regularity conditions are satisfied.

Theorem 6.2

Let us assume that the boundary and initial datas satisfy the conditions proposed at the begin of the appendix (52-54). Then, there exists a unique solution to the problem (3-6). Moreover, this solution satisfies the regularity conditions.

Proof

We define the function \(H(\mathbf {x},t)=g(x_1,x_2,t) \exp (- { \gamma } x_3)\) where \({ \gamma } \) is an arbitrary positive number. We denote by w(t) the solution of the problem (55-57) when

$$\begin{aligned} f(\mathbf {x},t)=\tau \dddot{H}+\ddot{H}-k\Delta \dot{ H}-k^*\Delta H, \end{aligned}$$

and

$$\begin{aligned} a^0(\mathbf {x})=u^0(\mathbf {x})-H(\mathbf {x},0),\, \, \, b^0(\mathbf {x} )=\vartheta ^0(\mathbf {x})-\dot{H}(\mathbf {x},0),\, \, \, c^0(\mathbf {x} )=\phi ^0(\mathbf {x})-\ddot{H}(\mathbf {x},0). \end{aligned}$$

We note that \(f(\mathbf {x},t)\) and \(a^0(\mathbf {x}),b^0(\mathbf {x}),c^0( \mathbf {x})\) satisfy the conditions of the previous theorem.

The solution to the problem (3-6) can be obtained by taking

$$\begin{aligned} u(\mathbf {x},t)=w(\mathbf {x},t)+H(\mathbf {x},t). \end{aligned}$$
(60)

Existence, uniqueness and regularity of the solution are clearly checked in view of the previous theorem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostoja-Starzewski, M., Quintanilla, R. Spatial Behaviour of Solutions of the Moore-Gibson-Thompson Equation. J. Math. Fluid Mech. 23, 105 (2021). https://doi.org/10.1007/s00021-021-00629-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-021-00629-4

Keywords

Navigation