Skip to main content
Log in

A Mathematical Account of the NEGF Formalism

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

The main goal of this paper is to put on solid mathematical grounds the so-called non-equilibrium Green’s function transport formalism for open systems. In particular, we derive the Jauho–Meir–Wingreen formula for the time-dependent current through an interacting sample coupled to non-interacting leads. Our proof is non-perturbative and uses neither complex-time Keldysh contours nor Langreth rules of ‘analytic continuation.’ We also discuss other technical identities (Langreth, Keldysh) involving various many-body Green’s functions. Finally, we study the Dyson equation for the advanced/retarded interacting Green’s function and we rigorously construct its (irreducible) self-energy, using the theory of Volterra operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki, H., Ho, T.G.: Asymptotic time evolution of a partitioned infinite two-sided isotropic XY-chain. Proc. Steklov Inst. Math. 228, 191–204 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Aschbacher, W., Jakšić, V., Pautrat, Y., Pillet, C.-A.: Topics in non-equilibrium quantum statistical mechanics. In: Attal, S., Joye, A., Pillet, C.-A. (eds.) Open Quantum Systems III. Recent Developments, Lecture Notes in Mathematics, vol. 1882. Springer, Berlin (2006)

    Google Scholar 

  3. Aschbacher, W., Jakšić, V., Pautrat, Y., Pillet, C.-A.: Transport properties of quasi-free Fermions. J. Math. Phys 48, 032101-1–28 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Araki, H., Moriya, H.: Joint extension of states of subsystems for a CAR system. Commun. Math. Phys. 237, 105–122 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Aschbacher, W., Pillet, C.-A.: Non-equilibrium steady states of the XY chain. J. Stat. Phys. 112, 1153–1175 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Ben Sâad, R., Pillet, C.-A.: A geometric approach to the Landauer–Büttiker formula. J. Math. Phys. 55, 075202 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bratelli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, 2nd edn. Springer, New York (1997)

    Book  Google Scholar 

  8. Caroli, C., Combescot, R., Nozières, P., Saint-James, D.: Direct calculation of the tunneling current. J. Phys. C: Solid State Phys. 4, 916–929 (1971)

    Article  ADS  Google Scholar 

  9. Caroli, C., Combescot, R., Lederer, D., Nozières, P., Saint-James, D.: A direct calculation of the tunneling current II. Free electron description. J. Phys. C: Solid State Phys. 4, 2598–2610 (1971)

    Article  ADS  Google Scholar 

  10. Caroli, C., Combescot, R., Nozières, P., Saint-James, D.: A direct calculation of the tunneling current IV. Electron–phonon interaction effects. J. Phys. C: Solid State Phys. 5, 21–42 (1972)

    Article  ADS  Google Scholar 

  11. Cornean, H.D., Duclos, P., Nenciu, G., Purice, R.: Adiabatically switched-on electrical bias and the Landauer–Büttiker formula. J. Math. Phys. 49, 102106 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Cini, M.: Time-dependent approach to electron transport through junctions: general theory and simple applications. Phys. Rev. B 22, 5887–5899 (1980)

    Article  ADS  Google Scholar 

  13. Cornean, H.D., Jensen, A., Moldoveanu, V.: A rigorous proof of the Landauer–Büttiker formula. J. Math. Phys. 46, 042106 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Cornean, H.D., Moldoveanu, V.: On the cotunneling regime of interacting quantum dots. J. Phys. A: Math. Theor. 44, 305002 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cornean, H.D., Moldoveanu, V., Pillet, C.-A.: Nonequilibrium steady states for interacting open systems: exact results. Phys. Rev. B 84, 075464 (2011)

    Article  ADS  Google Scholar 

  16. Cornean, H.D., Moldoveanu, V., Pillet, C.-A.: On the steady state correlation functions of open interacting systems. Commun. Math. Phys. 331, 261–295 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Combescot, R.: A direct calculation of the tunneling current III. Effect of localized impurity states in the barrier. J. Phys. C: Solid State Phys. 4, 2611–2622 (1971)

    Article  ADS  Google Scholar 

  18. Craig, R.A.: Perturbation expansion for real-time Green’s functions. J. Math. Phys. 9, 605–611 (1968)

    Article  ADS  Google Scholar 

  19. Danielewicz, P.: Quantum theory of nonequilibrium processes I. Ann. Phys. 152, 239–304 (1984)

    Article  ADS  Google Scholar 

  20. Dereziński, J., Gérard, C.: Mathematics of Quantization and Quantum Fields. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  21. Fröhlich, J., Merkli, M., Ueltschi, D.: Dissipative transport: thermal contacts and tunneling junctions. Ann. Henri Poincaré 4, 897–945 (2004)

    Article  ADS  MATH  Google Scholar 

  22. Fujita, S.: Partial self-energy parts of Kadanoff–Baym. Physica 30, 848–856 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  23. Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle Systems. Dover Publications, New York (2003)

    MATH  Google Scholar 

  24. Gell-Mann, M., Low, F.: Bound states in quantum field theory. Phys. Rev. 84, 350–354 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Haugh, H., Jauho, A.-P.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer Series in Solid State Sciences, vol. 123, 2nd edn. Springer, Berlin (2007)

    Google Scholar 

  26. Imry, Y.: Introduction to Mesoscopic Physics. Oxford University Press, Oxford (1997)

    Google Scholar 

  27. Jakšić, V., Ogata, Y., Pillet, C.-A.: The Green–Kubo formula and the Onsager reciprocity relations in quantum statistical mechanics. Commun. Math. Phys. 265, 721–738 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Jakšić, V., Ogata, Y., Pillet, C.-A.: Linear response theory for thermally driven quantum open systems. J. Stat. Phys. 123, 547–569 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Jakšić, V., Ogata, Y., Pillet, C.-A.: The Green–Kubo formula for locally interacting fermionic open systems. Ann. Henri Poincaré 8, 1013–1036 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Jakšić, V., Pillet, C.-A.: Non-equilibrium steady states of finite quantum systems coupled to thermal reservoirs. Commun. Math. Phys. 226, 131–162 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Jauho, A.-P., Wingreen, N.S., Meir, Y.: Time-dependent transport in interacting and noninteracting resonant-tunneling systems. Phys. Rev. B 50, 5528–5544 (1994)

    Article  ADS  Google Scholar 

  32. Kadanoff, L.P., Baym, G.: Quantum Statistical Mechanics. Benjamin, New York (1962)

    MATH  Google Scholar 

  33. Keldysh, L.V.: Diagram technique for nonequilibrium processes. Zh. Eksp. Teor. Fiz. 47, 1515 (1964). English translation in Sov. Phys. JETP 20, 1018–1026 (1965)

  34. Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II. Nonequilibrium Statistical Mechanics. Springer, Berlin (1985)

    MATH  Google Scholar 

  35. Langreth, D.C.: Linear and nonlinear response theory with applications. In: Devreese, J.T., van Doren, V.E. (eds.) Linear and Nonlinear Electron Transport in Solids. NATO Advanced Study Institute, Series B: Physics, vol. 17. Plenum Press, New York (1976)

    Google Scholar 

  36. Merkli, M., Mück, M., Sigal, I.M.: Theory of non-equilibrium stationary states as a theory of resonances. Ann. Henri Poincaré 8, 1539–1593 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Myohanen, P., Stan, A., Stefanucci, G., van Leeuwen, R.: Kadanoff–Baym approach to quantum transport through interacting nanoscale systems: from the transient to the steady-state regime. Phys. Rev. B 80, 115107 (2009)

    Article  ADS  Google Scholar 

  38. Meir, Y., Wingreen, N.S.: Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. 68, 2512–2515 (1992)

    Article  ADS  Google Scholar 

  39. Nenciu, G.: Independent electrons model for open quantum systems: Landauer–Büttiker formula and strict positivity of the entropy production. J. Math. Phys. 48, 033302 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Ness, H., Dash, L.K.: Dynamical equations for time-ordered Green’s functions: from the Keldysh time-loop contour to equilibrium at finite and zero temperature. J. Phys.: Condens. Matter 24, 505601 (2012)

    Google Scholar 

  41. Ness, H., Dash, L.K., Godby, R.W.: Generalization and applicability of the Landauer formula for nonequilibrium current in the presence of interactions. Phys. Rev. B 82, 085426 (2010)

    Article  ADS  Google Scholar 

  42. Ness, H.: Nonequilibrium distribution functions for quantum transport: universality and approximation for the steady state regime. Phys. Rev. B 89, 045409 (2014)

    Article  ADS  Google Scholar 

  43. Stefanucci, G., Almbladh, C.-O.: Time-dependent partition-free approach in resonant tunneling systems. Phys. Rev. B 69, 195318 (2004)

    Article  ADS  Google Scholar 

  44. Schwinger, J.: Brownian motion of a quantum oscillator. J. Math. Phys. 2, 407–432 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Stefanucci, G., van Leeuwen, R.: Nonequilibrium Many-Body Theory of Quantum System. A Modern Introduction. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  46. von Friesen, P.M., Verdozzi, V., Almbladh, C.-O.: Kadanoff–Baym dynamics of Hubbard clusters: performance of many-body schemes, correlation-induced damping and multiple steady and quasi-steady states. Phys. Rev. B 82, 155108 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude-Alain Pillet.

Additional information

Communicated by Jan Derezinski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cornean, H.D., Moldoveanu, V. & Pillet, CA. A Mathematical Account of the NEGF Formalism. Ann. Henri Poincaré 19, 411–442 (2018). https://doi.org/10.1007/s00023-017-0638-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-017-0638-2

Navigation